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We investigate the spontaneous growth of noise that accompanies the nonlinear evolution of seeded 
modulation instability into Fermi–Pasta–Ulam recurrence. Results from the Floquet linear stability analysis 
of periodic solutions of the three-wave truncation are compared with full numerical solutions of the 
nonlinear Schrödinger equation. The predicted initial stage of noise growth is in a good agreement with 
simulations, and is expected to provide further insight into the subsequent dynamics of the field evolution 
after recurrence breakup.
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1. Introduction

Modulation instability (MI) in the evolution of constant ampli-
tude background waves as described by the self-focusing nonlinear 
Schrödinger equation (NLSE) is a well-known phenomenon with 
dramatic impact in a variety of physical settings ranging from non-
linear optics, hydrodynamics, plasma physics and Bose–Einstein 
condensation [1,2]. Among others, MI is at the origin of the gen-
eration of optical solitons, supercontinuum [3,4], and associated 
extreme events (the so-called optical rogue waves) [5]. Whenever 
MI is induced by a weak seed signal [6], the initial stage of ex-
ponential sideband amplification is followed by a nonlinear stage 
characterized by the so-called Fermi–Pasta–Ulam (FPU) recurrence 
phenomenon [7,8]. In fact, the NLSE model predicts a fully revers-
ible or spatially periodic power exchange among the pump, the 
initial modulation sidebands and all their harmonics. This process 
can be described in terms of exact solutions of the NLSE [9–12], 
and it has been experimentally observed in deep water waves [13,
14], nonlinear optical fibers [15–20], nematic liquid crystals [21], 
magnetic film strip-based active feedback rings [22], and bimodal 
electrical transmission lines [23]. Useful physical insight into the 
qualitative dynamics of FPU recurrence, such as for example the 
presence of separatrix solutions, or the dependence of the FPU re-
currence period upon the input relative phase between the pump 
and the initial modulation sidebands, may be obtained by using 
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a three-wave truncation which leads to a fully integrable, one-di-
mensional equivalent particle model [24–26].

Although the nonlinear stage of MI is characterized by the FPU 
recurrence phenomenon, the development of optical supercontin-
uum (SC) is associated with an irreversible evolution towards a 
thermalization state, i.e., a nearly equal distribution of spectral en-
ergy among all frequency components [3,4]. Indeed, it has been 
recently predicted and experimentally observed that third-order 
dispersion induced losses into Cherenkov radiation may lead to ir-
reversible energy dissipation of the pump field, which ultimately 
breaks the FPU recurrence [27,28]. As a matter of fact, experi-
ments carried out so far in nonlinear fiber optics have not been 
able to demonstrate FPU recurrence beyond a single spatial pe-
riod [15–19]. In addition, recent studies regarding noise-induced 
MI have highlighted the complex dynamics associated with the on-
set stage of noise amplification [29,30] and their intriguing links 
with the mechanisms underlying rogue waves formation in optical 
fiber [4,31]. Among others, it was shown that seeding the initial 
stage of SC generation with a weak modulation could lead to the 
stabilization of the SC output [31–33], and thus reduce the impact 
of noise on the complex dynamics associated with SC and rogue 
wave generation.

In this Letter we show that, even in the purely conservative 
case, there is a fundamental instability mechanism which breaks 
the FPU recurrence and leads to the irreversible evolution into sta-
tistically stationary spectra. For this purpose, we carry out a linear 
stability analysis of FPU recurrence. We do that by analyzing the 
evolution of small perturbations around the exact solutions of the 
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three wave truncation involving the pump and its initial sidebands. 
It is worth mentioning that the stability of periodic nonlinear 
mode coupling was studied before in the context of polarization MI 
in birefringent fibers [34], parametric mixing [35] or second har-
monic generation in quadratic materials [36], and, more recently, 
in the closely related problem of dual-frequency pumped four-
wave mixing (FWM) in optical fibers [37–39]. By comparing the 
predictions of the linearized stability analysis of a simple three-
mode truncation with the full numerical solutions of the NLSE, 
we show that a good quantitative agreement may be obtained be-
tween the two approaches. This allows us to show that the intrin-
sic MI process underlying the initial FPU recurrence phenomenon 
leads to its eventual break-up and spectral thermalization in the 
presence of input noise. The physical mechanism behind the FPU 
recurrence break-up may thus be simply understood in terms of 
the competing growth of the spontaneous (or noise-activated) MI 
of the periodically evolving pump and FWM sidebands.

2. Analytical stability theory

The propagation of an optical pulse with envelope u in a weakly 
dispersive and nonlinear dielectric (e.g., an optical fiber) can be 
described using the NLSE

i
∂u

∂z
+ 1

2

∂2u

∂t2
+ |u|2u = 0. (1)

Here z and t denote dimensionless distance and retarded time, 
respectively. We restrict our attention to the anomalous group-
velocity dispersion (GVD) regime. In order to analyze the dynamics 
of induced MI, we consider the input conditions given by Eq. (2)

u(z = 0, t) = 1 + ε exp
{

iφ0/2
}

cos(Ωt), (2)

which corresponds to a perturbed continuous wave (CW) solution 
whenever ε � 1. As well known, the linear stability analysis of 
Eqs. (1)–(2) predicts that MI occurs for 0 < Ω < 2, with a gain 
peak found for Ω = √

2.
Let us study the nonlinear evolution of MI in terms of the sim-

ple three-wave truncation [25,26]

u(z, t) = A0(z, t) + A−1(z, t)exp(iΩt)

+ A+1(z, t)exp(−iΩt), (3)

where A0, A−1 and A+1 denote the amplitudes of the pump, 
Stokes and anti-Stokes waves, respectively. By inserting the ansatz 
(3) in (1), one obtains:
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The stationary solution A j(z, t) = Ā j(z) of Eq. (4) is exactly inte-
grable [25]. Let us set η(z) = | Ā0(z)|2/P0 and φ = φ−1 +φ+1 −2φ0, 
with Ā j(z) = | Ā j(z)| exp{iφ j(z)}, where the conserved total power 
P0 = | Ā0|2 + | Ā−1|2 + | Ā+1|2. Supposing for simplicity initial equal 
amplitude sidebands Ā−1(z = 0) = Ā+1(z = 0), one obtains the 
Fig. 1. Evolution of fractional power in the pump (solid black curves) and sidebands 
(dashed red curves) from 3-wave model for: (a) Ω = 1; (b) Ω = √

2. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

1-dimensional Hamiltonian system which describes the spatial 
evolution of the coordinates (η, φ) in a phase plane

dη

dZ
= dH

dφ
,

dφ

dZ
= −dH

dη
, (5)

where Z = P0z, and the conserved Hamiltonian H reads as

H = 2η(1 − η) cos(φ) − (κ − 1)η − 3

2
η2, (6)

where κ = −Ω2/P0. The solutions of Eqs. (5)–(6) can be expressed 
in terms of Jacobian elliptic or hyperbolic functions [25]. Even 
though higher-order sideband growth is neglected and, accord-
ingly, pump depletion is underestimated when following the three-
wave truncation approach, it has been shown that Eqs. (5)–(6) pro-
vide a relatively good model for describing the induced MI process 
in the NLSE (1) as long as 1 ≤ Ω ≤ 2 [24,26]. In this regime, the 
dynamics and the periodic evolution of all harmonics of the input 
modulation are driven by the three-wave truncation. Whereas for 
0 ≤ Ω < 1, some higher-order sidebands (e.g., the first-harmonic 
of the input modulation ±2Ω for 0.5 ≤ Ω < 1) may also experi-
ence exponential growth with distance whenever they fall within 
the MI bandwidth [40]. In this case the field evolution may be ob-
tained as a nonlinear superposition of all linearly unstable modes, 
which leads to the emergence of multiple spatial periods [41,42].

Fig. 1 shows examples of periodic solutions of Eqs. (5)–(6), 
which can be expressed in terms of an elliptic integral [25]. Here 
we only display the evolution over one period, say, z = Λ. We have 
set η(Z = 0) = 0.9988 and φ(Z = 0) = 0, which is equivalent to 
setting ε = 0.05 and φ0 = 0 in Eq. (2). In Fig. 1(a) we have cho-
sen κ = −1 (equivalent to Ω = 1). Fig. 1(b) shows the case with 
κ = −2, which corresponds to a frequency modulation located at 
the peak of MI gain (i.e. Ω = √

2, the initial FWM phase-matching 
condition). As can be seen by comparing these two cases, the FPU 
period Λ (and thus the distance of maximal pump depletion ob-
tained at z = Λ/2) is smaller when the modulation is located at 
the MI gain peak. On the other hand, a maximum amount of en-
ergy is transferred from the pump into the sidebands only when 
the input modulation frequency is shifted away from the MI gain 
peak. Indeed, due to the intrinsic pump depletion of the process, 
phase matching is progressively shifted along the fiber towards 
lower frequency values, so that the initial modulation with Ω = 1
provides the largest pump depletion [25,26].
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We are interested here in studying the MI associated with the 
spatially periodic steady-state solutions of Eq. (4). We may write a 
perturbed CW solution of Eq. (4) as

A j(z, t) = (∣∣ Ā j(z)
∣∣ + a j(z, t)

)
exp

{
iφ j(z)

}
, (7)

where |a j| � | Ā j |. By expressing the perturbations a j as the sum 
of Stokes and anti-Stokes waves

a j(z, t) = u j(z)exp{iωt} + w∗
j (z)exp{−iωt}, (8)

one obtains from Eq. (4) a set of six linear ordinary differential 
equations with periodic coefficients for the three Stokes and anti-
Stokes sideband pairs of the form

dX(z)

dz
= M(z)X(z), (9)

where X(z) = (u0, w0, u−1, w−1, u1, w1). In Eq. (9), M(z) is a z-pe-
riodic 6 × 6 matrix with spatial period z = Λ equal to the FPU re-
currence period. By solving Eq. (9) with each of the six fundamen-
tal or independent initial conditions: X1(z = 0) = (1, 0, 0, 0, 0, 0), 
X2(z = 0) = (0, 1, 0, 0, 0, 0), . . ., X6(z = 0) = (0, 0, 0, 0, 0, 1), and by 
evaluating the corresponding six solutions of Eq. (9) at z = Λ, one 
may build the so-called principal solution matrix S ≡ {Xt

1(z = Λ),

Xt
2(z = Λ), . . . ,Xt

6(z = Λ)}, where the superscript t denotes vector 
transpose [43].

According to the Floquet theorem, whenever the sideband fre-
quency detuning ω is such that an eigenvalue of S (or Floquet 
multiplier) λF = exp(ρF + iσ) is such that |λF | > 1 (or ρF > 0), 
an instability occurs for the periodic stationary solution of Eq. (4). 
Namely, the exponential growth with distance of sidebands which 
are the components of the corresponding eigenvalue XF results. 
Indeed, since the principal solution or scattering matrix associated 
with an integer number of periods, say, z = nΛ is simply equal to 
Sn , one may relate the Floquet multipliers to the usual MI power 
gain, say, Ĝ through the relation Ĝ = 2ρF /Λ.

The eigenvectors XF of the scattering matrix S associated with 
unstable eigenvalues λF are, in general, strongly varying with fre-
quency detuning ω. For any ω, we normalize the eigenvectors of S
to unit length (i.e., we set |XF |2 = 1). For calculating the MI gain 
associated with each individual sideband, we project Ĝ(ω) on the 
corresponding component of XF . The resulting gain for the k-th 
sideband (with k = 1, 2, . . . , 6) is thus calculated as G = 2Ĝ|XF ,k|2. 
Here the factor of 2 is introduced in order to retrieve the analytical 
MI gain in the limit case of a constant amplitude CW pump.

These results are presented in Fig. 2, which illustrates the an-
alytically computed MI gain for either the pump mode A0 (solid 
black curves) or the anti-Stokes sideband mode A+1 (dashed red 
curves) as a function of the angular frequency shift ω from the 
pump, for two different values of the initial modulation frequency 
Ω (which is shown in Fig. 2 by a vertical blue arrow). Here we 
present the relative gain g = G/Gm , where Gm = 2 is the peak 
value of the MI gain for a CW pump (in real units, the peak MI 
gain is 2γ P , where γ is the nonlinear coefficient and P the input 
CW pump power).

As can be seen in Fig. 2(a) when Ω = 1, the MI gain g of the 
spatially periodic pump mode has a maximum gm(ω=1.64) � 0.67 at 
ω � 1.64, which is significantly up-shifted compared with the MI 
gain peak obtained at ω = √

2 for a constant amplitude pump. The 
corresponding gain value, i.e. gm(ω=√

2)
� 0.6, is also reduced by 

about 40% with respect to the constant amplitude pump case. On 
the other hand, the sideband mode exhibits a gain with a double 
maxima structure around the sideband frequency associated with 
a gain peak value gm(ω=0.25) � 0.41. As shown in Fig. 2(b), similar 
symmetric structures (and gain values) are found for the sideband 
mode gain when Ω = √

2. In this latter case, the pump mode has 
a slightly larger gain peak value gm � 0.8 which is exactly located 
Fig. 2. MI gain g = G/Gm for the pump (solid black curves) and anti-Stokes sideband 
mode (dashed red curves) for: (a) Ω = 1; (b) Ω = √

2. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

at ω = √
2 (i.e., the MI gain peak frequency obtained for a con-

stant amplitude pump case). In the next section, we compare the 
results obtained from the linearized stability analysis of the peri-
odic solutions of the truncated equation (4) with the full numerical 
solutions of the NLSE (1)–(2).

3. Numerical results

In the following, we numerically solved the NLSE (1) with the 
initial conditions (2), where ε = 0.05 and φ0 = 0, and further 
added a broadband quantum noise floor (about 125 dB below the 
spectral power of the background pump) corresponding to the 
usual one photon per frequency bin with random initial phase in 
the spectral domain. In our simulations, we implemented a split-
step Fourier method with sufficient spatio-temporal discretization 
to avoid the classical drawbacks associated with unwanted nu-
merical noise generated along propagation. For instance, we used 
214 time grid points and periodic boundary conditions in time 
(with a time window equal to 64TΩ , where TΩ = 2π/Ω is the 
input modulation period) as well as a fixed spatial integration step 
δz � 1 × 10−4.

The contour plot shown in Fig. 3(a) illustrates the spatio-tem-
poral evolution of the field intensity |u(z, t)|2 for the nonlinear 
phase-matched case Ω = 1. Here we show the evolution corre-
sponding to a particular realization of the random input noise seed 
(single shot case). As it can be seen, after just two FPU recurrence 
periods, spontaneous MI leads to the field break-up into an irreg-
ular structure exhibiting frequency doubling and multiple irregular 
temporal collapses associated with high intensity peaks formation 
occurring at different points in space and time. In order to more 
clearly display the evolution of the individual space–time localized 
structures, we only show in Fig. 3(a) the central temporal profile 
around t = 0, as it is extracted from the computed evolution of the 
64 temporal periods of the input modulation.

Break-up of the FPU recurrence is in fact due to the exponential 
growth of the initial quantum noise background, as it is induced 
by the MI of the periodically evolving pump and multiple FWM 
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Fig. 3. Evolution of single-shot (a) field intensity |u|2 and (b) spectrum (in log scale) 
for Ω = 1.

sidebands. This is clearly shown in the single-shot spectral domain 
contour plot of Fig. 3(b): here we show the evolution with distance 
z of the log-scale spectral intensity of the field as a function of 
the angular frequency detuning from the pump, ω. In correspon-
dence with each temporal compression stage of the FPU process, 
quantum noise-activated broad sidebands emerge in-between the 
pump and the first-order seed sidebands, as well as all harmonic 
(or cascaded FWM) sidebands of the initial modulation at frequen-
cies ±nΩ , with n = 2, 3, 4, . . . . Fig. 3(b) also shows that, after two 
periods of the FPU recurrence, the temporal field break-up is as-
sociated with the growth of a broad frequency continuum among 
all FWM sidebands, which leads to the irreversible equipartition of 
energy in frequency space. In correspondence with the formation 
of high intensity temporal events subsequent to the FPU break-up 
as shown in Fig. 3(a), the associated spectrum exhibits series of 
sudden frequency broadening (see Fig. 3(b)). These spectral fea-
tures, which are seen at various propagation distances in Fig. 3(b) 
(e.g. z = 24, 31, 38), exhibit an irregular spatial distribution which 
originates from the amplification of the individual input quantum 
noise realization.

In order to gain further insight in the noise growth and asso-
ciated dynamics in the field propagation, we have also computed 
noise-averaged evolutions of the field intensity, in both the tem-
poral and spectral domain, as can be seen in Fig. 4. In this case, 
using the same parameters as those used in Fig. 3, averaging was 
performed over one hundred realizations with independent input 
quantum noise seeds. As can be seen by comparing Fig. 3(a) with 
Fig. 4(a), the noise-averaged temporal evolution before break-up 
(i.e. z < 16.5) is consistent with the single-shot case and the tem-
poral compressions occurring during the two first FPU recurrences 
do not exhibit significant differences (see temporal intensity scales 
in both spatio-temporal evolution contour plots). The fact that the 
main temporal features seen before break-up are not drastically af-
fected by the input noise is further attested by the similar spectral 
shapes seen up to this point in Fig. 3(b) and Fig. 4(b).

On the other hand, the averaged spectral evolution after FPU 
break-up exhibits smooth quasi-periodic breathing compared to 
the stochastic-like behavior occurring in the single-shot evolution. 
Such a phenomenon can be understood as follows. The effective in-
put noise amplification of each frequency bin is different for each 
Fig. 4. Evolution of noise-averaged (a) field intensity |u|2 and (b) spectrum (in log 
scale) using 100 realizations for Ω = 1.

Fig. 5. Comparison of spectra from numerical solution of the NLSE (continuous black 
curves) and from Floquet analysis (dashed red curves) for z = Λ and Ω = 1 (top); 
Ω = √

2 (bottom). Grey dots indicate the superposition of all 100 single-shot simu-
lated spectra. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

noise realization. Indeed, the random phase implemented for each 
input spectral noise component changes the phase matching con-
ditions of the spontaneous MI process. Thus slightly different gain 
values result for the continuum of noise-seeded frequency compo-
nents. As a result, the spectrum which is obtained after one (or 
multiple) FPU recurrence(s) is slightly different for each noise re-
alization. This will therefore impact the complex frequency mixing 
dynamics which results after FPU break-up. Interestingly, when av-
eraging the spatial evolution of the field after FPU break-up, the 
sudden spectral broadenings (associated with compressions in the 
temporal domain) exhibit privileged distances of occurrence (i.e., 
z = 23, 40), as can be seen in Fig. 4.

In Fig. 5, we show the spectra which are extracted from the nu-
merical solution of the NLSE (1) in the nonlinear phase-matched 
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Fig. 6. Comparison of Floquet analysis prediction and numerical NLSE results for 
spectral noise growth with distance for Ω = 1. Log scale spectral power is nor-
malized with respect to the input pump power. Dots indicate multiples of the FPU 
recurrence half-period Λ/2.

case with Ω = 1 (top panel), or in the MI gain peak case Ω = √
2

(bottom panel). In both cases, we show the superimposed single-
shot spectra obtained from 100 realizations (grey dots), as well as 
the averaged spectrum (solid black line). All spectra are comput-
ed at exactly one spatial period of the FPU recurrence (i.e. z = Λ =
8.24 for Ω = 1 and z = Λ = 8.07 for Ω = √

2).
Fig. 5 shows that the single-shot spectra exhibit large spectral 

intensity fluctuations between various realizations, highlighting the 
impact of the individual initial noise seed on the subsequent am-
plification process. On the other hand, the average spectra are rep-
resented by a smooth black solid curve. The average spectra can 
be readily compared with the results of the linear stability anal-
ysis obtained by the Floquet method presented in Section 2. The 
red dashed curves in Fig. 5 show the Floquet spectra, which are 
obtained by considering, for each frequency ω, the maximum be-
tween the pump gain and the Stokes or anti-Stokes gain of Fig. 2.

As can be seen, for Ω = 1 there is a good quantitative cor-
respondence between the MI gain spectra obtained from the full 
NLSE and the Floquet theory applied to the three-wave truncation. 
Although one may notice slight discrepancies in the surroundings 
of the initial modulation sidebands and their harmonics, Fig. 5(a) 
shows that there is an overall agreement between the numerical 
solutions of the NLSE and the Floquet theory. On the other hand, 
for Ω = √

2 the noise growth predicted by the Floquet analysis 
near the spectral position of the immediate sidebands is largely 
overestimated with respect to the NLSE results. In fact the Floquet 
analysis is not expected to be accurate in this case, because of the 
resonance occurring when the initial deterministic sidebands (2)
are superimposed with the position where a spontaneous MI gain 
peak is predicted (i.e., at Ω = √

2). This effectively depletes the 
spontaneous gain available for quantum noise, thus explaining the 
lack of agreement in Fig. 5(b) between the numerical solution of 
the NLSE and the Floquet theory spectra.

Let us compare now the analytical predictions of Section 2 with 
the spatial growth of spectral noise components which is obtained 
from the numerical solution of the NLSE (1) over up to three FPU 
recurrence periods z = 3Λ. In Fig. 6 we consider the nonlinear 
phase-matched case with Ω = 1: here we show with a solid blue 
curve the growth with distance z of the peak (as determined by 
Floquet gain profile) noise component in the spectral region within 
the pump and the first anti-Stokes sideband (i.e., with frequency 
detuning from the pump ω = 0.25). Similarly, the solid red curve 
Fig. 7. Spectra from the numerical solution of the NLSE for Ω = 1 and distances: 
z = Λ, 3Λ/2, 2Λ, 3Λ.

shows the growth of the maximum noise component between the 
first and the second anti-Stokes sidebands, i.e., with a frequency 
shift from the pump ω = 1.64. The spatial oscillations which are 
observed in Fig. 6 in the growth of the numerically computed peak 
noise spectral components are due to the periodic temporal com-
pression stages which lead to pump depletion and corresponding 
cascade FWM generation (see also panels (b) of Figs. 3–4). After 
two FPU recurrences (z � 17), we observe a quasi-stationary evolu-
tion (i.e. saturation) of both spectral component intensities, which 
corresponds to the thermalization process associated with multi-
frequency mixing and broadband continuum generation. It is worth 
mentioning that, in our case, the FPU break-up occurs after about 
two FPU periods. Nevertheless, we observed that this phenomenon 
can actually take place for shorter and longer propagation dis-
tances depending on the initial relative modulation sidebands – 
pump intensities (ε) and on the amount of noise added at the in-
put.

For further comparison, the dashed red and blue straight lines 
in Fig. 6 illustrate the MI growth which is predicted according to 
the Floquet gain shown in Fig. 2. For instance, gm(ω=0.25) � 0.41
and gm(ω=1.64) � 0.67. As it can be seen, the Floquet analysis pro-
vides a good quantitative fit of the average spatial growth rate of 
the noise for ω = 1.64 until FPU break-up (z � 17). On the other 
hand, the Floquet gain prediction for ω = 0.25 is only accurate for 
the first FPU period z = Λ. For longer distances, the numerically 
computed noise growth rate is considerably larger than the analyt-
ical predictions.

In order to better understand the spectral dynamics of noise 
growth at distances larger than the first FPU period Λ, we have 
plotted in Fig. 7 the output spectra at multiples of the FPU recur-
rence half period Λ/2. Quite interestingly, Fig. 7 reveals that at 
the second stage of temporal compression occurring for z = 3Λ/2, 
the dominating broadband MI noise sidebands centered around 
|ω| � 0.5 are copied by FWM in multiple mirror images across 
the entire FWM cascade [37,38]. On the other hand, at z = 2Λ

(two FPU recurrence periods), both the higher order discrete FWM 
lines and the broadband cascade of MI sidebands disappear, and 
the spectrum nearly recovers its previous shape seen at z = Λ. 
The gain peak enhancement at |ω| � 0.5 (with respect to the gain 
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Fig. 8. Evolution of fractional power of the pump (solid black curve) and the in 
two sidebands at ±Ω (dashed red curve) or ±2Ω (dashed blue curve) from the 
NLSE with Ω = 1 plotted over 3 FPU recurrence periods. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

peak at |ω| � 1.5) observed in at z = 3Λ/2 may be understood 
as follows. Fig. 7 shows that the input modulation sidebands have 
grown much higher than the original pump mode. Therefore the 
modulation sidebands at |ω| = |Ω| = 1 temporarily act as pumps, 
and the corresponding MI gain peaks are approximately obtained 
at frequency shifts ±1.5 away from their frequencies. This phe-
nomenon may also explain the analytically underestimated noise 
growth which is seen in Fig. 6 for |ω| = 0.25. Finally, after three 
FPU recurrence periods (z = 3Λ) a broadband noise continuum has 
developed: yet, the discrete spectral lines corresponding to the ini-
tial frequency comb still remain discernible.

The break-up of the FPU recurrence as it is observed in Figs. 3–4
is more clearly displayed in terms of the spatial evolution of the 
power of the pump and the initial modulation sidebands. Indeed, 
Fig. 8 shows that after two periods of FPU recurrence the pump 
power suddenly drops down, and it exhibits an irregular evolu-
tion around a low average value. In addition, Fig. 8 also shows 
a significant power drop in the immediate sideband powers, as a 
consequence of the flow of energy from the discrete set of cas-
cade FWM spectral lines into the continuum spectrum. A detailed 
analysis of the turbulent field behavior resulting after break-up of 
the FPU recurrence is beyond the scope of this study and will be 
the subject of further investigations. Nevertheless, it is still inter-
esting to observe that in the context of the purely conservative 
system presented here, the road through thermalization appears 
to be a rather complex dynamical process.

To illustrate this phenomenon, we present in Fig. 9, in the same 
way as in Fig. 7, the spectra extracted for longer propagation dis-
tances (i.e. z = 4Λ, 5Λ, 6Λ and 9Λ). Although we previously ob-
served in Fig. 7 the development of a continuum spectrum within 
the cascaded FWM discrete sidebands at z = 3Λ, spectra obtained 
for subsequent propagation still exhibit a complex spatial breath-
ing associated with a transient enhancement of particular spectral 
frequencies. Indeed, we can see in Fig. 9 at z = 4Λ the develop-
ment of broad noise-induced sidebands in the frequency range 1 ≤
|ω| ≤ 2. At z = 5Λ, the obtained spectrum recovers the shape of a 
broadband continuum within an FWM cascade. At z = 6Λ one can 
see the enhancement of noise sidebands located around |ω| � 0.5. 
Finally, for even further propagation distances (e.g., z = 9Λ), the 
breathing dynamics start to vanish within the continuum spectrum, 
which eventually evolves towards quasi-complete thermalization.

4. Conclusions

We presented a theoretical study of instability of the FPU re-
current exchange of power among the pump and its sidebands as 
described by the self-focusing NLSE. This instability leads to the in-
put noise-induced irreversible evolution of the pump field towards 
Fig. 9. Spectra from the numerical solution of the NLSE for Ω = 1 and distances: 
z = 4Λ, 5Λ, 6Λ, 9Λ.

a broadband supercontinuum. As a perspective for further stud-
ies, we envisage that the instability of FPU recurrence may also be 
observed in the presence of relatively small sources of dissipation 
such as for example a periodically amplified transmission line or 
a nonlinear dispersive ring cavity, where FPU recurrence break-up 
may be associated with the development of spatio-temporal tur-
bulence in the frequency comb dynamics.
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