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ABSTRACT 

A sensitivity analysis to different eddy—covariance data processing algorithms is presented for a dataset collected in an 
Alpine environment with complex topography. In Summer 2012 a micrometeorological station was installed at Cividate 
Camuno (274 m a.s.l., Oglio river basin, Central Italian Alps), in a flat and rectangular grass-covered lawn. The grass was 
0.6 m tall during most of the field campaign. The station is equipped with traditional devices, four multiplexed TDR 
probes, and an eddy--covariance apparatus sampling at 20 Hz (Gill WindMaster Sonic Anemometer and Licor Li7500 Gas 
Analyzer), at about 3 m above the ground. The local winds regime is strongly affected by the morphology of the valley, 
and the topography is complex also due to the heterogeneity of the surrounding-areas land—cover. Using EddyPro 
software, the sensitivity of the turbulent fluxes estimate was assessed addressing three major issues of the data processing 
procedure, i.e. the choice of the computational averaging period, of the axis rotation method and of the data detrending 
criterion. Once identified three test periods of consecutive days without rainfall, the fluxes of momentum, sensible heat 
and latent heat were computed at the averaging period of 30, 60 and 120 min respectively. At each averaging period, both 
the triple rotation method, the double rotation method and the planar fit method were applied. Particularly the latter was 
applied both fitting a unique plane for all the wind directions and fitting multiple planes, one for each sector of the wind 
rose. Regarding the detrending criteria, data were processed with a block average and a linear detrend, the latter with 
time constant of 5, 30, 60 and 120 min respectively. Therefore, for each test period about 50 estimates of the fluxes were 
provided. As a result the obtained fluxes were compared. Even if with different flux quality, their pattern is quite stable 
with regard to the applied estimate procedures, but with sensitively different average values. 

Keywords: eddy--covariance, complex terrain, Italian Alps, CividatEX Experiment

1. INTRODUCTION  

The measure of the turbulent fluxes of momentum, 
sensible and latent heat by means of the eddy—covariance 
instrumentations are useful to directly estimate the heat 
and moisture exchanged at the interface between ground 
and atmosphere. 

One of the first attempts to measure the vertical fluxes 
exchanged at the interface between the ground and the 
atmosphere due to the eddy movement can be found in 
the work of Swinbank (1951). The aim of this work was to 
provide a response to the need of a direct method to 
measure the vertical evapotranspirative fluxes in the 
atmospheric surface—layer. From these experiences the 
formalization of the eddy—covariance technique was 
possible. Being developed in the framework of the 
classical atmospheric boundary—layer studies, e.g. on the 
works of Monin and Obukhov (1954) about the similarity 
theory and of Kaimal et al. (1972) about the shape of the 
surface—layer turbulence spectra, also the theoretical 
background of the eddy—covariance technique was based 
on the hypothesis of: (i) flat, horizontally homogeneous 
surface; (ii) wind speed one-dimensional along the 
direction of the mean wind and parallel to the ground; (iii) 
steady condition of the mean flow, (iv) homogeneous and 
fully developed turbulence. Particularly (i) and (ii) allow 
the vanishing of both the time—average of the vertical 
wind speed and the cross—correlation between the wind 
components, (iii) and (iv) allow to apply the ergodic 
hypothesis and the Reynolds decomposition hypothesis of 

the turbulent motion field. According to these 
considerations, once identified a custom time—window, 
the mathematical expression of the vertical turbulent 
fluxes was found to be proportional to the covariance 
between the turbulent components of the vertical wind 
speed and of the ones of the variable generating the flux 
(see e.g. Kaimal and Finnigan, 1994; Lee et al., 2004b). 

The conceptual simplicity of the method, mainly coupled 
to the measurement devices improvement (in terms of 
precision, accuracy and sampling—rate frequency); the 
computational and storages resources availability; free 
and open—source software to the fluxes computation, in 
the last decades allowed to the eddy—covariance 
technique to obtain a great success in many fields, 
between which hydrology, agronomy and air pollution 
studies. However its application requires particular care, 
from the site selection, to the data processing and analysis, 
especially where the site characteristics do not fulfil (in 
part or at all) the technique basic assumptions. 
Particularly assumption (i) is the most restrictive one, 
because it is strictly related to the terrain configuration of 
the experimental site and of the surrounding area. 
Therefore studies aiming at extending the eddy—
covariance technique applicability, also to non simple 
terrains, or archetypal conditions (Rotach and Zardi, 
2007), were conducted (see e.g. McMillen, 1988 for the 
fluxes estimation over a forest canopy and Geissbühler et 
al., 2000 for measurements over mountain slopes). In this 
sense, the reduction of the disturbances induced to the 
wind flux by the topography was provided developing 
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correction algorithms, to apply on the data during the 
computational steps of the fluxes estimation. The 
reliability of the estimated turbulent fluxes was 
traditionally entrusted to the closure of the surface energy 
balance. Indeed, the surface energy balance closure can be 
regarded to as a test, in the sense that the goodness of the 
estimation is inversely proportional to the magnitude of 
the balance residuum. However, despite of the effort 
provided by the correction algorithms, a lack in closure of 
the balance, the so called “energy—imbalance”, is still 
present. The imbalance, when referred to the entire 
investigated period, can be defined as the ratio between 
the cumulated turbulent fluxes (sensible plus latent heat) 
and the cumulated available energy (net radiation 
reduced by the ground heat flux). Typically imbalance—
values range from about 10—30%, also when 
measurements are performed in quite—ideal terrains. 
Such problem has been observed and discussed in several 
literature studies (e.g. Twine et al., 2000; Kanda et al., 
2004; Cava et al., 2008; Foken, 2008; Panin and Bernhofer, 
2008; Leuning et al., 2012).  

Between the no—ideal terrain conditions, an emblematic 
case is provided by the estimations of momentum, 
sensible and latent heat fluxes exchange in Alpine valleys 
(Grossi and Falappi, 2003; Rotach and Zardi, 2007; Hiller 
et al. 2008), that are typically characterised by high and 
steep slopes, complex terrain and variable wind regime. 
The irregularities of the valley morphology, e.g. 
narrowing and bights, alluvial fans and shelf, internal 
watersheds and hills, and the heterogeneity of the land 
cover, also influenced by the presence of the human 
activities, contribute to the complexity of the terrain. In 
addiction the daily wind regime, besides of the meso—
scale effects, is usually characterised by local winds 
alternate, to drainage conditions, by transition periods 
(Nadeau et al., 2013). An example of drainage current is 
given by the katabatic winds that usually occur during 
night and flow downward along both the main valley 
direction as along the valley slopes (Whiteman, 2000). 
Therefore, during the day, the development of internal 
boundary sub—layers can be observed (e.g. Rotach et al., 
2008). Particularly their different mechanical properties 
affect the fluxes regime, and thus the EC measurements. 

As stated before, the estimation of the turbulent fluxes by 
means of the eddy—covariance technique, hereafter EC, 
requires the application of a certain number of correction 
algorithms. In this work we focused our attention on the 
three issues, below briefly recalled:  

1. The fluxes averaging—period, and particularly its 
width, must be chosen in order to guarantee the 
stability of the statistical high order moments 
(Lenschow et al. 1994) and include all the relevant 
low—frequency contributions to the fluxes, but it 
should be shorter enough to avoid the unsteady of 
the atmosphere. Traditionally (e.g. Kaimal and 
Finnigan, 1994), an average period of 30 min was 
considered a good compromise to compute the EC 
fluxes. However Finnigan et al. (2003) found that, 
especially over complex terrains, longer averaging—
periods, greater than 1 hour, can be considered.  

2. The detrending criterion is applied to isolating the 
turbulent components of the signal, used to compute 
the fluxes, from the unsteady and long—term 
contributions. These effects occur especially during 
the transition periods, i.e. during the sunrise and the 
sunset, and can be observed also over flat and 
horizontal terrains (Moncrieff et al, 2004). 

3. The axis rotation method, or more correctly the axis 
rotation method for tilt correction, is introduced to 
modify the sonic anemometer coordinate system in 
order to nullify the average cross—stream and the 
time—average of the vertical wind speed component 
(Lee et al., 2004a; Finnigan, 2004). Indeed, besides of 
the case in which the vertical axis of the device is not 
aligned to the normal at the ground, no—null values 
of the time—average vertical wind component can be 
observed when the wind speed is not parallel to the 
ground surface, i.e. over complex terrain, or when 
advection phenomena occur. In the literature the 
main rotation methods proposed, are: the triple 
rotation, the double rotation and the planar fit 
(Wilczak et al., 2001), here listed orderly to the 
reliability of the estimated fluxes. 

In this study we present the effects on the eddy—
covariance fluxes of momentum, sensible and latent heat, 
when estimated combining different settings of the 
averaging—periods, the detrending criteria and the axis 
rotation method. To reach this aim data collected during 
Summer 2012 in the framework of the CividatEX 
EXperiment, in an Alpine valley characterised by complex 
topography, were used. After a brief description of the 
experiment and of the experimental area (Section 2) the 
procedure adopted to estimate the fluxes is presented 
(Section 3). Finally the analysis and the results obtained 
are presented and discussed (Sestion 4). 

2. CASE STUDY  

2.1 Experimental site and the CividatEX field campaign 

The Valle Camonica (Central Italian Alps) is the main 

valley of the Oglio river basin. It is a glacial valley, 

ranging from the 187 m a.s.l. at the closure of the Lake 

Iseo at Sarnico, to the 3539 m a.s.l. of the Adamello massif. 

During Summer 2012, from 9 July to the end of 

September, an experimental field campaign was 

performed at Cividate Camuno (274 m a.s.l.), called 

CividatEX EXperiment, aiming at assessing the energy 

and the water balance at the local scale in a mountain 

environment, characterized by a typical Alpine 

sublitoranean climate (Bandini, 1931). The experimental 

site is a flat gentle—sloping lawn mainly covered by 

common grass between which short spontaneous 

vegetation grows, particularly alfalfa (Medicago sativa), 

wild carrot (Daucus carota) and yarrow (Achillea 
millefolium) . At the beginning of the experiment the grass 

had already reached the maturation height of about 0.6 m 

and it was mowed only during the first week of 

September. The grass grew again reaching a height of 

about 0.10 m at the end of the field campaign. 

In the center of the lawn, which can be approximated to a 

rectangular 95 m long in the NE—SW direction and 70 m 

wide in the SE—NW direction, a micrometeorological 

station was installed (Figure 1). The station was equipped 

with traditional meteorological devices, four multiplexed 

TDR probes and an EC apparatus was installed. 

Particularly the EC apparatus was composed by a Gill 

WindMaster 3—Axes sonic anemometers and a Li—COR 

Li7500 gas analyzer, places at 3.32 m and 2.98 m 

respectively, from the ground and both sampling at 20 

Hz.  
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Figure 1. The micrometeorological station installed during the 
CividatEX experiment (Eastward, 09 July 2012) At the top of the 
station the eddy—covariance apparatus can be observed. 

For further information about the field campaign, the 

soil—hydrological properties and the preliminary results 

obtained, please refer to Negm et al. (2013). 

Even if the lawn characteristics allow to consider it as a 

quite—ideal site, the morphology and the land cover of 

the site surrounding—area does not, and therefore the 

terrain can be regarded to as complex. In Figure 2 the two 

aerial pictures, allows observing the complexity of the 

valley morphology and the variability of the land cover. 

Particularly the experimental site (yellow area) is located 

on the left bank of the Valle Camonica, on an ancient 

alluvial shelf, 10—15 m higher than the valley floor.  

 

Figure 2. The Valle Camonica around the experimental site. 
Above the width of the valley can be detected by the presence of 
the valley slopes (at NW and SE). Lower, the area surrounding 
the experimental site (yellow) are shown.  

The alluvial shelf is surrounded from E to WSW by a 

steep hill, which average height, of about 380 m a.s.l (E—

S), decreases to 290 m a.s.l. (S—WSW), moving crosswise 

the main valley direction. Moreover the highly 

heterogeneous and different land use can be noted: at N 

the residential area of Cividate Camuno, at E and S to the 

site other buildings are present. In addition, in the area 

different kind of roads (from rural to highway) are 

present, and the variability of the green cover highlights 

the presence of woods and cultivated areas (mainly 

vineyards Westward to the site). 

2.2 Local wind regime 

Let us now analyze the local wind regime, by means of 

the wind—rose, showed in Figure 3 and obtained using 

the 1 min—average wind speed, recorded during the 2012 

field campaign, aiming at characterize the wind regime. In 

the figure the pattern of the plumes and the different 

colors allows to identify three main wind currents and 

their kinematic properties.  

In the Figure is evident that the most frequent drainage 

condition is a katabatic wind, with an average velocity 

ranging about 1—2 m s-1, that descends the slope sited at 

East of the site. Indeed this wind was observed to flow 

from the evening to the morning. Less frequent but with 

higher velocities, between about 3—4 m s-1, is the local 

wind (WSW), called Öra, that raises the valley from the 

Lake Iseo, placed about 20 km far from the site. Finally a 

third wind current with velocities comparable to the Öra 

ones and coming from the NNE—NE sector, was 

observed. 

 

Figure 3. The local wind—rose obtained for the Summer 2012 at 
the experimental site, using wind data 1 minute averaged. 

3. FLUXES ESTIMATION PROCEDURE 

Three test periods without rain events were selected from 
the 2012 database: 23—28 July, 11—21 August and 20—23 
September. For each period the EC fluxes were estimated 
using of the software EddyPro (LI—COR, 2014), with 
different combination and settings of the averaging—
periods, rotation methods and de—trending criteria, 
according to the following scheme:  

1. The averaging—periods (AP) of 30, 60, 120 min were 
chosen. 

2. For each averaging period the axis rotation was 
performed using the triple rotation method (3R), the 
double rotation method (2R) and two different 
schemes of the planar fit method (PF1 and PF2). The 
PF1 was obtained fitting a unique plane for all the 
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wind speed directions. For the PF2, according to the 
wind—rose shape, six planes were fitted according to 
the following wind—direction sectors of width 45°, 
22°.5, 45°, 112°.5, 45° and 90°, from North and 
rotating clockwise. To obtain the estimate of the 
planes the days between 8—22 August 2012 were 
selected and used thanks to the lack of meaningful 
rainfall events.  

3. Finally for each rotation method the block average 
(BA) and the linear detrending applied as detrending 
criteria. The block average was used on a time 
window equal to the correspondent averaging 
period. The linear detrending, instead, was applied 
with four different time constants, at 5, 30, 60 and 120 
min. However the cases with time constants greater 
than the current AP were not taken into account 
during the estimations. 

This scheme provided a total of 48 estimates for each flux 

(12 for 30 min fluxes; 16 for 60 min fluxes and 20 for 120 

min fluxes).  

To be thorough, we list now the main unchanged settings 

selected for the fluxes estimation: (1) missing sample 

allowance at 10%; (2) time—lag compensation with 

covariance maximization; (3) density fluctuation 

compensation, according to the WPL theory (Webb et al., 

1980); (4) spectral corrections according to Moncrieff et al. 

(2004) for low frequency range and Moncrieff et al. (1997) 

for the high frequency range. 

4. RESULTS AND DISCUSSION 

The collected realizations obtained for an AP equal to 30 

and 60 minutes were further averaged over a time 

window of 2 hours. Moving from the homogenized 

databases the data analyses were performed. For each 

flux—type all the realizations estimated (Figure 4) and 

their cumulating trends (Figure 5) were analyzed. 

Let us firstly consider Figure 4. Here the obtained patterns 

seem to be quite stable relatively to the correction 

algorithms considered. In other words it would appear 

that a priori the different setting of the correction 

algorithms produce comparable results. Such behavior is 

confirmed also when outsiders occurs. Indeed the heat 

fluxes and particularly the sensible heat one, present 

realizations with systematic outsiders that underestimate 

the flux, above all in the early evening. 

In Figure 5, the integration of the fluxes of momentum, 

sensible heat and latent heat allowed to obtain the 

represented trends. In all the three patterns it was possible 

to recognize the daily cycle which is much more 

emphasized for the flux of sensible heat. The global 

patterns are anyway different. In fact the ensembles of the 

fluxes of momentum and sensible heat spans continuously 

a range of variability which variation coefficients are 

about 0.095 and 0.111 respectively with respect to the 

integrated average of all the realizations, that is of about 

78939 kg s-1m-2 for the momentum flux and 7.04 MJ m-2 for 

the sensible heat flux. Therefore it is not possible to 

recognize at first sight different families of realizations. 

The cumulated curves of the latent heat fluxes shows 

instead a clearly bimodal distribution, corresponding to 

the families of realizations characterized by the planar fit 

methods (greater values) and the rotation methods 

(smaller values), respectively. In this case the variation 

coefficient of the ensemble of all the realizations with 

respect to an integrated average of about 161 MJ m-2 

assumes the value of 0.08.  

 

Figure 4. Realizations estimated for the fluxes of momentum, 
sensible and latent heat, which average are about 0.04 N m-2, 4 W 
m-2 and 90 W m-2 respectively. 

 

Figure 5. Integrals of the fluxes of momentum, sensible heat and 
latent heat. 

Furthermore it is worth noting that the cumulated curves 

of the sensible heat flux shows almost null averages for 

the investigated days during July. This pattern denotes a 

period in which no sensible heat is accumulated in the 

atmosphere and in the ground below the sensor. The 

structure of the database allowed evidencing that at each 

time—step 48 estimates of the same flux were available. 

Therefore after estimating the average value of these 48 
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fluxes and the correspondent standard deviation, the bias, 

defined as the distance, or the fluctuation, of the flux from 

the corresponding average, were analyzed. In addition 

three averages were estimated assembling the fluxes 

estimated with the same AP (i.e. 30, 60 and 120 min). In 

Figure 6 the biases (points) and the ensemble averages are 

presented. 

 

Figure 6. Bias of the fluxes from the average and ensemble 
average for fluxes at 30, 60 and 120 minutes. 

From the Figure it can be observed that the biases 

fluctuate around the zero, determining a daily pattern, 

which was also previously observed in Figure 5. However 

it is remarkable the fact that for the days selected during 

July, the ensemble averages assume values closer to zero 

independently by the AP adopted to estimate the fluxes. 

During the remaining period, on the contrary, the 

ensemble averages denote a non—zero expectation 

associated to a phase—opposition, between of the 

ensemble average of 120 minutes and the ones at 30 or 60 

minutes. Particularly can be noted that the 120 minutes 

ensemble averages, in the morning, are greater than the 30 

and 60 minutes ensembles ones and, vice versa, in the late 

afternoon the 120 minutes ensemble averages are lower 

than the 30 and 60 minutes ensembles ones. A method to 

verify the existence of families of correction algorithms 

and settings that produce similar fluxes estimations 

consists to verify if the average of different data—

ensembles is meaningfully different from the average of 

the whole ensemble. Thus we proceeded normalizing 

each bias by the standard deviation estimated for the 

correspondent time—step. The obtained normalized or 

dimensionless biases, hereafter pointed out with:  

σ

µ−
=

x
z , 

allows to obtain a new database characterized by a null 

expectation and a unit standard deviation for each time—

step. 

In Figure 7 the normalized realizations are presented. As 

done in Figure 6, also here the averages of the ensembles 

correspondent to the AP at 30, 60 and 120 minutes are 

reported. In all the three patterns it is recognized that the 

dimensionless bias fluctuations are almost contained into 

the range σ2± even if outsiders are still presents, 

especially for the days of July. Also in this case, the 

ensemble averages assumes a value close to zero during 

July, whereas on the remaining days the averages are 

considerably different from zero. Moreover, as previously, 

the phase—opposition between the ensemble averages of 

the fluxes at 120 minutes with the ones at 30 and 60 

minutes can be detected. Then the 48 realizations were 

aggregated in different ensemble and the averages were 

tested to check whether they were meaningfully different 

from zero (e.g. Bendat and Piersol, 1966; Kottegoda and 

Rosso, 1997). The confidence intervals of the null 

hypothesis were estimated in correspondence to the three 

level of significance 010.=α , 050.=α and 100.=α . The 

test was applied on the dimensionless fluxes of 

momentum, sensible and latent heat, grouped according 

to the following criteria: 

1. Fluxes estimated with the same AP (30, 60 and 120 
minutes); 

2. Fluxes estimated with respect to the detrending 
criterion: (i) all the block averages (BA) and (ii) all the 
linear detrending (LD); 

3. Fluxes estimated with respect to the rotation method 
for tilt corrections: (i) double and triple rotations 
together (R); (ii) two planar fits method settings (PF); 
(iii) separately all the double rotations (2R), all the 
triple rotations (3R), all the planar fits with an unique 
plane (PF1) and the planar fits based on the wind—
rose shape (PF2). 

 

Figure 7. Normalized fluxes and ensemble average for fluxes at 
30, 60 and 120 minutes. 

The results obtained, reported in Table 1, show that the 

hypothesis of null average is rejected for most of the 

considered ensembles. An exception is the case of the 
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ensembles of 60 minutes and the two of the detrending 

criteria (BA and LD), for the sensible and the latent heat.  

Table 1. Test on the hypothesis of a null expected value of 
different ensembles (if � the hypothesis is rejected at α  

significance, � otherwise). 

 Momentum Sensible heat Latent heat 

α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 

Averaging period 
30 � � � � � � � � � 

60 � � � � � � � � � 

120 � � � � � � � � � 

De—trending criterion  
BA � � � � � � � � � 
LD � � � � � � � � � 

Rotation method 
R � � � � � � � � � 

PF � � � � � � � � � 
          

2R � � � � � � � � � 

3R � � � � � � � � � 

PF1 � � � � � � � � � 

PF2 � � � � � � � � � 

The rejection of the hypothesis of null average means that 

the averages of the ensembles are significantly non—zero 

and the ensembles belong to different families. Thus, even 

if at first sight the estimated fluxes, presented in Figure 4, 

seem to be uniform, actually they tend to assume 

statistically different expectations.  

Figure 8.Frequency distribution of the normalized fluxes and 
comparison with the Standardized Normal Density Function. 

Table 2. Asymmetry of the empirical distributions 

 γ  [ ]961Freq .z −≤  [ ]961Freq .z >  [ ]1Freq <z  

Standardized Normal Density Function 
 0 0.25 0.25 0.682 
     

Momentum 

Averaging period 

30 -0.056 0.012 0.019 0.628 
60 0.258 0.004 0.015 0.739 
120 0.337 0.014 0.019 0.597 

De—trending criterion 

BA 0.188 0.028 0.044 0.575 
LD 0.152 0.004 0.011 0.677 

Rotation method 

R 0.574 0.020 0.011 0.640 
PF 0.014 0.001 0.025 0.665 

     

2R 0.445 0.004 0.015 0.739 
3R 0.897 0.036 0.007 0.540 
PF1 -0.242 0.001 0.026 0.614 
PF2 0.269 0.000 0.023 0.715 

     

Sensible heat 

Averaging period 

30 0.117 0.009 0.006 0.626 
60 0.036 0.010 0.011 0.836 
120 -0.032 0.027 0.036 0.613 

De—trending criterion 

BA 0.065 0.060 0.072 0.543 
LD 0.021 0.002 0.004 0.739 

Rotation method 

R -0.048 0.018 0.028 0.682 
PF 0.103 0.015 0.012 0.698 

     

2R 0.116 0.013 0.031 0.691 
3R -0.195 0.024 0.025 0.673 
PF1 0.086 0.014 0.011 0.702 
PF2 0.122 0.016 0.012 0.694 

     

Latent heat 

Averaging period 

30 0.415 0.016 0.020 0.603 
60 0.485 0.006 0.010 0.801 
120 0.242 0.017 0.013 0.620 

De—trending criterion 

BA 0.497 0.042 0.032 0.595 
LD 0.245 0.004 0.009 0.703 

Rotation method 

R 0.828 0.020 0.016 0.689 
PF -0.033 0.007 0.012 0.664 

     

2R 0.136 0.016 0.005 0.712 
3R 1.125 0.023 0.026 0.667 
PF1 -0.067 0.007 0.011 0.682 
PF2 -0.005 0.006 0.013 0.646 

Aiming at obtaining information about how the 

normalized fluxes are distributed, the frequency analysis 

of the 11 ensembles account for was performed. 

Each frequency distribution was obtained over a set of 20 

classes of probability equal to the 5%. In Figure 8 the 

empirical frequency distribution of each ensemble is 

reported. In the Figure 8 the normalized biases were 

pointed out with z , accordingly to the notation previously 

introduced and the correspondent frequency by means of 

( )zp . Moreover, besides of the Standardized Normal 

Density Function (black line) regarded to as a reference 

framework, the most relevant detected patterns are here 

highlighted. From the Figure 8 it can be observed that the 

empirical distributions show, for some realizations, 

patterns that are strongly different from the normal one. 

Particularly such patterns are characterised by a marked 

asymmetry that sometime is at the left—side of the 

Normal and sometimes at its right—side, as it is well 

marked in the plot of the momentum flux. Moreover, also 

when these distributions seem to be quite symmetric, their 

peaks are higher than the reference one, as in the case of 
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the ensembles of 60 minutes in both the sensible and in 

the latent heat. 

Further information on the asymmetry and on the extreme 

distribution for the considered ensembles can be found in 

Table 2. The Table collects: (i) the skewness index ( γ ), (ii) 
the frequency of the values exceeding 961.z ±= and (iii) the 

frequency of normalized values when they fall within the 

interval 11 ≤<− z . Particularly the second point allows 

deriving information about the distribution of the 

extremes of the empirical frequencies. 

We found that the highest asymmetry (in absolute value) 

is observed to the triple rotation ensemble in all the type 

of fluxes considered. Particularly the asymmetry 

coefficients of the sensible heat are closer to the normality 

than the ones of the momentum and sensible heat, as it 

can be recognized also in Figure 8, where the empirical 

distributions of the sensible heat seem to be more centered 

than for the ones other fluxes. 

The extremes of the distributions are more symmetric 

respect to the interval of 961.z > , for the fluxes of sensible 

and latent heat. The momentum fluxes, instead, the 

asymmetry coefficients are more emphasized. 

Finally we found that the frequencies falling within in the 

interval 1<z  are almost comparable with the theoretical 

probability. 

5. CONCLUSIONS 

In this study 48 realizations of eddy—covariance fluxes of 
momentum, sensible and latent heat, estimated with 
different settings of averaging—periods (30, 60 and 120 
minutes), rotation methods (double rotation, triple 
rotation and two setting of planar fit method) and de—
trending criteria (block average and linear detrending), 
were statistically analyzed. The data used to the 
estimations were collected in the framework of the 
CividatEX Experiment, in an Alpine valley characterized 
by complex terrain and variable wind regime. Particularly 
a set of 21 days distributed during Summer 2012 was 
investigated.  

The results obtained show that when eddy—covariance 
fluxes are estimated in such environments the choice of 
the set of corrections to implement plays an important role 
at affecting the values of the estimates. This is evident if 
we consider the variation coefficient of the ensemble of 
the fluxes, from which it emerges that the ensemble spans 
a meaningfully wide range of values. However if a sub—
set of realizations is performed, exploring the effect of 
different settings of the code, the average was found to be 
significantly different from that of the whole ensemble, 
thus recognizing that different sub—sets of realizations 
are not able to reproduce the variability of the whole 
ensemble. Anyway the average values of the sub—sets, 
even if statistically different from the ensemble average, 
can be regarded to as an attempt to estimate the average 
of the whole ensemble. Therefore, even if further analyses 
are still required, also to identify the corrections that split 
the ensembles into two families, as it is the case of the 
latent heat fluxes, it is possible to reduce the uncertainty 
associated to the estimations, even if exploring a reduced 
number of realizations. 
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