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In this paper we investigate linear error correcting codes and
projective caps related to the Grassmann embedding ε

gr
k of an

orthogonal Grassmannian �k . In particular, we determine some of
the parameters of the codes arising from the projective system
determined by ε

gr
k (�k). We also study special sets of points of

�k which are met by any line of �k in at most 2 points and
we show that their image under the Grassmann embedding ε

gr
k is

a projective cap.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The overarching theme of this paper is the behaviour of the image of the Grassmann embed-
ding ε

gr
k of an orthogonal Grassmannian �k with k � n with respect to linear subspaces of either

maximal or minimal dimension. In the former case, we obtain the parameters of the linear error cor-
recting codes arising from the projective system determined by the pointset ε

gr
k (�k) and provide a

bound on their minimum distance. In the latter, we consider and construct special sets of points of
�k that are met by each line of �k in at most 2 points and show that the Grassmann embedding
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maps these sets in projective caps. Actually, an explicit construction of a family of such sets, met by
any line in at most 1 point, is also provided, and a link with Hadamard matrices is presented.

The introduction is organised as follows: in Section 1.1 we shall provide a background on embed-
dings of orthogonal Grassmannians; Section 1.2 is devoted to codes arising from projective systems,
while in Section 1.3 we summarise our main results and outline the structure of the paper.

1.1. Orthogonal Grassmannians and their embeddings

Let V := V (2n + 1,q) be a (2n + 1)-dimensional vector space over a finite field Fq endowed with
a non-singular quadratic form η of Witt index n. For 1 � k � n, denote by Gk the k-Grassmannian
of PG(V ) and by �k the k-polar Grassmannian associated to η, in short the latter will be called
an orthogonal Grassmannian. We recall that Gk is the point-line geometry whose points are the
k-dimensional subspaces of V and whose lines are sets of the form

�X,Y := {Z ∣∣ X ⊂ Z ⊂ Y , dim(Z) = k
}
,

where X and Y are any two subspaces of V with dim(X) = k − 1, dim(Y ) = k + 1 and X ⊂ Y .
The orthogonal Grassmannian �k is the proper subgeometry of Gk whose points are the

k-subspaces of V totally singular for η. For k < n the lines of �k are exactly the lines �X,Y of Gk
with Y totally singular; on the other hand, when k = n the lines of �n turn out to be the sets

�X := {Z ∣∣ X ⊂ Z ⊂ X⊥, dim(Z) = n, Z totally singular
}

with X a totally singular (n − 1)-subspace of V and X⊥ its orthogonal with respect to η. Note that
the points of �X form a conic in the projective plane PG(X⊥/X). Clearly, �1 is just the orthogonal
polar space of rank n associated to η; the geometry �n can be regarded as its dual and is thus called

the orthogonal dual polar space of rank n. Recall that the size of the pointset of �k is
∏k−1

i=0
q2(n−i)−1

qi+1−1
;

see e.g. [23, Theorem 22.5.1].
Given a point-line geometry Γ = (P,L) we say that an injective map e :P → PG(V ) is a projective

embedding of Γ if the following conditions hold:

(1) 〈e(P)〉 = PG(V );
(2) e maps any line of Γ onto a projective line.

Following [36], see also [10], when condition (2) is replaced by

(2′) e maps any line of Γ onto a non-singular conic of PG(V ) and for all l ∈L, 〈e(l)〉 ∩ e(P) = e(l)

we say that e is a Veronese embedding of Γ .
The dimension dim(e) of an embedding e : Γ → PG(V ), either projective or Veronese, is the di-

mension of the vector space V . When Σ is a proper subspace of PG(V ) such that e(Γ ) ∩ Σ = ∅
and 〈e(p1), e(p2)〉 ∩ Σ = ∅ for any two distinct points p1 and p2 of Γ , then it is possible to de-
fine a new embedding e/Σ of Γ in the quotient space PG(V /Σ) called the quotient of e over Σ as
(e/Σ)(x) = 〈e(x),Σ〉/Σ .

Let now Wk :=∧k V . The Grassmann or Plücker embedding egr
k : Gk → PG(Wk) maps the arbitrary

k-subspace 〈v1, v2, . . . , vk〉 of V (hence a point of Gk) to the point 〈v1 ∧ v2 ∧ · · · ∧ vk〉 of PG(Wk). Let
ε

gr
k := egr

k |�k be the restriction of egr
k to �k . For k < n, the mapping ε

gr
k is a projective embedding of

�k in the subspace PG(W gr
k ) := 〈εgr

k (�k)〉 of PG(Wk) spanned by ε
gr
k (�k). We call ε

gr
k the Grassmann

embedding of �k .
If k = n, then ε

gr
n is a Veronese embedding and maps the lines of �n onto non-singular conics of

PG(Wn). The dual polar space �n affords also a projective embedding of dimension 2n , namely the
spin embedding ε

spin
n ; for more details we refer the reader to either [11] or [7].
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Let now ν2n be the usual quadric Veronese map ν2n : V (2n,F) → V (
(2n+1

2

)
,F) given by

(x1, . . . , x2n) → (x2
1, . . . , x2

2n , x1x2, . . . , x1x2n , x2x3, . . . , x2x2n , . . . , x2n−1x2n
)
.

It is well known that ν2n defines a Veronese embedding of the point-line geometry PG(2n − 1,F) in
PG(
(2n+1

2

)− 1,F), which will be also denoted by ν2n .

The composition εvs
n := ν2n · ε

spin
n is a Veronese embedding of �n in a subspace PG(W vs

n ) of

PG(
(2n+1

2

)− 1,F): it is called the Veronese-spin embedding of �n .
We recall some results from [10] and [9] on the Grassmann and Veronese-spin embeddings of �k ,

k � n. Observe that these results hold over arbitrary fields, even if in the present paper we shall be
concerned just with the finite case.

Theorem 1. Let Fq be a finite field with char(Fq) = 2. Then,

(1) dim(ε
gr
k ) = (2n+1

k

)
for any n � 2, k ∈ {1, . . . ,n}.

(2) εvs
n

∼= ε
gr
n for any n � 2.

When char(Fq) = 2 there exist two subspaces N1 ⊃ N2 of PG(W vs
n ), called nucleus subspaces, such

that the following holds.

Theorem 2. Let Fq be a finite field with char(Fq) = 2. Then,

(1) dim(ε
gr
k ) = (2n+1

k

)− (2n+1
k−2

)
for any k ∈ {1, . . . ,n}.

(2) εvs
n /N1 ∼= ε

spin
n for any n � 2.

(3) εvs
n /N2 ∼= ε

gr
n for any n � 2.

1.2. Projective systems and codes

Error correcting codes are an essential component to any efficient communication system, as they
can be used in order to guarantee arbitrarily low probability of mistake in the reception of messages
without requiring noise-free operation; see [27]. An [N, K ,d]q projective system Ω is a set of N points
in PG(K − 1,q) such that for any hyperplane Σ of PG(K − 1,q),

|Ω \ Σ |� d.

Existence of [N, K ,d]q projective systems is equivalent to that of projective linear codes with the
same parameters; see [22,6,15,38]. Indeed, given a projective system Ω = {P1, . . . , P N}, fix a reference
system B in PG(K − 1,q) and consider the matrix G whose columns are the coordinates of the points
of Ω with respect to B. Then, G is the generator matrix of an [N, K ,d]-code over Fq , say C = C(Ω),
uniquely defined up to code equivalence. Furthermore, as any word c of C(Ω) is of the form c = mG
for some row vector m ∈ FK

q , it is straightforward to see that the number of zeroes in c is the same

as the number of points of Ω lying on the hyperplane of equation m · x = 0 where m · x =∑K
i=1 mi xi

and m = (mi)
K
1 , x = (xi)

K
1 . In particular, the minimum distance d of C is

d = min
Σ�PG(K−1,q)

dim Σ=K−2

(|Ω| − |Ω ∩ Σ |). (1)

The link between incidence structures S = (P,L) and codes is deep and it dates at least to [29];
we refer the interested reader to [3,8,34] for more details. Traditionally, two basic approaches have
been proven to be most fruitful: either to regard the incidence matrix of S as a generator matrix for
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a binary code, see for instance [30,21], or to consider an embedding of S in a projective space and
study either the code arising from the projective system thus determined or its dual; see e.g. [4,12,20]
for codes related to the Segre embedding.

Codes based on projective Grassmannians belong to this latter class. They have been first intro-
duced in [31] as generalisations of Reed–Muller codes of the first order and whenceforth extensively
investigated; see also [32,28,18,19].

1.3. Organisation of the paper and main results

In Section 2 we study linear codes associated with the projective system ε
gr
k (�k) determined by

the embedding ε
gr
k .

We recall that a partial spread of a non-degenerate quadric is a set of pairwise disjoint generators;
see also [14, Chapter 2]. A partial spread S is a spread if all the points of the quadric are covered by
exactly one of its elements. We recall that for q odd the quadrics Q (4n,q) do not admit spreads.

Main Result 1. Let Ck,n be the code arising from the projective system ε
gr
k (�k) for 1 � k < n. Then, the param-

eters of Ck,n are

N =
k−1∏
i=0

q2(n−i) − 1

qi+1 − 1
, K =

{(2n+1
k

)
for q odd,(2n+1

k

)− (2n+1
k−2

)
for q even,

d � ψn−k(q)
(
qk(n−k) − 1

)+ 1,

where ψn−k(q) is the maximum size of a (partial) spread of the parabolic quadric Q (2(n − k),q).

We observe that, in practice, we expect the bound on the minimum distance not to be sharp.
As for codes arising from dual polar spaces of small rank, we have the following result where the
minimum distance is exactly determined.

Main Result 2.

(i) The code C2,2 arising from a dual polar space of rank 2 has parameters

N = (q2 + 1
)
(q + 1), K =

{
10 for q odd,

9 for q even,
d = q2(q − 1).

(ii) The code C3,3 arising from a dual polar space of rank 3 has parameters

N = (q3 + 1
)(

q2 + 1
)
(q + 1), K = 35, d = q2(q − 1)

(
q3 − 1

)
for q odd

and

N = (q3 + 1
)(

q2 + 1
)
(q + 1), K = 28, d = q5(q − 1) for q even.

In Section 3, we introduce the notion of (m, v)-set of a partial linear space and the notion of
polar m-cap of �k . We prove that the image of a polar m-cap under the Grassmann embedding is a
projective cap; see also [16] for caps contained in Grassmannians.

Main Result 3. Suppose 1 � k � n. Then,

1. the image ε
gr
k (X) of any polar m-cap X of �k is a projective cap of PG(Wk);

2. the image of εgr
n (�n) is a projective cap.
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In Section 4 we give an explicit construction of some (2r,1)-sets contained in �k with r � �k/2�.
This leads to the following theorem.

Main Result 4. For any r � �k/2�, the polar Grassmannian �k contains a polar 2r -cap X.

Finally, in Section 5, we consider matrices H associated to the polar caps X of Main Result 4 and
prove that they are of Hadamard type. It is well known that these matrices lead to important codes;
see [24, Chapter 3]. Then, it is shown that it is possible to introduce an order on the points of X as
to guarantee the matrix H to be in Sylvester form, thus obtaining a first order Reed–Muller code; see
[24, p. 42].

2. Linear codes associated to �k

2.1. General case

By Theorem 1, for q odd and 1 � k � n, the Grassmann embedding ε
gr
k of �k into PG(

∧k V ) has

dimension
(2n+1

k

)
; by Theorem 2, for q even and 1 � k � n, dim(ε

gr
k ) = (2n+1

k

)− (2n+1
k−2

)
. As such, the

image of ε
gr
k determines a projective code Cgr

k,n = C(ε
gr
k (�k)). Observe that Cgr

k,n can be obtained by the
full Grassmann code, see [28], by deleting a suitable number of components; however, this does not
lead to useful bounds on the minimum distance. The following lemma is a direct consequence of the
definition of Cgr

k,n .

Lemma 2.1. The code Cgr
k,n is an [N, K ]-linear code with

N =
k−1∏
i=0

q2(n−i) − 1

qi+1 − 1
, K =

{(2n+1
k

)
for q odd,(2n+1

k

)− (2n+1
k−2

)
for q even.

Given any m-dimensional subspace X � V with m > k, in an analogous way as the one followed
to define the k-Grassmannian Gk of PG(V ) in Section 1, we introduce the k-Grassmannian Gk(X)

of PG(X). More in detail, Gk(X) is the point-line geometry having as points the k-dimensional sub-
spaces of X and as lines exactly the lines of Gk contained in Gk(X).

The following lemma is straightforward.

Lemma 2.2. Suppose X to be a totally singular subspace with dim X = m and k < m < n; write Wk(X) =
〈εgr

k (Gk(X))〉 � Wk. Then,

ε
gr
k

(
Gk(X)

)= ε
gr
k (�k) ∩ Wk(X) = egr

k

(
Gk(X)
)
.

Let X be a k-dimensional subspace of V contained in the non-degenerate parabolic quadric
Q (2n,q) ∼= �1. Define the star St(X) of X as the set formed by the i-dimensional subspaces of
Q (2n,q), k < i � n, containing X . It is well known that St(X) is isomorphic to a parabolic quadric
Q (2(n − k),q); see [37, Chapter 7].

Denote by ψr(q) the maximum size of a (partial) spread of Q (2r,q). Recall that for q even, Q (2r,q)

admits a spread; thus ψr(q) = qr+1 + 1. For q odd a general lower bound is ψr(q) � q + 1, even if
improvements are possible in several cases; see [13], [14, Chapter 2].

Theorem 2.3. If k < n, the minimum distance d of Cgr
k,n is at least

s = ψn−k(q)
(
qk(n−k) − 1

)+ 1.
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Proof. It is enough to show that for any hyperplane Σ of PG(Wk) not containing ε
gr
k (�k) there are at

least s points in Φ = ε
gr
k (�k)\Σ and then use (1). Recall that when q is odd, ε

gr
k (�k) is not contained

in any hyperplane.
Let E be a point of �k such that ε

gr
k (E) ∈ Φ; as such, E is a k-dimensional subspace contained in

Q (2n,q) and we can consider the star St(E) ∼= Q (2(n −k),q). Take Ψ as a partial spread of maximum
size of St(E). For any X, X ′ ∈ Ψ , since X and X ′ are disjoint in St(E), we have X ∩ X ′ = E .

Furthermore, for any X ∈ Ψ , by Lemma 2.2, ε
gr
k (Gk(X)) = ε

gr
k (�k) ∩ Wk(X), where Wk(X) =

〈εgr
k (Gk(X))〉. As X is an (n − 1)-dimensional projective space, we have also that ε

gr
k (Gk(X)) is iso-

morphic to the k-Grassmannian of an n-dimensional vector space. The hyperplane Σ meets the
subspace Wk(X) spanned by ε

gr
k (Gk(X)) in a hyperplane Σ ′ . By [28, Theorem 4.1], wherein codes

arising from projective Grassmannians are investigated and their minimal distance computed, we have
|Wk(X) ∩ Φ| � qk(n−k) . On the other hand, from

ε
gr
k

(
Gk(X)
)∩ ε

gr
k

(
Gk(Y )
)= {εgr

k (E)
}
,

for any X, Y ∈ Ψ , it follows that ε
gr
k (�k) has at least ψn−k(q)(qk(n−k) − 1) + 1 points off Σ . This

completes the proof. �
Lemma 2.1 and Theorem 2.3 together provide Main Result 1.
In Section 2.2 we determine the minimum distance of Cgr

1,n for k = 1; Sections 2.3 and 2.4 are
dedicated to the case of dual polar spaces of rank 2 and 3; in these latter cases the minimum distance
is precisely computed.

2.2. Codes from polar spaces �1

If k = 1, then �k is just the orthogonal polar space and ε
gr
1 is its natural embedding in PG(2n,q).

Hence, the code Cgr
1,n is the code arising from the projective system of the points of a non-singular

parabolic quadric Q (2n,q) of PG(2n,q). To compute its minimum distance, in light of (1), it is enough
to study the size of Q (2n,q) ∩ Σ where Σ is an arbitrary hyperplane of PG(2n,q). This intersection
achieves its maximum at (q2n−1 − 1)/(q − 1) + qn−1 when Q (2n,q) ∩ Σ is a non-singular hyperbolic
quadric Q +(2n − 1,q), see e.g. [23, Theorem 22.6.2]. Hence, the parameters of the code Cgr

1,n are

N = (q2n − 1
)
/(q − 1); K = 2n + 1; d = q2n−1 − qn−1.

The full weight enumerator can now be easily computed, using, for instance, [23, Theorem 22.8.2].

2.3. Dual polar spaces of rank 2

2.3.1. Odd characteristic
Suppose that the characteristic of Fq is odd. By (2) in Theorem 1, the image ε

gr
2 (�2) of the dual

polar space �2 under the Grassmann embedding is isomorphic to the quadric Veronese variety V2
of PG(3,q), as embedded in PG(9,q). Length and dimension of the code Cgr

2,2 directly follow from

Theorem 1. By Eq. (1), the minimum distance of Cgr
2,2 is |V2| − m, where

m := max
{|Σ ∩ V2|: Σ is a hyperplane of PG(9,q)

}
.

It is well known, see e.g. [23, Theorem 25.1.3], that there is a bijection between the quadrics of
PG(3,q) and the hyperplane sections of V2; thus, in order to determine m we just need to consider
the maximum cardinality of a quadric Q in PG(3,q). This cardinality is 2q2 + q + 1, and corresponds
to the case in which Q is the union of two distinct planes. Hence, we have the following theorem.
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Theorem 2.4. If q is odd, then the code Cgr
2,2 is an [N, K ,d]q-linear code with the following parameters

N = (q2 + 1
)
(q + 1), K = 10, d = q2(q − 1).

The full spectrum of its weights is {q3 − q,q3 + q,q3,q3 − q2,q3 + q2}.

Theorem 2.4 is part (i) of Main Result 2 for q odd.

2.3.2. Even characteristic
Assume that Fq has characteristic 2. By Theorem 2, let N2 be the nucleus subspace of

PG(W vs
2 ) such that ε

gr
2

∼= εvs
2 /N2. It is possible to choose a basis B of V so that η is given

by η(x1, x2, x3, x4, x5) = x1x4 + x2x5 + x2
3; by [9], N2 can then be taken as the 1-dimensional

subspace N2 = 〈(0,0,0,0,0,0,1,1,0,0)〉. Clearly, the code Cgr
2,2 has dimension K = dim(ε

gr
2 ) =

dim(εvs/N2) = 9. To determine its minimum distance we use (1); in particular we need to com-
pute |εgr

2 (�2)∩Σ | with Σ an arbitrary hyperplane of the projective space defined by 〈εgr
2 (�2)〉. Since

〈εgr
2 (�2)〉 ∼= 〈εvs

2 (�2)/N2〉, we have Σ = Σ̄/N2 with Σ̄ a hyperplane of 〈εvs
2 (�2)〉 = 〈V2〉 contain-

ing N2, where V2, as in Section 2.3.1, denotes the quadric Veronese variety of PG(3,q) in PG(9,q). As
in the odd characteristic case, hyperplane sections of V2 bijectively correspond to quadrics of PG(3,q)

and the maximum cardinality for a quadric Q of a 3-dimensional projective space is attained when
Q is the union of two distinct planes, so it is 2q2 +q + 1. It is not hard to see that there actually exist
degenerate quadrics Q of PG(3,q) which are union of two distinct planes and such that the corre-
sponding hyperplane ΣQ in 〈εvs

2 (�2)〉 = 〈V2〉 contains N2: for instance, one can take the quadric Q
of equation x1x2 = 0. Hence, ΣQ /N2 is a hyperplane of 〈εgr

2 (�2)〉 ∼= 〈εvs
2 (�2)/N2〉. As no line joining

two points of ε
gr
2 (�2) passes through N2,

|ΣQ ∩ V2| =
∣∣ΣQ /N2 ∩ ε

gr
2 (�2)

∣∣= |Q | = 2q2 + q + 1.

So, |εgr
2 (�2) ∩ Π | � 2q2 + q + 1 for every hyperplane Π of 〈εgr

2 (�2)〉. This proves the following.

Theorem 2.5. If q is even, then Cgr
2,2 is a linear [N, K ,d]q-code with parameters

N = (q2 + 1
)
(q + 1), K = 9, d = q2(q − 1).

Theorem 2.5 is part (i) of Main Result 2 for q even.

2.4. Dual polar spaces of rank 3

2.4.1. Odd characteristic
Here Fq is assumed to have odd characteristic. By (2) in Theorem 1, the image of the Grass-

mann embedding ε
gr
3

∼= εvs
3 spans a 34-dimensional projective space. Recall that the spin embed-

ding ε
spin
3 maps �3 into the pointset Q +

7 of a non-singular hyperbolic quadric of a 7-dimensional

projective space; see e.g. [11] and [7]. Hence, εvs
3 (�3) = ν23 (ε

spin
3 (�3)) = ν23 (Q +

7 ) is a hyperplane
section of 〈ν23 (PG(7,q))〉. Using the correspondence induced by the quadratic Veronese embed-
ding ν23 : PG(7,q) → PG(35,q) between quadrics of PG(7,q) and hyperplane sections of the quadric
Veronese variety V2 we see that the pointset ε

gr
3 (�3) ∼= ν23 (Q +

7 ) is a hyperplane section of V2.
In order to determine the minimum distance d of the code Cgr

3,3 we need now to compute

m = max
{∣∣Σ ∩ ε

gr
3 (�3)

∣∣: Σ is a hyperplane of PG(34,q)
}
.
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Note that |Σ ∩ ε
gr
3 (�3)| = |Σ ∩ ν23 (Q+

7 )| and Σ = Σ̄ ∩ 〈εgr
3 (�3)〉, where Σ̄ is a hyperplane of 〈V2〉 ∼=

PG(35,q) different from 〈ν23 (Q +
7 )〉 = 〈εgr

3 (�3)〉. Because of the Veronese correspondence, Σ̄ = ν23 (Q )

for some quadric Q of PG(7,q), distinct from Q +
7 . In particular,∣∣εgr

3 (�3) ∩ Σ
∣∣= ∣∣Q +

7 ∩ Q
∣∣.

Hence, in order to determine the minimum distance of the code, it suffices to compute the maximum
cardinality m of Q +

7 ∩ Q with Q +
7 a given non-singular hyperbolic quadric of PG(7,q) and Q = Q +

7
any other quadric of PG(7,q).

The study of the spectrum of the cardinalities of the intersection of any two quadrics has been per-
formed in [17], in the context of functional codes of type C2(Q+), that is codes defined by quadratic
functions on quadrics; see also [26, Remark 5.11]. In particular, in [17], the value of m is determined
by careful analysis of all possible intersection patterns. Here we present an independent, different and
shorter, argument leading to the same conclusion, based on elementary linear algebra. We point out
that our technique could be extended to determine the full intersection spectrum of two quadrics.

Lemma 2.6. Let Q+ be a given non-singular hyperbolic quadric of PG(2n + 1,q). If Q is any other quadric of
PG(2n + 1,q) not containing any generator of Q+ , then |Q∩Q+|� (2qn − qn−1 − 1)(qn + 1)/(q − 1).

Proof. The number of generators of Q+ is κ(n) = 2(q + 1)(q2 + 1) · · · (qn + 1). By the assumptions,
any generator of Q+ meets Q in a quadric Q′ of PG(n,q). It can be easily seen that |Q′| is maximal
when Q′ is the union of two distinct hyperplanes; hence, |Q′| � (2qn − qn−1 − 1)/(q − 1). Thus,

∣∣Q+ ∩Q
∣∣� (2qn − qn−1 − 1)

(q − 1)
· κ(n)

κ(n − 1)
= 2q2n − q2n−1 + qn − qn−1 − 1

q − 1
. �

Lemma 2.7. Given a non-singular hyperbolic quadric Q+ in PG(2n + 1,q), q odd, we have

m = max
∣∣Q+ ∩Q

∣∣= 2q2n − q2n−1 + 2qn+1 − 3qn + qn−1 − 1

q − 1
,

as Q = Q+ varies among all possible quadrics of PG(2n + 1,q). This number is attained only if the linear
system generated by Q and Q+ contains a quadric splitting in the union of two distinct hyperplanes.

Proof. Choose a reference system B in PG(2n + 1,q) wherein the quadric Q+ is represented by the
matrix C = ( 0 I

I 0

)
, with I and 0 respectively the (n + 1) × (n + 1)-identity and null matrices.

If Q and Q+ were not to share any generator, then the bound provided by Lemma 2.6 on the
size of their intersection would hold. Assume, instead, that Q and Q+ have at least one generator in
common. We will determine the maximum intersection they can achieve; as this will be larger then
the aforementioned bound, this will determine the actual maximum cardinality that is attainable. Un-
der this hypothesis, we can suppose that Q is represented with respect to B by a matrix of the form
S = ( 0 M

MT B

)
, with B an (n +1)× (n +1)-symmetric matrix and M an arbitrary (n +1)× (n +1)-matrix

whose transpose is MT .
Let
( X

Y

)
be the coordinates of a vector spanning a point of PG(2n + 1,q) with X and Y column

vectors of length n + 1.
Then, 〈( X

Y

)〉 ∈Q∩Q+ if and only if

(
X T Y T

)(0 I
I 0

)(
X
Y

)
= 0 and

(
X T Y T

)( 0 M
MT B

)(
X
Y

)
= 0,

which is equivalent to
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{
X T Y = 0,

2X T MY + Y T BY = 0.
(2)

We need to determine M and B as to maximise the number of solutions of (2); in order to compute
this number, we consider (2) as a family of linear systems in the unknown X , with Y regarded as a
parameter. Four cases have to be investigated.

1. Take Y = 0. Then, any X is solution of (2); this accounts for qn+1−1
q−1 points in the intersection.

2. When Y = 0 and Y is not an eigenvector of M , (2) is a system of two independent equations in
n + 1 unknowns. Hence, there are qn−1 solutions for X . If N is the total number of eigenvectors

of M , the number of points in Q∩Q+ corresponding to this case is qn−1(qn+1−(N+1))
q−1 .

3. If Y is an eigenvector of M and Y T BY = 0, then (2) has no solutions in X .
4. Finally, suppose Y to be an eigenvector of M and Y T BY = 0. Then, there are qn values for X

fulfilling (2). Denote by N0 the number of eigenvectors Y of M such that Y T BY = 0. Then, there
are qn N0

q−1 distinct projective points in the intersection Q∩Q+ corresponding to this case.

The preceding argument shows

∣∣Q∩Q+∣∣= qn−1(qn+1 − N − 1)

q − 1
+ qn N0

q − 1
+ qn+1 − 1

q − 1

= (qN0 − N)qn−1

q − 1
+ (qn−1 + 1)(qn+1 − 1)

q − 1
. (3)

As 0 � N0 � N � qn+1 − 1, the maximum of (3) is attained for the same values as the maximum
of g(N0, N) := (qN0 − N)/(q − 1), where N0 and N vary among all allowable values. Clearly, when
this quantity is maximal, it has the same order of magnitude as N0. Several possibilities have to be
considered:

(i) N0 = N = qn+1 − 1; then, the matrix M has just one eigenspace of dimension n + 1 and B = 0.
From a geometric point of view this means Q+ ≡Q.

(ii) N0 = 2qn − qn−1 − 1 and N = qn+1 − 1; then,

g1 := g
(
2qn − qn−1 − 1,qn+1 − 1

)= qn − 1.

The matrix M has just one eigenspace Mn+1 of dimension n + 1 and N0/(q − 1) is the maximum
cardinality of a quadric of an n-dimensional projective space, corresponding to the union of two
distinct hyperplanes.

(iii) N0 = N = qn + q − 2; then,

g2 := g
(
qn + q − 2,qn + q − 2

)= qn + q − 2.

The matrix M has two distinct eigenspaces say Mn and M1, of dimension respectively n and 1
and eigenvalues λn and λ1.

All other possible values of N0, corresponding to the cardinality of quadrics in an (n + 1)-dimensional
vector space, are smaller than 2qn − qn−1 − 1. As g1 � g2, the choice of (iii) gives the maximum
cardinality.

We now investigate the geometric configuration arising in Case (iii). Let U = (u1, u2, . . . , un+1) be
a basis of eigenvectors for M with Mu1 = λ1u1 and take D as a diagonalising matrix for M . So, the
column Di of D is the eigenvector ui for i = 1, . . . ,n + 1 and Dei = ui , with E = (e1, e2, . . . , en+1) the
canonical basis with respect to which M was originally written. We have (M − λn I)De1 = (λ1 − λn)u1
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and (M − λn I)Dei = 0 for i = 2, . . . ,n + 1. Hence, (M − λn I)D is the null matrix except for the first
column only. Thus,

DT (M − λn I)D =

⎛⎜⎜⎝
s0 0 . . . 0
s1 0 . . . 0
...

...

sn 0 . . . 0

⎞⎟⎟⎠ .

On the other hand, the matrix B ′ = DT B D represents a quadric in PG(n,q) containing both the point
〈(1,0,0, . . . ,0)〉 and the hyperplane of equation x1 = 0, where the coordinates are written with re-
spect to U. Thus,

DT B D =

⎛⎜⎜⎝
0 r1 . . . rn

r1 0 . . . 0
...

...

rn 0 . . . 0

⎞⎟⎟⎠ .

It is now straightforward to see that

rank

((
DT 0
0 DT

)((
0 M

MT B

)
− λn

(
0 I
I 0

))(
D 0
0 D

))
= 2.

In particular, as
( D 0

0 D

)
is invertible, also

rank

((
0 M

MT B

)
− λn

(
0 I
I 0

))
= 2.

Hence, the quadric Q′ =Q− λnQ+ is union of two distinct hyperplanes.
We remark that also in the case of (ii), the quadric Q− λn+1Q+ , where λn+1 is the eigenvalue of

M with multiplicity n + 1, is union of two hyperplanes, as B has rank 2. �
Theorem 2.8. For q odd, Cgr

3,3 is an [N, K ,d]q-linear code with the following parameters

N = (q3 + 1
)(

q2 + 1
)
(q + 1), K = 35, d = q2(q − 1)

(
q3 − 1

)
.

Proof. By Lemma 2.7, for n = 3 the maximum cardinality of the intersection of a hyperbolic quadric
Q+ with any other quadric is 2q5 + q4 + 3q3 + q + 1. The minimum distance follows from (1). �

Theorem 2.8 is part (ii) of Main Result 2 for q odd.

2.4.2. Even characteristic
We now consider the case Fq = F2r . By (3) in Theorem 2, ε

gr
3 (�3) ∼= (εvs

3 /N2)(�3), where N2 is
the nucleus subspace of 〈εvs

3 (�3)〉. Note that, by definition of quotient embedding, any line joining
two distinct points of ε

gr
3 (�3) is skew to N2.

As in the case of odd characteristic, the spin embedding ε
spin
3 maps �3 to the pointset of a

non-singular hyperbolic quadric Q+
7 of a 7-dimensional projective space PG(7,q); see [7]. Hence,

by [23, Theorem 25.1.3], PG(W vs
3 ) = 〈εvs

3 (�3)〉 = 〈ν23 (ε
spin
3 (�3))〉 = 〈ν23 (Q +

7 )〉 is a hyperplane of the
35-dimensional projective space 〈ν23 (PG(7,q))〉 = 〈V2〉, where V2 is, as usual, the quadric Veronese
variety of PG(7,q).
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It is always possible to choose a reference system of V wherein η is given by η(x1, x2, x3, x4, x5,

x6, x7) = x1x5 + x2x6 + x3x7 + x2
4. Let (xi, j)1�i� j�8 be the coordinates of a vector x in 〈V2〉, written

with respect to the basis (ei ⊗ e j)1�i� j�8 of 〈V2〉, with (ei)
8
i a basis of the vector space defining

the 7-dimensional projective space 〈εspin
3 (�3)〉. Then, by [9], the equation of the hyperplane 〈εvs

3 (�3)〉
in 〈V2〉 is x1,8 + x2,7 + x3,6 + x4,5 = 0, while N2 can be represented by the following system of 29
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2,8 = x4,6, x1,1 = 0, x1,5 = 0,

x2,3 = x1,4, x2,2 = 0, x2,4 = 0,

x1,6 = x2,5, x3,3 = 0, x2,6 = 0,

x1,7 = x3,5, x4,4 = 0, x3,4 = 0,

x3,8 = x4,7, x5,5 = 0, x3,7 = 0,

x5,8 = x6,7, x6,6 = 0, x4,8 = 0,

x1,8 = x4,5, x7,7 = 0, x5,6 = 0,

x2,7 = x4,5, x8,8 = 0, x5,7 = 0,

x3,6 = x4,5, x1,2 = 0, x6,8 = 0,

x1,3 = 0, x7,8 = 0.

Take now Σ = W vs
3 as an arbitrary hyperplane of 〈ν23 (PG(7,q))〉 containing N2. Then, Σ has equation

of the form ∑
1�i� j�8

ai, jxi, j = 0,

with the coefficients ai, j fulfilling ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1,4 = a2,3, a1,6 = a2,5,

a1,7 = a3,5, a2,8 = a4,6,

a3,8 = a4,7, a5,8 = a6,7,

a1,8 + a2,7 + a3,6 + a4,5 = 0.

By [23, Theorem 25.1.3], there is a quadric QΣ of the 7-dimensional projective space 〈εspin
3 (�3)〉 =

〈Q+
7 〉 such that Σ ∩ V2 = ν23 (QΣ). Since N2 ⊂ Σ and N2 is skew with respect to ε

gr
3 (�3),

∣∣QΣ ∩Q+
7

∣∣= ∣∣Σ/N2 ∩ ε
gr
3 (�3)

∣∣.
Observe that 〈εgr

3 (�3)〉 ∼= PG(W vs
3 /N2) is a 27-dimensional projective space and Σ/N2 is an arbitrary

hyperplane of 〈εgr
3 (�3)〉. With the notation just introduced, we prove the following.

Lemma 2.9. As QΣ varies among all the quadrics of PG(7,q) corresponding to hyperplanes Σ of
〈ν23 (PG(7,q))〉 containing N2 ,

m = max
∣∣QΣ ∩ ε

spin
3 (�3)

∣∣= 2q5 + q4 + 2q3 + q2 + q + 1.

Proof. Suppose the pointset of ε
spin
3 (�3) to be that of the hyperbolic quadric Q+

7 of equation x1x8 +
x2x7 + x3x6 + x4x5 = 0. As the bound of Lemma 2.6 holds also in even characteristic, we need to
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consider those hyperplanes Σ = ν23 (QΣ) of 〈V2〉 containing N2 and corresponding to quadrics QΣ

of the 7-dimensional projective space 〈εspin
3 (�3)〉 with at least one generator in common with Q+

7 . In
particular, we can assume Σ to have equation∑

1�i� j�8

ai, jxi, j = 0,

where the coefficients ai, j satisfy

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1,4 = a2,3, a1,6 = a2,5, a1,7 = a3,5,

a2,8 = a4,6, a3,8 = a4,7,

a1,8 + a2,7 + a3,6 + a4,5 = 0,

ai, j = 0 when 5 � i � j.

Hence, the quadric QΣ has equation
∑

1�i� j�8 ai, j xi x j = 0, with the coefficients ai, j fulfilling the

previous conditions. Thus, N2 is contained in the hyperplane Σ = ν23 (QΣ), while QΣ ∩Q+
7 contains

the 3-dimensional projective space of equations x1 = x2 = x3 = x4 = 0.
Rewrite the equation of QΣ in a more compact form as

Y T MT X +
∑

1�i� j�4

ai, j xix j = 0,

where

X =
⎛⎜⎝

x1
x2
x3
x4

⎞⎟⎠ , Y =
⎛⎜⎝

x5
x6
x7
x8

⎞⎟⎠ , M =
⎛⎜⎝

a1,5 a1,6 a1,7 a1,8
a1,6 a2,6 a2,7 a2,8
a1,7 a3,6 a3,7 a3,8
a4,5 a2,8 a3,8 a4,8

⎞⎟⎠
with a1,8 + a2,7 + a3,6 + a4,5 = 0 and a1,4 = a2,3.

We can also write the equation of Q+
7 as Y T J X = 0 with J =

( 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
.

Arguing as in the proof of Lemma 2.7, let 〈
(

X
Y

)
〉 be a point of PG(7,q). Then, 〈( X

Y

)〉 ∈QΣ ∩Q+
7 if,

and only if, ⎧⎪⎨⎪⎩
Y T J X = 0,

Y T MT X +
∑

1�i� j�4

ai, j xi x j = 0, (4)

where J , M are as previously defined.
Since J 2 = I , if we put M̄ := J MT and Ȳ T := Y T J , system (4) becomes as follows, where we have

also included the conditions on the coefficients ai, j :⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ȳ T X = 0,

Ȳ T M̄ X +
∑

1�i� j�4

ai, jxi x j = 0,

trace(M̄) = 0, a = a .

(5)
2,3 1,4
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System (5) is the analogue of system (2) in Lemma 2.7 for n = 3, with the further restrictions
trace(M̄) = 0 and a2,3 = a1,4. Hence, it is possible to perform the same analysis as before, in or-
der to determine the number of its solutions. The maximum is achieved when M̄ admits a unique
eigenspace of dimension 4, as in Cases (i) and (ii) of Lemma 2.7. This means that M̄ is similar to
a diagonal matrix diag(λ1, λ1, λ1, λ1), hence trace(M̄) = trace(diag(λ1, λ1, λ1, λ1)) = 4λ1 = 0 and the
trace condition is satisfied.

Furthermore, if the coefficients ai, j in
∑

1�i� j�4 ai, j xi x j = 0 are all 0, then QΣ = Q+
7 ; this is

the analogue of Case (i) of Lemma 2.7. Note that Case (iii) of Lemma 2.7 cannot happen, as if M̄
were to admit two eigenspaces of dimensions respectively 1 and 3, then it would be similar to a
diagonal matrix diag(λ1, λ2, λ2, λ2), λ1 = λ2. However, trace(M̄) = trace(diag(λ1, λ2, λ2, λ2)) = λ1 +
3λ2 = 0 gives λ1 = λ2 – a contradiction.

When the vectors satisfying the equation
∑

1�i� j�4 ai, j xi x j = 0 represent points lying on two
distinct planes of a 3-dimensional projective space, we have the analogue of Case (ii) of Lemma 2.7
and this achieves the maximum intersection size.

We have thus shown that the maximum value m for |QΣ ∩ Q+| is attained for M̄ similar to the
diagonal matrix diag(λ1, λ1, λ1, λ1) and m = 2q5 + q4 + 2q3 + q2 + q + 1. �
Theorem 2.10. For q even, the code Cgr

3,3 is an [N, K ,d]q-linear code with

N = (q3 + 1
)(

q2 + 1
)
(q + 1), K = 28, d = q5(q − 1).

Theorem 2.10 is part (ii) of Main Result 2 for q even.

3. Projective and polar caps

In this section F is an arbitrary, possibly infinite, field. A projective cap of PG(n,F) is a set C of
points of PG(n,F) which is met by no line of PG(n,F) in more than 2 points. A generalisation to an
arbitrary point-line geometry Γ = (P,L) is as follows: an (m, v)-set C ⊆P is a set of m points which
is met by any � ∈L in at most v points.

Clearly, when Γ is a linear space, non-trivial (m, v)-sets can exist only for v � 2; however, when
not all of the points of Γ are collinear, (m,1)-sets are also interesting (consider, for instance, the case
of ovoids in polar spaces).

In the present section we shall be dealing exclusively with (m,2)-sets, henceforth called in brief
m-caps. When Γ = PG(r,F), Gk or �k we speak respectively of projective, Grassmann or polar
m-caps.

In Theorem 3.4, it will be shown that the whole pointset of a dual polar space �n is mapped by the
Grassmann embedding into a projective cap, even if, clearly, the full pointset �k for any k � n could
never be a polar cap of itself, as �k , for n > 1, contains lines. For k < n, the Grassmann embedding
ε

gr
k is a projective embedding, that is it maps lines of �k onto projective lines; thus, ε

gr
k (�k) cannot

be a cap. However, in Theorem 3.2 and Corollary 3.3 we shall show that Grassmann and polar caps
are mapped by ε

gr
k into projective caps; see also [16] and [5] for caps contained in classical varieties.

This is significant as, when a geometry Γ is projectively embedded in a larger geometry, say Γ ′ and
not all the points of Γ are collinear, then there might be m-caps of Γ which are not inherited by Γ ′ .

Theorem 3.1. Let 1 � k � n. If C is a polar m-cap of �k, then C is a Grassmann m-cap of Gk.

Proof. Let P1, P2 and P3 be three distinct points of C . By way of contradiction, suppose P1, P2 and
P3 to be collinear in Gk . So, P1, P2 and P3 are three k-dimensional totally singular subspaces of V
with dim(P1 ∩ P2 ∩ P3) = k − 1 and dim〈P1, P2, P3〉 = k + 1. Put S := 〈P1, P2, P3〉.

If F = F2, then S = P1 ∪ P2 ∪ P3 is a singular subspace; hence, P1, P2 and P3 are collinear in �k .
This contradicts the hypothesis.

If F = F2, take x ∈ S \ (P1 ∪ P2 ∪ P3) and y ∈ P1 \ (P1 ∩ P2 ∩ P3). The line 〈x, y〉 meets P2 and
P3 in distinct points, say y2 ∈ P2 \ P3 and y3 ∈ P3 \ P2, as each Pi , 1 � i � 3 is a hyperplane in S
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and x /∈ (P1 ∪ P2 ∪ P3). Then, the line 〈x, y〉 has three distinct singular points. Necessarily, 〈x, y〉 is a
singular line; thus, x is a singular point and S is a totally singular subspace.

For 1 � k < n, this means that P1, P2 and P3 are collinear in �k , contradicting the hypothesis
on C .

For k = n we would have determined a totally singular subspace S � V of dimension n + 1. This
is, again, impossible, as the maximal singular subspaces of V have dimension n. �
Theorem 3.2. Let 1 � k � n. If C is a Grassmann m-cap of Gk, then egr

k (C) is a projective cap of PG(Wk).

Proof. Let P1, P2 and P3 be three distinct points of C . Put P̄1 := egr
k (P1), P̄2 := egr

k (P2) and P̄3 :=
egr

k (P3). By way of contradiction, suppose P̄1, P̄2 and P̄3 to be collinear in PG(Wk). The image egr
k (Gk)

of the Plücker embedding egr
k of Gk is the intersection of (possibly degenerate) quadrics of PG(Wk).

Since, by assumption, the projective line 〈 P̄1, P̄2〉 meets egr
k (Gk) in three distinct points P̄1, P̄2 and P̄3,

we have 〈 P̄1, P̄2〉 ⊆ egr
k (Gk), that is P̄1, P̄2 and P̄3 are on a line of egr

k (Gk). By [23, Theorem 24.2.5],
P1, P2 and P3 should be on a line of Gk and, thus, collinear in Gk – a contradiction. �
Corollary 3.3. Let 1 � k � n. If C is a polar m-cap of �k, then ε

gr
k (C) is a projective m-cap of PG(W gr

k ).

Theorem 3.4. The image ε
gr
n (�n) of the dual polar space �n under the Grassmann embedding ε

gr
n is a projec-

tive cap of PG(W gr
n ).

Proof. We prove that ε
gr
n (�n) does not contain any three collinear points. By way of contradic-

tion, suppose ε
gr
n (P1), ε

gr
n (P2) and ε

gr
n (P3) to be three collinear points in PG(W gr

n ) and put � :=
〈εgr

n (P1), ε
gr
n (P2)〉. The image egr

n (Gn) of the projective Grassmannian Gn by the Plücker embedding
egr

n is a variety obtained as the intersection of (possibly degenerate) quadrics of PG(Wn). Since � is a
projective line containing three points of egr

n (Gn), then � ⊂ egr
n (Gn). By [23, Theorem 24.2.5], its pre-

image r = (egr
n )−1(�) is a line of Gn . Hence, P1, P2 and P3 are three distinct points of �n lying on

the line r of Gn . This means that there are three distinct maximal subspaces p1, p2 and p3 of V ,
totally singular with respect to η, intersecting in an (n − 1)-dimensional subspace and spanning an
(n + 1)-dimensional subspace of V . This configuration is, clearly, impossible. �

Main Result 3 is a consequence of Corollary 3.3 and Theorem 3.4.
As recalled in Section 1.1, when F = Fq , the pointset of the dual polar space �n is the set of all

(qn + 1)(qn−1 + 1) · · · (q + 1) n-dimensional subspaces of V totally singular with respect to η. Thus,
we get the following corollary.

Corollary 3.5. Suppose n � 2 and F= Fq a finite field. Then,

(i) For q = ph, p > 2, the pointset ε
gr
n (�n) is a cap of PG(

(2n+1
n

)−1,q) of size (qn +1)(qn−1 +1) · · · (q +1).

(ii) For q = 2h, the pointset εgr
n (�n) is a cap of PG(

(2n+1
n

)−(2n+1
n−2

)−1,q) of size (qn +1)(qn−1 +1) · · · (q+1).

Proof. By Theorem 3.4, ε
gr
n (�n) is a cap of PG(W gr

n ). Part (i) of the corollary follows from Part (1) of
Theorem 1. Part (ii) follows from Part (1) of Theorem 2. �

We remark that Part (i) of Corollary 3.5 can also be proved using Part (2) of Theorem 1 together
with the well-known result of [35] showing that the quadric Veronesean of PG(n,q) is a cap of
PG(n(n + 3)/2,q).

4. Construction of a polar cap of �k

In this section F can be any, possibly infinite, field of odd characteristic. We shall determine a
family of k-dimensional subspaces of V totally singular with respect to η providing a polar cap of �k ,
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for k � n. Observe that the caps we construct in this section all actually fulfil the stronger condition
v = 1, that is no 2 of their points are on a line of �k; furthermore, as all of the results of Section 3
for v � 2 apply, they determine caps of the ambient projective space by Theorem 3.3.

Up to a multiplicative non-zero constant, it is possible to choose without loss of generality a basis
B = (e1, e2, . . . , e2n+1) for V in which the quadratic form η is given by

η(x1, . . . , x2n+1) =
n∑

i=1

xi xn+i + x2
2n+1.

Denote by fη the symmetric bilinear form obtained by polarising η and by ⊥ the associated orthog-
onality relation. Given I := {1, . . . ,2n + 1}, write

( I
k

)
for the set of all k-subsets of I .

For any set of indices J = { j1, j2, . . . , jk} ⊂ I, j1 < j2 < · · · < jk , define e J = e j1 ∧ e j2 ∧ · · · ∧ e jk .
The set B∧ := (e J ) J∈( Ik) is, clearly, a basis of Wk . For any i, with 1 � i � 2n + 1, let

i′ :=
⎧⎨⎩

i + n if 1 � i � n,

i − n if n < i � 2n,

2n + 1 if i = 2n + 1.

Observe that, with fη defined as above and 1 � i � 2n, we always get fη(ei, ei′) = 1. Thus, the pair
{ei, ei′ } is a hyperbolic pair of vectors; see [1, Chapter 3]. We shall say that {i, i′} is a hyperbolic pair of
indices if the corresponding set {ei, ei′ } is a hyperbolic pair of vectors.

Lemma 4.1. Let k � n and r � � k
2 �. Suppose J to be a k-subset of I containing r hyperbolic pairs of indices.

The following statements hold:

(1) If 2n + 1 /∈ J , then there exists {m1,m2, . . . ,mr} ⊆ {1,2, . . . ,n} such that emi ∈ {e j}⊥j∈ J for every 1 �
i � r.

(2) If 2n + 1 ∈ J , then there exists {m1,m2, . . . ,mr, �} ⊆ {1,2, . . . ,n} such that et ∈ {e j}⊥j∈ J for every t ∈
{m1, . . . ,mr} ∪ {�}.

Proof. Write J ∩ {1,2, . . . ,n} = { j1, . . . , jr, jr+1, jr+2, . . . , jr+s} and write J ∩ {1′,2′, . . . ,n′} = { j′1, j′2,
. . . , j′r, j′r+s+1, j′r+s+2, . . . , j′k−r}. Let U = {1,2, . . . ,n} \ ( J ∪ J ′), where J ′ = { j′: j ∈ J }.

(1) If 2n + 1 /∈ J , then |U | = n − (r + k − 2r) = n − k + r � r, since n − k � 0. Hence, there exists
a subset Mr = {m1,m2, . . . ,mr} of U of cardinality r. Clearly, fη(e j, emi ) = 0 for every mi ∈ Mr and
every j ∈ J .

(2) Since 2n + 1 ∈ J , we have |U | = n − (r + k − (2r + 1)) = n − k + r + 1 � r + 1, as n − k � 0.
Hence, there exists a subset Mr = {m1,m2, . . . ,mr, �} of U of cardinality r + 1. Clearly, fη(e j, et) = 0
for every t ∈ Mr and every j ∈ J . �
4.1. First construction: 2n + 1 /∈ J

Suppose J = { j1, j2, . . . , jr, j′1, j′2, . . . , j′r} ∪ J̄ ⊂ I , where J̄ does not contain any hyperbolic pair of
indices, | J | = k and 2n + 1 /∈ J . By (1) in Lemma 4.1, there exists Mr = {m1,m2, . . . ,mr} ⊆ {1,2, . . . ,n}
such that emi ∈ {e j}⊥j∈ J . We will construct a family of 2r totally singular k-dimensional subspaces of
V from these mi ∈ Mr as follows. Fix any bijection τ : { j1, j2, . . . , jr} → Mr and put

X∅,τ := 〈e j1 + eτ ( j1), e j2 + eτ ( j2), . . . , e jr + eτ (mr),

e j′ − eτ ( j1)′ , e j′ − eτ ( j2)′ , . . . , e j′ − eτ ( jr)′ , {e j} j∈ J̄

〉
. (6)
1 2 r
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Table 1
Subspaces for 2n + 1 /∈ J .

X∅ := 〈e j1 + em1 , e j2 + em2 , . . . , e jr + emr , e j′1 − em′
1
, e j′2 − em′

2
, . . . , e j′r − em′

r
, {e j} j∈ J̄

〉;
Xm1 := 〈e j1 − em′

1
, e j2 + em2 , . . . , e jr + emr , e j′1 + em1 , e j′2 − em′

2
, . . . , e j′r − em′

r
, {e j} j∈ J̄

〉;
Xm2 := 〈e j1 + em1 , e j2 − em′

2
, . . . , e jr + emr e j′1 − em1 , e j′2 + em2 , . . . , e j′r − em′

r
, {e j} j∈ J̄

〉;
· · ·

Xm1,...,mr := 〈e j1 − em′
1
, e j2 − em′

2
, . . . , e jr − em′

r
, e j′1 + em1 , e j′2 + em2 , . . . , e j′r + emr , {e j} j∈ J̄

〉

For every non-empty subset S of Mr define X S,τ to be the k-dimensional subspace of V spanned by
the same vectors as X∅,τ in (6) except that when τ ( ji) ∈ S , the vectors e ji + eτ ( ji ) and e j′i − eτ ( ji)

′ are
respectively replaced by e ji − eτ ( ji)

′ and e j′i + eτ ( ji) . For simplicity in the following arguments, as well
as in Section 4.1, we shall always assume mi = τ ( ji) and write just X S for X S,τ . For an example and
an explicit description, see Table 1.

Theorem 4.2. The set Xk := {X S}S⊆Mr is a polar 2r -cap of �k.

Proof. Clearly |Xk| = 2r . We now prove Xk ⊂ �k and that no two distinct elements of Xk are collinear
in �k . By Lemma 4.1, it is straightforward to see that for any S ⊆ Mr , the subspace X S is totally
singular with respect to η. Let S and T be two arbitrary distinct subsets of Mr . Since S = T , there
exists u ∈ {1,2, . . . , r} such that mu ∈ S and mu /∈ T . So, 〈e ju −em′

u
, e j′u +emu 〉 � X S ∩ XT . It follows that

the distance d(X S , XT ) := k −dim(X S ∩ XT ) between X S and XT , regarded as points of the collinearity
graph of Gk , is at least 2. As the collinearity graph of �k is a subgraph of that of Gk , this yields the
result. �

We observe that by Theorem 4.2, Xk is also a (2r,1)-set of Gk .
For each S ⊆ Mr , denote by B S the set formed by the first 2r generators of X S , ordered as in

Table 1, and by X S = 〈B S 〉 the subspace of X S spanned by B S .

Corollary 4.3. The set X2r = {X S }S⊆Mr is a polar 2r -cap of �2r .

Given an arbitrary S ⊆ Mr , the elements of B S can be described as follows:

e j1 + (−1)χS (m1)em1+nχS (m1), . . . , e jr + (−1)χS (mr)emr+nχS (mr),

e j′1 + (−1)χS (m1)+1em1+n(1−χS (m1)), . . . , e j′r + (−1)χS (mr)+1emr+n(1−χS (mr)),

where χS is the characteristic function of S , that is χS(x) = 1 if x ∈ S and χS(x) = 0 if x /∈ S , and, as
before, x′ := x + n.

The Grassmann embedding ε
gr
2r applied to any of the singular subspaces X S = 〈B S 〉 determines a

point ε
gr
2r(X S ) = 〈∧2r B S 〉 of PG(W gr

2r), with∧2r
B S = (e j1 + (−1)χS (m1)em1+nχS (m1)

)∧ · · · ∧ (e jr + (−1)χS (mr)emr+nχS (mr)

)
∧ (e j′1 + (−1)χS (m1)+1em1+n(1−χS (m1))

)∧ · · · ∧ (e j′r + (−1)χS (mr)+1emr+n(1−χS (mr))

)
.

Hence,
∧2r B S is a sum of vectors of the form σS(K ) · eK , where σS(K ) = ±1 and K ⊆ { j�, j′�,

m�,m′
�}r

�=1 has size 2r and contains at most r hyperbolic pairs of indices given by either { j�, j′�}
or {m�,m′

�}.
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It is possible to write
∧2r B S in a more convenient way by expanding the wedge products. To this

end, let T = {t1, . . . , tr} ⊆ { j1, . . . , jr,m1, . . . ,mr} with t� ∈ { j�,m�} for 1 � � � r, T ′ = {t′
1, . . . , t′

r} and
denote by Tr the family of all such sets T . The mapping sending every T ∈ Tr to T ∩ Mr is a bijection
between Tr and the family of all the subsets of Mr . Hence, |Tr | = 2r .

Consider U = {u1, . . . , u2r} ⊆ { j1, . . . , jr,m1, . . . ,mr, j′1, . . . , j′r,m′
1, . . . ,m′

r} such that |{{i, i′} ⊂
U }| < r and denote by U the family of all such sets.

In other words, every set T ∪ T ′ with T ∈ Tr is made up of precisely r hyperbolic pairs of indices,
while any U ∈ U is made up of at most r − 1 hyperbolic pairs of indices. Then,

∧2r
B S =
∑
T ∈Tr

σS(T )eT ,T ′ +
∑
U∈U

σS(U )eU , (7)

where eT ,T ′ := eT ∧ eT ′ and σS(T ), σS(U ) are shorthand notations for σS(T ∪ T ′) and σS(U ∪ U ′),
respectively.

Put

ξS :=
∑
T ∈Tr

σS(T )eT ,T ′ . (8)

In particular, ξ∅ :=∑T ∈Tr
σ∅(T )eT ,T ′ , where, as it can be easily seen, σ∅(T ) = (−1)|T ∩Mr | .

By Corollaries 3.3 and 4.3, ε
gr
2r(X2r) = {εgr

2r(X S)}S⊆Mr is a projective cap of PG(W gr
2r). The function

sending ε
gr
2r(X S) to ξS is a bijection between ε

gr
2r(X2r) and the set {ξS }S⊆Mr .

4.2. Second construction: 2n + 1 ∈ J

We now move to Case (2) of Lemma 4.1. In close analogy to Section 4.1, we will introduce a
family of 2r totally singular k-dimensional subspaces of V . Most of the results previously proved hold
unchanged when 2n + 1 ∈ J .

Let J = { j1, j2, . . . , jr, j′1, j′2, . . . , j′r,2n + 1} ∪ J̄ ⊂ I , where J̄ does not contain any hyperbolic pair
of indices and | J | = k. By (2) in Lemma 4.1, there exists

Mr = {m1,m2, . . . ,mr, �} ⊆ {1,2, . . . ,n}

such that et ∈ {e j}⊥j∈ J for any t ∈ Mr .
Put

X∅ := 〈e j1 + em1 , e j2 + em2 , . . . , e jr + emr , e j′1 − em′
1
, e j′2 − em′

2
, . . . ,

e j′r − em′
r
, e� + e2n+1 − e�′ , {e j} j∈ J̄

〉
.

Clearly, X∅ is totally singular.
As before, for every non-empty subset S of Mr = {m1,m2, . . . ,mr} define XS to be the

k-dimensional subspace of V spanned by the same vectors as X∅ , except that if mi ∈ S , then e ji + emi

and e j′i − em′
i

are respectively replaced by e ji − em′
i

and e j′i + emi . For more details, see Table 2.
We thus determine 2r totally singular k-dimensional subspaces of V each being at distance at

least 2 from any other, when regarded as points in the collinearity graph of �k . Hence, the following
analogue of Theorem 4.2 holds.

Theorem 4.4. The set X′
k = {XS }S⊆Mr is a polar 2r -cap of �k.
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Table 2
Subspaces for 2n + 1 ∈ J .

X∅ := 〈e j1 + em1 , e j2 + em2 , . . . , e jr + emr , e j′1 − em′
1
, e j′2 − em′

2
, . . . , e j′r − em′

r
, e� + e2n+1 − e�′ , {e j} j∈ J̄

〉;
Xm1 := 〈e j1 − em′

1
, e j2 + em2 , . . . , e jr + emr , e j′1 + em1 , e j′2 − em′

2
, . . . , e j′r − em′

r
, e� + e2n+1 − e�′ , {e j} j∈ J̄

〉;
Xm2 := 〈e j1 + em1 , e j2 − em′

2
, . . . , e jr + emr , e j′1 − em1 , e j′2 + em2 , . . . , e j′r − em′

r
, e� + e2n+1 − e�′ , {e j} j∈ J̄

〉;
· · ·

Xm1,...,mr := 〈e j1 − em′
1
, e j2 − em′

2
, . . . , e jr − em′

r
, e j′1 + em1 , e j′2 + em2 , . . . , e j′r + emr , e� + e2n+1 − e�′ , {e j} j∈ J̄

〉

Arguing as in Section 4.1, let B̂ S be the set consisting of the first 2r + 1 generators of XS and
X S = 〈B̂ S 〉 be the subspace of XS spanned by B̂ S . In other words, B̂ S := B S ∪ {e� + e2n+1 − e�′ }, with
B S defined as in Section 4.1.

The following corresponds to Corollary 4.3.

Corollary 4.5. The set X′
2r+1 = {X S}S⊆Mr is a polar 2r -cap of �2r+1 .

For any S ⊆ Mr , apply the Grassmann embedding ε
gr
2r+1 to the singular subspaces X S = 〈B̂ S 〉.

Hence, ε
gr
2r+1(X S) = 〈∧2r+1 B̂ S 〉 is the point of PG(W gr

2r+1) spanned by the vector
∧2r+1 B̂ S :=∧2r B S ∧ (e� + e2n+1 − e�′).

Expanding
∧2r+1 B̂ S , we get an analogue of (7):

∧2r+1
B̂ S =
∑
T ∈Tr

σS(T )eT ,T ′,2n+1 +
∑
Ū∈Ū

σS(Ū )eŪ , (9)

where eT ,T ′,2n+1 := eT ∧ eT ′ ∧ e2n+1, Ū ⊆ Ū = U ∪ {l, l′}, |{(i, i′) ⊂ Ū }| < r, |Ū | = 2r + 1; the sets T , T ′ ,
Tr and U are defined as in Section 4.1. The coefficients σS (T ) and σS(Ū ) are ±1. Put

ξ S :=
∑
T ∈Tr

σS(T )eT ,T ′,2n+1. (10)

By Corollaries 3.3 and 4.5, ε
gr
2r+1(X

′
2r+1) = {εgr

2r+1(X S )}S⊆Mr is a projective cap of PG(W gr
2r+1). The

function sending any element ε
gr
2r+1(X S ) to the vector ξ S is a bijection between ε

gr
2r+1(X

′
2r+1) and

{ξ S }S⊆Mr .
Observe that Main Result 4 is contained in Corollaries 4.3 and 4.5.

5. Hadamard matrices and codes from caps

Recall that a Hadamard matrix of order m is an (m × m)-matrix H with entries ±1 such that
H Ht = mI , where I is the (m ×m)-identity matrix. Hadamard matrices have been widely investigated,
as their existence, for m > 2, is equivalent to that of extendable symmetric 2-designs with parameters
(m−1, 1

2 m−1, 1
4 m−1); see [8], and also [25, Theorem 4.5]. It is well known that the point-hyperplane

design of P G(n,2) is a Hadamard 2 − (2n+1 − 1,2n − 1,2n−1 − 1) design; any of the corresponding
Hadamard matrices is called a Sylvester matrix; see [8, Example 1.31]. Indeed, the so-called recursive
Kronecker product construction, see [25, Theorem 3.23], as

S1 =
(

1 1
1 −1

)
, Sn = Sn−1 ⊗

(
1 1
1 −1

)



166 I. Cardinali, L. Giuzzi / Finite Fields and Their Applications 24 (2013) 148–169
always gives a Sylvester matrix. In this section we shall show how it is possible to associate a
Hadamard matrix of order 2r to any polar cap X2r of �2r and X′

2r+1 of �2r+1. Recall that X2r and

X′
2r+1 are introduced respectively in Corollaries 4.3 and 4.5 of Section 4. In particular, we shall make

use of the vectors ξS and ξ̄S therein computed respectively in Eqs. (8) and (10). We shall also in-
troduce an order relation on the points of the cap itself, in order to prove that this matrix can be
obtained by the recursive Sylvester construction. This will also provide a direct connection with first
order Reed–Muller codes; for more details, see also [2].

At first, we need to take into account the two cases of Sections 4.1 and 4.2 separately. We adopt
the same notation as is those sections.

For 2n + 1 /∈ J , put BS := {σS(T )eT ,T ′ }T ∈Tr for S ⊆ Mr ; see Eq. (8). Then, BS is a basis of the linear
space LTr := 〈eT ,T ′ 〉T ∈Tr . In particular, B∅ is a basis of LTr and ξS =∑T ∈Tr

σS(T )eT ,T ′ ∈ LTr . Thus,
we can consider the coordinates {(ξS )T }T ∈Tr of ξS with respect to B∅ . Clearly, (ξS )T = σS(T )σ∅(T ).
Observe that, while we have selected B∅ as a basis, the result holds for any arbitrary fixed basis of
the form BS .

If 2n + 1 ∈ J , let BS = {σS (T )eT ,T ′,2n+1}T ∈Tr ; see Eq. (10). Then, BS is a basis of the linear space

L̄Tr = 〈eT ,T ′,2n+1〉T ∈Tr . In particular, B∅ is a basis of L̄Tr and ξ̄S ∈ L̄Tr ; thus we consider the coordi-
nates {(ξ̄S )T }T ∈Tr of ξ̄S with respect to the basis B∅ of L̄Tr . Again, we have (ξ̄S )T = σS(T )σ∅(T ).

Let A∅,r be the (2r × 2r)-matrix defined as follows. The rows are indexed by the subsets of Mr =
{m1, . . . ,mr} and the columns by the members of Tr . For S ⊆ Mr and T ∈ Tr the T -entry of the row
R S corresponding to S is equal to (ξS )T = σS(T )σ∅(T ) when 2n+1 /∈ J and (ξ S )T = σS(T )σ∅(T ) when
2n + 1 ∈ J . In particular, every entry of A∅,r is either 1 or −1 and all entries in the row R∅ are equal
to 1.

Lemma 5.1.

1. When 2n + 1 /∈ J , A∅,r = ((ξS )T ) S⊆Mr
T ∈Tr

with (ξS )T = (−1)|S∩T | .

2. When 2n + 1 ∈ J , A∅,r = ((ξ̄S )T ) S⊆Mr
T ∈Tr

with (ξ̄S )T = (−1)|S∩T | .

Proof. Suppose 2n + 1 /∈ J . The proof for the case 2n + 1 ∈ J is entirely analogous.
Take R = {m1, . . . ,m�−1} ⊆ Mr and let S = R ∪ {m�} ⊆ Mr . Observe that ξS is obtained from ξR by

replacing e j� + em�
and e j′� − em′

�
by respectively e j� − em′

�
and e j′� + em�

in
∧2r B R . Clearly, if m� /∈ T ,

we have (ξS )T = (ξR)T , as ξR and ξS have exactly the same components with respect to all the vectors
eT ,T ′ which do not contain the term em�

. On the other hand, when m� ∈ T , the sign of the component
of eT ,T ′ must be swapped; thus, (ξS )T = −(ξR)T . As ξS can be obtained from the sequence

ξ∅ → ξm1 → ξm1,m2 → ·· · → ξR → ξS

and ξ∅ = 1, we have (ξS )T = (−1)|S∩T | . This proves the lemma. �
Theorem 5.2. The matrix A∅,r is Hadamard.

Proof. By Lemma 5.1, (ξS )T = (−1)S·T , where S and T are the incidence vectors of S and T ∩ Mr

with respect to Mr and · denotes the usual inner product. The result now is a consequence of [33,
Lemma 4.7, p. 337]. �

In particular, (ξS )T = 1 if, and only if, S and T share an even number of elements.

Corollary 5.3. The design associated to the matrix A∅,r is the point-hyperplane design of PG(r,2); in particu-
lar, A∅,r is a Sylvester matrix.
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Proof. It is well known that for any hyperplane π of PG(r,2), there is a point Pπ ∈ PG(r,2) such that

π = {X ∈ PG(r,2): Pπ · X = 0
}
,

with · the usual inner product of PG(r,2) and Pπ = (p1, p2, . . . , pr+1), X = (x1, x2, . . . , xr+1) binary
vectors. In particular, X ∈ π if and only if Pπ · X = |{i: pi = xi}| (mod 2) = 0, that is to say if and
only if the vectors Pπ and X have an even number of 1’s in common. By Lemma 5.1, it is now
straightforward to see that the matrix A′

∅,r obtained from A∅,r by deleting the all-1 row and col-
umn and replacing −1 with 0 contains the incidence vectors of the symmetric design of points and
hyperplanes of a projective space PG(r,2). �

Recall that equivalent Hadamard matrices give isomorphic Hadamard designs; the converse, how-
ever, is not true in general.

As anticipated, we now show how the rows and columns of A∅,r or, equivalently, the points of
the polar caps X S , might be ordered as to be able to describe it in terms of the Kronecker product
construction.

Since both the rows and the columns of A∅,r can be indexed by the subsets of Mr (for the columns
we just consider T ∩ Mr with T ∈ Tr ) it is enough to introduce a suitable order <r on the set 2Mr of
all subsets of Mr . We proceed in a recursive way as follows:

• for r = 1, define ∅ <1 {m1};
• suppose we have ordered 2Mr−1 , then for any X, Y ⊆ Mr , we say X <r Y if and only if

1. X <r−1 Y when mr /∈ X ∪ Y ;
2. mr /∈ X and mr ∈ Y ;
3. mr ∈ X ∩ Y and (X \ {mr}) <r−1 (Y \ {mr}).

Observe that <r , when restricted to Mr−1, is the same as <r−1. Thus, we shall drop the subscript
from <r , given that no ambiguity may arise.

As examples, for r = 2 we have

∅ < {m1} < {m2} < {m1,m2},
while, for r = 3,

∅ < {m1} < {m2} < {m1,m2} < {m3} < {m1,m3} < {m2,m3} < {m1,m2,m3}.
The minimum under < is always ∅, and the maximum Mr . Using the order induced by < on both
the rows and the columns of A∅,r we prove the following.

Theorem 5.4. For any r > 1 we have A∅,r = A∅,r−1 ⊗ A∅,1 .

Proof. The matrix A∅,r encodes the parity of the intersection of subsets of Mr ; as we took the same
order for columns and rows, A∅,r is clearly symmetric. We now show that

A∅,r =
(

A∅,r−1 A∅,r−1
A∅,r−1 −A∅,r−1

)
= A∅,r−1 ⊗

(
1 1
1 −1

)
.

Indeed, the elements indexing the first 2r−1 rows and columns of A∅,r are all subsets of Mr−1 in the
order given by <r−1. Thus, the minor they determine is indeed A∅,r−1. Observe now that if mr ∈ Y
and mr /∈ X , then

(−1)|X∩Y | = (−1)|X∩(Y \{mr })|.



168 I. Cardinali, L. Giuzzi / Finite Fields and Their Applications 24 (2013) 148–169
In particular, the entry in row 1 � x � 2r−1 and column 2r−1 < y � 2r is the same as that in row x
and column y −2r−1. It follows that the minor of A∅,r comprising the first 2r−1 rows and the last 2r−1

columns is also A∅,r−1. By symmetry, this applies also to the minor consisting of the last 2r−1 rows
and the first 2r−1 columns. Finally, consider an entry in row 2r−1 < x � 2r and column 2r−1 < y � 2r .
By definition of <r , the sets X , Y indexing this entry are X = X ′ ∪ {mr} and Y = Y ′ ∪ {mr} where X ′
and Y ′ index the entry in row x − 2r−1 and column y − 2r−1. In particular, as |X ∩ Y | = |X ′ ∩ Y ′| + 1,

(−1)|X∩Y | = −(−1)|X ′∩Y ′|.

It follows that this minor of A∅,r is −A∅,r−1.
By Lemma 5.1,

A∅,1 =
(

1 1
1 −1

)
.

The theorem now follows by recursion. �
By Theorem 5.4, the matrix A∅,r is obtained by the Sylvester construction. As a corollary of Theo-

rem 5.4, the codes associated to the caps constructed in Section 4 are Reed–Muller codes of the first
order.
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