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We report all-optical regeneration of the state of polarization of a 40 Gbit∕s return-to-zero telecommunication sig-
nal. The device discussed here consists of a 6.2-km-long nonzero dispersion-shifted fiber, with low polarization
mode dispersion, pumped from the output end by a backward propagating wave coming from either an external
continuous source or a reflection of the signal. An initially scrambled signal acquires a degree of polarization close
to 100% toward the polarization generator output. All-optical regeneration is confirmed by means of polarization
and bit-error-rate measurements as well as real-time observation of the eye diagrams. We show that the physical
mechanism underlying the observed four-wave-mixing-based polarization attraction phenomenon can be de-
scribed in terms of the geometric approach developed for the study of Hamiltonian singularities. © 2013 Chinese
Laser Press
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1. INTRODUCTION
As is well known, owing to environmental changes or
mechanical shocks, the state of polarization (SOP) of light
emerging from telecommunication optical fiber links exhibits
random temporal fluctuations, with corresponding SOP rota-
tion speeds on the Poincaré sphere of up to 500 krad∕s [1].
Therefore there is a need for controlling or tracking the
SOP of telecom signals whenever a polarization-dependent
receiver is used. For example, in coherent systems, it is nec-
essary to ensure the continuous matching among the SOPs of
the received signal and that of the local oscillator. Currently,
electro-optical SOP tracking is obtained via lithium–niobate
waveguides driven by electronic feedback loops. Such polari-
zation controllers operate in endless manner, namely without
any resets that would possibly lead to data traffic interrup-
tions or output intensity fluctuations as a result of sudden
and large input signal SOP changes [2–5]. The technological
development of these devices has improved their polarization
tracking speeds from 0.1 rad∕s in early coherent systems [2]
up to 59 krad∕s for use in 100 Gbit∕s transmission systems [5].
Moreover, in the current generation of long-haul transmission
systems operating at channel rates of 100 Gbit∕s, pure elec-
tronic polarization tracking at rates in excess of 100 krad∕s
can be performed thanks to the development of dedicated dig-
ital signal processing circuits [6,7].

Nevertheless, fully all-optical means to regenerate the
signal SOP in fiber optics links will be required for the devel-
opment of the next generation of transparent optical commu-
nication networks. As a matter of fact, in future transparent
all-optical networks, several key functionalities such as opti-
cal add–drop multiplexing and optical cross connects will be

implemented using silicon photonics integrated circuits
(PICs). Since the operation of integrated optical waveguides
requires a well-defined (e.g., TE) signal SOP, relatively com-
plex and costly polarization diversity fiber-PIC coupling
schemes, e.g., involving two-dimensional (2D) grating cou-
plers, must be employed [8,9].

As we shall discuss in this paper, there is an alternative
route for all-optical control of the signal SOP, which is based
on the degenerate four-wave mixing (FWM) process in optical
fibers [10–12]. Indeed, recent experiments have demonstrated
two different methods for obtaining all-fiber, error-free regen-
eration of the SOP of 10 and 40 Gbit∕s on–off-keying (OOK)
signals in standard telecom fibers. The first method involves
the injection of a counter propagating continuous-wave (CW)
pump [13–15] with a well-defined SOP. The second method
simply exploits the nonlinear interaction of the signal with
its back reflected replica obtained by connecting the fiber
to a linear feedback mirror with adjustable reflectivity [16].

The operating principle of all-optical SOP tracking and re-
generation in fibers is the so-called losslessness of the
conservative polarization attraction effect. In the presence
of a counterpropagating beam and for sufficiently intense
wave powers and/or long fiber spans, all input signal SOPs
are attracted toward a well-defined SOP at the fiber output.
The attracting SOP thus acts as a sort of “polarization funnel,”
as first described by Pitois and Haelterman in 2001 [17]. The
resulting strength of signal repolarization is largely indepen-
dent of its input SOP; quite remarkably, the operation of
the nonlinear lossless polarizer is not accompanied by any
loss of signal power, in marked contrast with the case of linear
polarizers. On the other hand, in contrast with dissipative
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nonlinear polarizers based on Raman or Brillouin gain [18–23],
in a lossless polarizer the input SOP fluctuations are not
converted into output intensity fluctuations.

The first proof-of-principle demonstrations of the polariza-
tion attraction effect were obtained using counterpropagating
nanosecond pump pulses and a short span of linearly isotropic
highly nonlinear fiber [24–26]. A key breakthrough advance
for the practical usage of nonlinear lossless polarizers in tele-
com applications consisted in the demonstration of signal
repolarization induced by a sub-watt CW pump in a few-
kilometer-long span of telecom nonzero-dispersion-shifted
fiber (NZDSF) [13–15]. The relevance of this result, which
was largely unexpected, stems from the fact that it demon-
strates the robustness of the nonlinear polarization attraction
even in the presence of a locally much stronger linear
anisotropy or birefringence, which varies randomly along
the fiber.

In fact, as theoretically demonstrated by Kozlov et al. [27],
the rapidly varying random linear birefringence can be effec-
tively averaged out from the propagation equations describing
the nonlinear cross-polarization interaction between the sig-
nal and the counterpropagating pump. The availability of a
simple deterministic model for describing nonlinear lossless
polarizers based on randomly birefringent fibers provides a
crucial tool for assessing their performance.

From the practical viewpoint, an important parameter is the
maximum operating speed of a nonlinear lossless polarizer. In
fact, theory and experiments agree well in evaluating the
signal propagation delay through the fiber span as a typical
estimate of the response time of the nonlinear polarizer
[28]. As a result, polarization tracking speeds of 200 krad∕s
could be reached when using a 6-km-long NZDSF [29]. Non-
linear SOP regenerators may have their operating power lev-
els and required fiber length greatly reduced (hence tracking
speed correspondingly increased) by using highly nonlinear
and birefringent or spun optical fibers [30].

Since polarization attraction is based on the virtually
instantaneous Kerr response mechanism of silica fibers, ultra-
fast signal polarization control may be achieved by exploiting
the nonlinear cross-polarization interaction with a copropa-
gating CW pump at a different carrier frequency [31]. Quite
interestingly, a recent theoretical study by Kozlov et al. [32]
has demonstrated that, in the copropagating configuration,
the efficiency of signal repolarization grows larger as the
temporal walk-off between the signal pulses and the CW pump
is increased.

In Section 2, we will present a detailed experimental com-
parative study of the performance of the two different imple-
mentations of a nonlinear lossless polarizer for the
regeneration of the SOP of 40 Gbit∕s OOK return-to-zero (RZ)
signals. The initial setup involves an independent CW counter-
propagating pump; as we will see, the degree-of-polarization
(DOP) of the initially polarization scrambled signal grows
monotonically larger until it reaches nearly unity at the fiber
output as the pump power is increased above 800 mW. In the
second setup, we replaced the pump beam by an adjustable
feedback loop with variable reflectivity; here the output signal
DOP exhibits a sudden transition to unitary values when the
backreflected signal power gets larger than 500 mW, or the
feedback loop reflectivity R > 1. By means of bit-error-rate
(BER) measurements, we will characterize and compare

the power penalty of the two types of polarization regenera-
tors. Quite interestingly, the setup with the reflective feedback
loop shows 1 dB receiver sensitivity improvement with re-
spect to the back-to-back (BB) configuration, indicating that
polarization regeneration is accompanied by significant useful
pulse shaping.

In Section 3, we briefly review a theoretical description of
the phenomenon of polarization attraction. In substance, the
theory makes use of recently developed mathematical tech-
niques for the geometric study of Hamiltonian singularities
[33]. This mathematical approach has been successfully
applied to describe different configurations of polarization
attraction in isotropic, high-birefringence, or spun fibers
[34–38]. In substance, the theory reveals the essential role that
the peculiar topological properties of singular tori play in the
process of polarization attraction. This role may be inter-
preted intuitively by analogy with the role that plays a sepa-
ratrix in purely one-dimensional (1D) systems. We remark that
the existence of these singular structures had been essentially
ignored in the physics literature until their recent introduction
in the domain of atomic and molecular systems [39]. In this
article we illustrate the theory in the particular example of
polarization attraction in random birefringent fibers. We refer
the interested reader to [36] for a recent article that reviews a
pedagogical introduction to these mathematical tools as
well as their applications to polarization attraction in different
configurations.

2. EXPERIMENTAL OBSERVATIONS
A. Methods
Throughout this paper, we consider an initial signal carrying
RZ optical data with fast variations of its polarization state.
The initial signal is injected into a low-polarization mode
dispersion (PMD), normally dispersive optical fiber. A second
wave also propagates in the same fiber in the opposite direc-
tion. Throughout the paper we are going to consider two
different configurations, depending on the way the counter-
propagating pump is generated. The first configuration corre-
sponds to the case in which the pump wave results from an
external source, whereas the second configuration, called the
omnipolarizer, corresponds to the case in which the pump
wave is replaced by a replica of the signal wave obtained
by means of an active system of reflection.

The regeneration of the SOP of a 40 Gbit∕s RZ signal was
experimentally achieved thanks to the experimental setup
shown in Fig. 1. The 40 Gbit∕s RZ signal was generated by
means of a 10 GHz mode-locked fiber laser delivering 2.5 ps
pulses at 1564 nm. A programmable liquid-crystal-based opti-
cal filter allows us to temporally spread the initial pulses so as
to obtain 7.5 ps Gaussian pulses through a spectral slicing op-
eration. The resulting pulse train was intensity modulated
thanks to a LiNbO3 modulator through a 231 − 1 pseudo-
random bit sequence. A two-stage bit-rate multiplier was used
to generate the initial 40 Gbit∕s RZ bit stream. Large and fast
fluctuations of the signal polarization were induced via a
polarization scrambler (PS) working at a rate of 650 Hz.
Before injection into the optical fiber, the 40 Gbit∕s signal
was finally amplified by means of an erbium-doped fiber am-
plifier (EDFA) at the suitable average power of 27 dBm. The
optical fiber involved in the FWM-based polarization attrac-
tion process is a 6.2-km-long NZDSF with the following
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parameters: chromatic dispersion D � −1.5 ps∕nm∕km at
1550 nm, nonlinear Kerr parameter γ � 1.7 W−1 · km−1, and
PMD coefficient Dp � 0.05 ps∕km1∕2. Two optical circulators
were inserted at both fiber ends, so as to inject and collect
both waves.

As mentioned above, the counterpropagating wave, which
acts as the polarization attractor wave, results either from an
external source or from a reflection of the signal. The external
pump wave (i.e., the configuration 1 depicted in Fig. 1) con-
sists of a 1 W continuous incoherent wave having a fixed ar-
bitrary SOP, a spectral linewidth of 100 GHz, and a central
wavelength of 1545 nm. On the other hand, the output reflec-
tive element (i.e., involved in configuration 2 depicted in
Fig. 1) is composed of a fiber coupler (90∕10), a polarization
controller, and an EDFA. Let us define the reflection coeffi-
cient R as the ratio between powers of the reflected signal
and the initial input wave. Thanks to the active control loop,
R can be lower than, equal to, or superior to unity. At the
receiver, a polarizer was inserted in order to translate the
polarization fluctuations into intensity fluctuations. Behind
the polarizer, the 40 Gbit∕s eye diagram was monitored by
means of an optical sampling osvfcilloscope (OSO), while
the BER was measured thanks to a fast photodiode
(70 GHz bandwidth) followed by electrical demultiplexing
at 10 Gbit∕s. Note that the BER measurements were averaged
on the four resulting demultiplexed 10 Gbit∕s channels. The
40 Gbit∕s signal SOP was recorded onto the Poincaré sphere
using a commercially available polarimeter (POL).

B. Results Obtained with an External Pump Wave
(Configuration 1)
The transfer function of the polarization regenerator was
experimentally measured by evaluating the DOP as a function
of pump power. DOP is classically defined as DOP �����������������������������������������������
hS1i2 � hS2i2 � hS3i2

p
∕S0, where Si are the Stokes parame-

ters of the signal wave and hi denotes an averaging over
256 runs of input polarizations. As can be seen in Fig. 2,
the DOP of the signal wave, which initially has a low level

due to its initial scrambling, strongly increases when the coun-
terpropagating pump power is injected into the fiber so as to
saturate and reach asymptotically a constant value close to
unity for a pump power above 800 mW. Based on these re-
sults, a pump power of 1 W was chosen to ensure a maximum
efficiency of the polarization attraction process.

The performances of the polarization regenerator were
quantified in realtime by means of the SOP monitoring and
eye-diagram visualization as illustrated in Fig. 3. At the regen-
erator output and in the absence of a counterpropagating
pump wave, because of the initial polarization scrambling
process, the signal SOP is uniformly spread onto the whole
Poincaré sphere [Fig. 3(a1)], leading to a complete closure
of the eye diagram [Fig. 3(b1)]. Indeed all the polarization fluc-
tuations generated by the PS are transformed into intensity
fluctuations through the polarizer, thus inducing a complete
eye closure and loss of data. On the other hand, in the pres-
ence of the polarized pump wave [Figs. 3(b)], the polarization
attraction process leads to the convergence of all polarization
states toward a small area on the Poincaré sphere [Fig. 3(b1)],
indicating an efficient stabilization of the 40 Gbit∕s signal
SOP. The output eye diagram depicted in Fig. 3(b2) becomes
now completely open behind the polarizer, confirming the
high efficiency of the regeneration of the polarization process.

Fig. 1. Experimental setup.

Fig. 2. Experimental DOP as a function of pump power.
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Finally, Fig. 3(c) shows the BER measurements of the
40 Gbit∕s signal as a function of the incoming power on
the receiver. For reasons of clarity, Fig. 3(c) only shows
the average value of the BERs obtained for the four demulti-
plexed 10 Gbit∕s channels. The reference is illustrated by the
BB configuration (i.e., at the fiber input). As shown by the eye
diagram reported in Fig 3(a), at the output of the regenerator,
when the polarization of the signal is scrambled, the BER is
limited by an error floor at 10−2. But remarkably, in the pres-
ence of the counterpropagating pump wave (dark circles), the
quality of the transmission is greatly improved, and negligible
power penalty at the error-free level (i.e., for BER � 10−9)
with respect to the BB case was obtained at the receiver.

C. Results Obtained with an Adjustable Reflective Loop
(Configuration 2)
In the previously discussed configuration involving a separate
pump beam, the signal SOP obtained at the regenerator output
depends on the initial SOP of the pump. As we shall see next,
quite remarkably in the second configuration with the adjust-
able reflective device (omnipolarizer), the regenerated signal
is circularly polarized no matter the SOP of the backreflected
wave, although its ellipticity (right or left) may be adjusted by
means of a linear polarization controller. Figure 4(a) shows
the evolution of the signal SOP at the omnipolarizer output
for different values of the reflection coefficient R. As can
be seen, for R � 0.32, the polarization attraction process
starts to develop, and the points localized in the north (south)
hemisphere, corresponding to right (left) SOPs, start to

converge on the north (south) pole of the Poincaré sphere.
When R is equal to 0.68, this convergence is more pronounced
and the output SOPs are confined around both poles of the
sphere—that is, close to the right- or left-handed circular po-
larizations. In other words, depending on its initial ellipticity,
all of the 40 Gbit∕s signal energy is digitally routed to either
the right- or left-circular SOP without any pulse splitting.
When R � 0.78, the attraction zone, which was previously
localized around the south pole, explodes and all of the cor-
responding output SOP points on the Poincaré sphere are now
attracted toward the north pole. When R � 1.14, all the SOPs
of the output signal wave converge around the north pole, so
that the signal polarization remains close to a right-handed cir-
cular SOP. In other words, the signal light has self-organized
its own SOP. Let us point out that the signal ellipticity at the
regenerator output for R greater than unity is dependent on
the polarization controller inserted into the reflective loop
(see Fig. 1). Indeed, according to the transfer function of
the polarization controller, all of the signal SOPs converge ei-
ther to the north pole or to the south pole of the Poincaré
sphere. Consequently, by tuning the polarization controller,
no matter the initial SOP, it is possible to ensure that the out-
put signal polarization remains trapped close to either a right-
handed or a left-handed circular polarization state. It can be
noted that the selection of either the right- or left-circular SOP

Fig. 3. (a) SOP and (b) eye diagram behind a polarizer of the
40 Gbit∕s signal after polarization scrambling (1) without and (2) with
the counterpropagating pump wave. (c) Evolution of the BER as a
function of the received average power in BB configuration (dark
squares)—at the output of the system with (open circles) and without
(dark circles) the counterpropagating pump wave.

Fig. 4. (a) Evolution of the signal SOP at the omnipolarizer output
for different values of the reflection coefficient R. (b) DOP of the out-
put signal as a function of the average power of the reflected signal
(and similarly as a function of R).
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is determined by the angle of polarization rotation in the re-
flection process. Such angle is at the origin of the symmetry
breaking between the two circular SOPs, and it can be ad-
justed experimentally thanks to the polarization controller.
More precisely, if one only considers a polarization rotation
around the vertical axis of the Poincaré sphere, then a positive
(negative) rotation angle favors the left- (right-) circular SOP
(see [16] for more details).

We measured the DOP of the output signal for a large num-
ber of values of R, and the results are summarized in Fig. 4(b)
as a function of the average power of the reflected signal (or
similarly as a function of R). It is interesting to point out that,
in contrast with the configuration based on an external pump
where the DOP increases monotonously until saturation, in
this case the evolution of the output DOP clearly exhibits a
minimum. To comment on Fig. 4(b) in more detail, let us first
remember that the omnipolarizer operates in two distinct re-
gimes depending on the reflection coefficient R, the polariza-
tion beam splitter (PBS) regime, and the polarization regime
[16]. For a depolarized input signal (DOP � 0), numerical
simulations (not shown here) indicate that the PBS regime
operates for 0.67 < R < 0.83, while the polarization regime
operates for R > 1. However, the situation in Fig. 4 is more
complex because the injected signal is not depolarized, but
it is partially polarized; i.e., for a weak reflected power
(Pr < 100 mW) in the linear regime, its DOP ∼ 0.19. As the re-
flected power increases, namely for 310 mW < Pr < 345 mW,
the device operates in the PBS regime, whose efficiency
reaches its optimal value for Pr � 340 mW (corresponding
to R � 0.68). In this PBS regime there exists a strong attrac-
tion toward both the north and the south poles, which merely
explains the decrease of the DOP (down to ∼0.02). We remark
here that the value of R � 0.68 is close to the lower limit of the
expected interval of PBS operation (0.67 < R < 0.83). Numeri-
cal simulations indicate that this can be ascribed to the fact
that the injected wave is partially polarized, which permits the
system to enter the PBS regime with a reflected power that is
slightly smaller than the value that would be expected if the
input signal was fully depolarized. Finally, for a reflected
power Pr > 500 mW, the system enters the polarization re-
gime, characterized by a polarization attraction toward the
north pole, which leads to an increase of the DOP close to
the unit value. We note that the system enters the polarization
regime for a reflection coefficient close to the expected value
(i.e., for R ∼ 1). This remarkable evolution of the DOP can be
clearly understood by means of the Poincaré spheres shown
in Fig. 4(a). For example, the minimum value of the signal
DOP is obtained when points remain trapped close to either
the north pole or the south pole.

Following the example of the previously described study
involving an independent pump beam, we have also visualized
the eye diagrams at the omnipolarizer output without (R � 0)
and with (R � 1.2) the reflected signal wave, as shown in
Fig. 5(a). We can clearly notice that the reflection of the signal
leads to a complete opening of the eye, thus demonstrating the
efficiency of the omnipolarizer to regenerate the polarization
of a 40 Gbit∕s signal. More importantly, the corresponding
BER measurements [see Fig. 5(b)] show that, despite the
initial polarization scrambling process, the omnipolarizer
enables clean error-free data recovery behind a polarizer.
Indeed, Fig. 5(b) even shows a 1 dB receiver sensitivity

improvement with respect to the BB configuration, thus
indicating that polarization regeneration is accompanied by
significant and useful pulse shaping as well.

3. THEORETICAL DESCRIPTION
A. Model and Hamiltonian Singularities Approach
The description of the previously discussed phenomenon of
polarization attraction can be made on the basis of the analy-
sis of the spatiotemporal dynamics of two counterpropagating
beams in a randomly birefringent telecom fiber. The evolution
of the polarization of the beams is governed by the following
equations derived in [28]:

∂S⃗
∂t

� ∂S⃗
∂z

� S⃗ × �IJ⃗� ∂J⃗
∂t

−

∂J⃗
∂z

� J⃗ × �IS⃗�: (1)

These equations are written in a rotating reference frame in
order to discard the linear birefringence terms. In Eq. (1), the
polarization states of the forward and backward beams on
the Poincaré sphere are described by the Stokes vectors
S⃗ � �Sx; Sy; Sz� and J⃗ � �Jx; Jy; Jz�, respectively. The sign

Fig. 5. Eye diagram behind a polarizer of the 40 Gbit∕s signal after
polarization scrambling (a1) without and (a2) with the reflected signal
wave. (b) Evolution of the BER as a function of the received average
power in the BB configuration (dark squares)—at the output of the
system with (open circles) and without (dark circles) the reflected
signal (RS) wave.

Fatome et al. Vol. 1, No. 3 / October 2013 / Photon. Res. 119



“×” denotes the vector product, and I is the diagonal matrix
defined by diag�−1;−1; 1�. No fiber loss has been taken into
account in the model. The numerical simulations of Eq. (1)
reveal that such terms have a minor effect on the polarization
attraction process. In this case, the beam powers S0 ������������������������������
S2
x � S2

y � S2
z

q
and J0 �

�����������������������������
J2
x � J2

y � J2
z

q
are conserved quan-

tities. To simplify the notations, the problem has been normal-
ized with respect to the characteristic nonlinear time
τ0 � 1∕�γS0� and length Λ0 � vτ0, of the system, where v de-
notes the group velocity of the waves into the fiber and γ is the
nonlinear Kerr coefficient. In spite of its apparent simplicity,
the model given in Eq. (1) captures the essential properties of
the polarization attraction in a telecommunication optical fi-
ber. Note that models of the form (1) are quite general, in the
sense that the same equations, though with a different form of
the matrix I, describe light propagation in isotropic fibers,
high-birefringence fibers, or spun fibers [36].

The physical mechanism underlying the observed polariza-
tion attraction phenomenon can be described in terms of
mathematical techniques developed for the study of
Hamiltonian singularities (see [34,36,38] for recent papers
on the subject). This geometric approach proved efficient
in describing polarization attraction in different circumstan-
ces. Here we briefly summarize the method for the example
of the random birefringence fibers. The first step of the study
consists in analyzing the stationary states of the system, which
are ruled by the following ordinary differential equations:

∂Sx

∂z
� SyJz � SzJy

∂Sy

∂z
� −SxJz − SzJx

∂Sz

∂z
� −SxJy � SyJx and

∂Jx

∂z
� −SyJz − SzJy

∂Jy

∂z
� SxJz � SzJx

∂Jz

∂z
� −SxJy � SyJx: (2)

Equations (2) have a Hamiltonian structure [33] defined by
the Hamiltonian functionH, which is a constant of the motion:

H � SxJx � SyJy − SzJz:

Due to the symmetry of the system, there are three other
constants of the motion Kx � Sx � Jx, Ky � Sy � Jy, and
Kz � Sz − Jz. It can be shown that the corresponding station-
ary system is Liouville integrable [33], which means that the
orbits are contained on invariant tori in the associated phase
space representation. Such torus can be either regular or sin-
gular depending on the values of the different constants of the
motion. In this case, the regular tori can be viewed as 2D
structures that are topologically equivalent to a doughnut.
On the other hand, singular sets are peculiar geometrical ob-
jects that cannot be deformed continuously into a regular
torus. We refer the reader to [36] for an introductory approach
to these mathematical concepts. Singular sets can be of
different types, e.g., points of equilibrium, periodic orbits,

or 2D extensions of the concept of separatrix, which is a
well-known property of basic 1D physical systems. In the
present model, the singular set is composed of families of
points of equilibrium. The characteristic properties of singular
sets can be determined from a general mathematical method
known as “singular reduction theory” (see [33] for details).
The basic idea of the theory is the reduction of the dimension
of the phase space representation by making use of a constant
of the motion. Applying this theory to all possible values of H
and the three constants Ki, one can construct the so-called
energy momentum representation. This diagram is repre-
sented in Fig. 6 for the particular case where S0 � J0 � 1.
We choose to plot this diagram as a function of Kz, but an
equivalent figure would be obtained with the two other con-
stants. Without entering into details, it can be shown that any
point of the diagram can be associated to a regular torus, ex-
cept for the singular point, which is located at H � −1 and
Kz � 0 (note that the boundary of the diagram also refers
to singularities, which correspond to either circles or points
[36]). For the present model, the singular set corresponding to
the singular point can be represented as a sphere, an object
that is istopologically singular in the sense that it cannot be
transformed in to a regular torus by means of continuous de-
formations. The key point to underline here is that the orbits
associated with the singular set will be shown to play the role
of an attractor for the spatiotemporal dynamics [34], an impor-
tant feature that will be illustrated below with numerical sim-
ulations of the complete Eqs. (1). Accordingly, the properties
of the singular point in the energy momentum representation
�H;K� in turn determine the properties of the phenomenon of
polarization attraction.

Let us first illustrate this aspect with the two-source con-
figuration of polarization attraction (termed configuration 1
in Section 2), in which a pump beam is injected at the fiber
output with the SOP J⃗�L� � �Jx�L�; Jy�L�; Jz�L��. Since the
singular set of interest is defined by H � −1, Kx � 0,
Ky � 0, Kz � 0, one deduces that the signal SOP at z � L
is S⃗�L� � �−Jx�L�;−Jy�L�; Jz�L��. The same reasoning can
be used for the omnipolarizer configuration (configuration
2) of polarization attraction. In this case, the mirror boundary
conditions at z � L force the system to be in two unique SOPs,
which correspond to the two states of circular polarization:
S⃗�L� � �0; 0;�1�. Note that we pass from one point of attrac-
tion in the standard configuration to two points when the mir-
ror conditions are considered.

B. Numerical Simulations
These theoretical predictions are remarkably well confirmed
by numerical simulations. In many cases of interest, one ob-
serves that the counterpropagating waves relax, after a com-
plex transient, toward a stationary state. We report in Fig. 7
the polarization states at the fiber output (z � L) once the
transients have died out, for both polarization attraction con-
figurations, i.e., the traditional two-source configuration (1)
and the omnipolarizer configuration (2). In configuration 1,
we observe that the signal wave is attracted (up to a sign
change) to the injected pump SOP at z � L, S⃗�L� �
�−Jx�L�;−Jy�L�; Jz�L��. Conversely, in the omnipolarizer
configuration 2, attraction always occurs on the poles of
the Poincaré sphere, i.e., the circular polarization states. Note
that the efficiency of the attraction process increases as the
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Fig. 7. (a) Theoretical Poincaré representation obtained by numerically solving the spatiotemporal SOP evolution defined by Eq. (1). We con-
sidered a set of 64 different input signal SOPs, uniformly distributed over the Poincaré sphere. The blue dots represent output SOPs. The first row
refers to a fiber length of L � 5Λ0, and the second row to L � 20Λ0. For the traditional two-source configuration [(a) and (c)], the signal is attracted
toward a single SOP, which is determined by the injected pump SOP (green dot). For the omnipolarizer configuration [(b) and (d)], the input SOP
ellipticity determines the two basins of attraction of the omnipolarizer, corresponding to the two hemispheres of the Poincaré sphere.

Fig. 6. Trajectories followed by the signal SOP to reach the final polarization state (SOP attractor), represented (a), (b) in the energy momentum
representation and (c), (d) on the surface of the Poincaré sphere. As indicated in (a), (b), each regular point of the energy momentum diagram
refers to a torus (see the text for details). In (a) and (c), the evolution of the input S�z � 0� � �−0.30; 0.60; 0.74� (red) is shown for a transient time τtr
of the same order as the time required to propagate throughout the omnipolarizer, τtr ≈ τL � 2L∕vg; the signal SOP exhibits an erratic polarization
dynamics before reaching its attractor polarization state. In (b) and (d), the evolution of the three inputs S�z � 0� � �−0.30; 0.60; 0.74� (red),
S�0� � �−0.50;−0.50; 0.70� (blue), and S�0� � �0.90; 0.0; 0.43� (green) is shown for τtr � 103τL; the signal SOP adiabatically relaxes to its attractor
polarization state. The arrows show the direction in which the trajectories travel.
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fiber length increases, a property that can be explained from
the above theory (see [34]). It is also interesting to note in
Fig. 7 that polarization attraction is more efficient in the
omnipolarizer configuration as compared to the traditional
two-source configuration.

We finally briefly discuss the response time of polarization
attraction through analysis of the trajectory of the signal SOP
on the surface of the Poincaré sphere. As commented above,
the space-time dynamics can be characterized by a complex
transient whose structure depends on the boundary condition
imposed at z � 0 of the omnipolarizer (or at both ends of the
fiber in the two-source configuration). When the optical beam
enters the optical fiber at z � 0 (i.e., when the laser is
“switched on”), its intensity varies progressively from 0 to a
stationary value (and stationary SOP). Let us call τtr the time
required to reach such a stationary state. If this time is much
larger than the time required for the beam to propagate
throughout the system, i.e., τtr ≫ τL � 2L∕vg, then the waves
adiabatically follow an instantaneous stationary state: the
signal SOP evolves essentially in a monotonic way toward
its attraction polarization state, as illustrated in Fig. 6(d).
Conversely, when τtr ∼ τL, the system does not have sufficient
time to adiabatically follow the rapid variations of the injected
beam (at z � 0), and thus the signal SOP exhibits a complex
erratic transient before reaching its final attraction polariza-
tion state [see Fig. 6(c)]. The impact of the boundary condi-
tions on the response time of the repolarization process is also
clearly visible in the energy momentum representation, as
illustrated in Figs. 6(a) and 6(b); as opposed to the erratic
behavior, in the adiabatic limit the system relaxes toward
the singular torus in a monotonic way (see [35] for a theoreti-
cal approach of this adiabatic repolarization process).

4. CONCLUSION
In conclusion, we have reported the experimental demonstra-
tion of all-optical polarization regeneration of 40 Gbit∕s RZ
signals at telecommunication wavelengths. Our technique in-
volves a FWM-based attraction process between an incident
arbitrarily polarized signal with a counterpropagating control
pump taking place in a 6.2-km-long normally dispersive
NZ-DSF characterized by low PMD. We have considered two
configurations: the one in which the pump is delivered by an
external source, termed the two-source configuration, and the
one obtained by reflection of the signal at the fiber output,
called the omnipolarizer. By using a small amplification of
the reflected signal, the omnipolarizer leads to similar results
to those obtained with an external pump. In particular, in both
configurations the input signal with a random polarization
emerges from the regenerator with a stabilized SOP and with-
out intensity fluctuations. However, the omnipolarizer
presents the advantage of a simplification of the device and
is more efficient when compared with the traditional two-
source configuration. Indeed a DOP close to 1 is obtained,
on the one hand with an external pump power larger than
800 mW, and on the other hand with a reflected signal power
larger than 500 mW. Based on our experimental observations,
we think that these two polarization regenerator configura-
tions could find many applications in all-optical signal
processing for future transparent optical networks. In particu-
lar our device can be of interest for legacy and cheap fiber

optic transmission systems with direct detection and that
do not use polarization division multiplexing.

In perspective, we could envisage to explore the capacity of
our polarization regenerators to operate with optical data
streams that are multiplexed in wavelength. Similarly, it would
be interesting to study the efficiency of the polarization regen-
erators for other modulation formats, such as polarization
dense multiplexing or phase shift keying. Finally, another in-
teresting perspective could be dedicated to the use of highly
nonlinear fibers (such as chalgonenide or fluoride fibers) in
order to reduce the fiber lengths and the required optical
powers.

We finally note that the theoretical approach considered
here is general and can be applied to the study of polarization
attraction in different configurations. For instance, high-
birefringence spun fibers exhibit a phenomenon of polariza-
tion attraction of a different nature than that discussed here
[38]. In spun fibers, attraction does not occur toward a par-
ticular polarization state, but instead toward a specific line
of polarization states on the surface of the Poincaré sphere.
This shows that the properties of the phenomenon of polari-
zation attraction strongly depend on the properties of the
particular optical fiber under consideration. Besides the char-
acterization of the phenomenon of polarization attraction, the
theory exposed here can also be extended to study the stabil-
ity properties of soliton solutions in a medium of finite exten-
sion [40,41]. Work is in progress to extend this preliminary
work to more general soliton systems, such as gap solitons
and three-wave interaction solitons.
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