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Abstract

In this note we offer a short summary of some recent results, to be contained in
a forthcoming paper [4], on projective caps and linear error correcting codes aris-
ing from the Grassmann embedding ε

gr
k of an orthogonal Grassmannian ∆k. More

precisely, we consider the codes arising from the projective system determined by
ε
gr
k (∆k) and determine some of their parameters. We also investigate special sets
of points of ∆k which are met by any line of ∆k in at most 2 points proving that
their image under the Grassmann embedding is a projective cap.
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1 Introduction

This note contains a quick preview of some new results on caps and linear
error correcting codes related to the Grassmann embedding εgrk of orthogonal
Grassmannians. These results will be presented in full in a forthcoming paper
[4]. In Section 2 we provide some preliminaries on the topic; in particular,
Subsection 2.1 recalls some properties of orthogonal Grassmannians, while
codes arising from projective systems are discussed in Subsection 2.2. Our
results are outlined in Section 3.

2 Preliminaries

2.1 Orthogonal Grassmannians and their embeddings

Let V := V (2n + 1, q) be a (2n + 1)–dimensional vector space over a finite
field Fq endowed with a non–singular quadratic form η of Witt index n. For
1 ≤ k ≤ n denote by Gk the k–Grassmannian of PG(V ) and by ∆k its k–
polar Grassmannian. Recall that the k–polar Grassmannian ∆k is the proper
subgeometry of Gk whose points are the k–subspaces of V which are totally
singular for η; the lines of ∆k are

• for k < n: ℓX,Y := {Z | X ⊂ Z ⊂ Y, dim(Z) = k}, with dimX = k − 1,
dimY = k + 1 and Y totally singular;

• for k = n: ℓX := {Z | X ⊂ Z ⊂ X⊥, dim(Z) = n, Z totally singular},
with X a totally singular (n−1)–subspace of V and X⊥ its orthogonal with
respect to η.

When k = n the points of ℓX form a conic in the projective plane PG(X⊥/X).
Clearly, ∆1 is just the orthogonal polar space of rank n associated to η; the
geometry ∆n can be regarded as the dual of ∆1 and is thus called orthogonal
dual polar space of rank n.

Given a point–line geometry Γ = (P,L) we say that an injective map
e : P → PG(V ) is a projective embedding of Γ if the following two conditions
hold:

(1) 〈e(P)〉 = PG(V );

(2) e maps any line of Γ onto a projective line.

Following [20], (see also [5]), when condition (2) is replaced by

(2’) e maps any line of Γ onto a non–singular conic of PG(V ),

we say that e is a Veronese embedding of Γ.
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Let now Wk :=
∧k V . The Grassmann embedding egrk : Gk → PG(Wk)

maps the arbitrary k–subspace 〈v1, v2, . . . , vk〉 of V (that is a point of Gk) to
the point 〈v1 ∧ v2 ∧ · · · ∧ vk〉 of PG(Wk). Let εgrk := egrk |∆k

be the restriction
of egrk to ∆k. For k < n, the mapping εgrk is a projective embedding of ∆k in
the subspace PG(W gr

k ) := 〈εgrk (∆k)〉 of PG(Wk) spanned by εgrk (∆k). We call
εgrk the Grassmann embedding of ∆k.

If k = n, then εgrn is a Veronese embedding and maps the lines of ∆n

onto non–singular conics of PG(Wn). The dual polar space ∆n affords also a
projective embedding of dimension 2n, namely the spin embedding εspinn .

Suppose ν2n to be the usual quadratic Veronese map ν2n : V (2n,F) →
V (

(

2n+1
2

)

,F). It is well known that ν2n defines a Veronese embedding of the

point–line geometry PG(2n − 1,F) in PG(
(

2n+1
2

)

− 1,F), which will also be
denoted by ν2n . The composition εvsn := ν2n · ε

spin
n is a Veronese embedding of

∆n in a subspace PG(W vs
n ) of PG(

(

2n+1
2

)

−1,F): it is called the Veronese–spin
embedding of ∆n. Properties of Grassmann and Veronese–spin embedding,
fundamental in order to obtain our results, are extensively investigated in [5]
and [6].

2.2 Projective systems and Codes

Error correcting codes are an essential component to any efficient commu-
nication system, as they can be used in order to guarantee arbitrarily low
probability of mistake in the reception of messages without requiring noise–
free operation; see [13]. An [N,K, d]q projective system Ω is a set of N points
in PG(K − 1, q) such that for any hyperplane Σ of PG(K − 1, q), we have
|Ω \ Σ| ≥ d. Existence of [N,K, d]q projective systems is equivalent to that of
projective linear codes with the same parameters. Indeed, given a projective
system Ω = {P1, . . . , PN}, fix a reference system B in PG(K − 1, q) and con-
sider the matrix G whose columns are the coordinates of the points of Ω with
respect to B. Then, G is the generator matrix of an [N,K, d] code over Fq, say
C = C(Ω), uniquely defined up to code equivalence. Furthermore, as any word
of C(Ω) is of the form c = mG for some row vector m ∈ F

K
q , it is straightfor-

ward to see that the number of zeroes in c is the same as the number of points
x of Ω lying on the hyperplane of equation m ·x = 0 where m ·x =

∑K

i=1 mixi

and m = (mi)
K
1 , x = (xi)

K
1 . In particular, the minimum distance of C turns

out to be d = min{|Ω| − |Ω ∩ Σ| : Σ is a hyperplane of PG(k− 1, q)}. This
provides a geometric interpretation of the meaning of minimum distance.

The link between incidence structures S = (P,L) and codes is deep and it
dates at least to [15]; we refer the interested reader to [1,3] and [19] for more
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details. Traditionally, two basic approaches have proved to be most fruitful:
either to consider the incidence matrix of a structure as a generator matrix
for a binary code, see for instance [12], or to consider an embedding of S
in a projective space and study the code arising from the projective system
thus determined or its dual; see e.g. [2,11,7] for codes related to the Segre
embedding [16].

Codes based on projective Grassmannians have been first introduced in
[17] as generalisations of Reed–Muller codes of the first order; see also [18].
We refer to [14,9,10] for some recent developments.

3 Main results

We investigate linear codes associated with the projective system εgrk (∆k) de-
termined by the image of the Grassmann embedding εgrk of ∆k obtaining the
following parameters.

Theorem 3.1 Let Ck,n be the code determined by the projective system of
εgrk (∆k) for 1 ≤ k < n. Then, the parameters of Ck,n are

N =
(qn−k+1 + 1)(qn−k+2 + 1) . . . (qn + 1)(qn−k+1 − 1)(qn−k+2 − 1) . . . (qn − 1)

(q − 1)(q2 − 1) . . . (qk − 1)
,

K =







(

2n+1
k

)

for q odd
(

2n+1
k

)

−
(

2n+1
k−2

)

for q even
, d ≥ 2qk(n−k) − 1.

As for the codes arising from dual polar spaces of small rank, we have the
following result where the minimum distance is precisely computed.

Theorem 3.2 (i) The code C2,2 arising from a dual polar space of rank 2
has parameters

N = (q2 + 1)(q + 1), K =







10 for q odd

9 for q even
, d = q2(q − 1).

(ii) The code C3,3 arising from a dual polar space of rank 3 has parameters

N = (q3 + 1)(q2 + 1)(q + 1), K = 35, d = q2(q − 1)(q3 − 1) for q odd

and

N = (q3 + 1)(q2 + 1)(q + 1), K = 28, d = q5(q − 1) for q even.
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In order to define polar m–caps of ∆k, the general notion of (m, v)–set of
a partial linear space has been introduced. It has been shown that, under the
Grassmann embedding, the points of a polar m–cap (a set having the property
that it is met by any line of ∆k it in at most 2 points) are mapped onto the
points of a projective cap; see also [8] for other projective caps contained in
Grassmannians.

Theorem 3.3 Suppose 1 ≤ k ≤ n. Then,

(i) for any polar m-cap C of ∆k, its image εgrk (C) is a projective cap of
PG(Wk);

(ii) the set εgrn (∆n) is a projective cap.

We were also able to explicitly construct polar caps of ∆k for k ≤ n and
build a related design, as shown in the following.

Theorem 3.4 For any r ≤ ⌊k/2⌋, the polar Grassmannian ∆k contains a
polar 2r-cap. This cap is explicitly determined and it is shown that it can be
suitably represented by means of a Hadamard matrix in Sylvester form.
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