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We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical
parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with
both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband am-
plified spontaneous emission pumps or continua (spectral widths >10THz), group-velocity matching of a near-IR
pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold
relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal
coherence improvements. When using relatively narrowband filtered noise pumps (e.g., spectral widths < 1THz),
the signal from optical parametric, sum-frequency, and difference-frequency generation has nearly the same spec-
tral width as that of the incoherent pump. © 2012 Optical Society of America

OCIS codes: 190.4410, 030.1640, 190.4223.

1. INTRODUCTION
Optical frequency conversion in quadratic nonlinear media
using incoherent pump lasers has been studied for quite some
time [1–8]; in contrast to simple intuition, such resonant
phase-sensitive processes may even lead to the generation
of coherent waves [5–18]. The generation of a coherent signal
from incoherent pumps may also occur through four-wave
mixing in optical fibers [19]. In a quadratic medium, consider-
ing the purely one dimensional temporal problem and the limit
case of small signals (i.e., no pump depletion), it has been pre-
dicted that the generation of a coherent signal may result in
optical parametric generation (OPG) involving the downcon-
version of an incoherent pump [12–14]. The condition for
obtaining such a coherent signal, besides the usual phase
matching condition, is that the idler and pump group veloci-
ties should be locked; in this case it turns out that the signal
growth is nearly independent of pump phase fluctuations—
the so-called phase-locking mechanism [12–14]. Therefore,
the group-velocity mismatch (GVM) of the pump and idler
waves was predicted to be a key parameter that permits con-
trol of the degree of coherence of the signal beam through the
phase-locking of pump and idler, i.e., the pump incoherence
appears to be effectively absorbed by the generated idler
wave. Moreover, it was also predicted that the degree of signal
coherence may even increase whenever the group-velocity
dispersion (GVD) coefficients of the pump and idler are also

matched [14,15]. It is also interesting to note that the mechan-
isms underlying these remarkable properties of the resonant
interaction among three incoherent waves cannot be captured
from the traditional formalism describing random nonlinear
waves, i.e., the machinery of wave turbulence theory [20–22].

The possibility of controlling and improving the coherence
of a signal in the process of parametric frequency conversion
using incoherent pumps is presently of special applicative in-
terest, in view of the availability of relatively inexpensive
broadband noise sources based on filtered amplified sponta-
neous emission (ASE) in optical fiber amplifiers or continua
generated by diode-pumped photonic crystal fibers [23].

Therefore, it is important and timely to analyze the validity of
earlier predictions ofGVM-based control of signal coherence in
the regime of pump depletion andwideband frequency conver-
sion by means of numerical simulations using the generalized
nonlinear envelope equation (GNEE), which permits us to di-
rectly include the full frequency-dependent dispersion curve of
the nonlinear crystal, as well as the influence of all competing
parametric processes at once, thanks to a computational ac-
curacy that goes beyond the usual slowly varying envelope
approximation. Moreover, it is interesting to find out if the gen-
eration of a coherent signal is also possible whenever two in-
dependent incoherent pumps are involved, such as occurs in
the processes of difference-frequency generation (DFG) and
sum-frequency generation (SFG), respectively.
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In this work we analyze the coherence transfer properties
between one or two incoherent pumps and the parametrically
generated signal in optical media exhibiting both quadratic
and third-order nonlinearity, such as periodically poled
lithium niobate (PPLN). First of all, we confirm and substan-
tially extend the predictions of [12–14], by showing that even
ultrabroadband ASE noise pumps or continua (with spectral
widths of several terahertz) that are exhibiting both intensity
and phase fast temporal fluctuations may spontaneously
downconvert into a highly coherent signal. For example, we
numerically demonstrate that group-velocity (GV) matching
between an intense near-IR (NIR) filtered ASE noise pump
and short-wavelength mid-IR (MIR) idler quantum noise
may lead to more than 15-fold relative spectral narrowing
of the OPG-generated long-wavelength MIR signal. Next we
show that with two wideband ASE noise pumps, the SFG pro-
cess may also lead to the narrowing of the signal spectral
width. On the other hand, when using relatively narrowband
ASE noise pumps (e.g., with a pump spectral width of
600 GHz), the signal from either SFG or DFG exhibits nearly
the same spectral width as the pumps. In Section 2 we briefly
summarize the GNEE approach to describe ultrawideband
pulse propagation in quadratic and cubic nonlinear media.
Subsequently, in Section 3 we present numerical simulation
results of the basic three-wave frequency conversion pro-
cesses in a PPLN waveguide, namely OPG, DFG, and SFG in
the presence of incoherent pumps. In the case of OPG, we
compare our numerical simulations with exact analytical
predictions for the bandwidth of the generated signal, and
we show that relatively good agreement is obtained. Finally,
in Section 4 we present our conclusions.

2. FULL FIELD NUMERICAL MODEL
The propagation of a linearly polarized ultrabroadband light
field in a quadratic and cubic nonlinear medium (i.e., the non-
linear polarization is PNL � P

�2�
NL � P

�3�
NL � ε0�χ�2�E2 � χ�3�E3�)

with both quadratic and cubic nonlinearity may be usefully
described in terms of a single GNEE for the complex
A�z; t�, namely [24–26],

�
∂z − D� α

2

�
A�z; t� � NpNL�z; t; A�; (1)

where D is the linear dispersion operator,
N ≅ iρ0�1� iτsh∂=∂t�, with ρ0 ≡ ω0=2n0cε0, n0 � n�ω0�, and
τsh ≡ 1=ω0 − f∂�ln�n�ω���=∂ωgω�ω0

, ω0 is an arbitrary reference
angular frequency, n is the linear refractive index, α is the
linear loss coefficient, and ε0 is the vacuum permittivity.
Moreover, the nonlinear polarization pNL � p

�2�
NL � p

�3�
NL, with

p
�2�
NL�z; t� � ε0χ

�2��2jAj2� exp�iω0t� � A2 exp�−iω0t��=2;
p
�3�
NL�z; t� � ε0χ

�3��3jAj2A� A3 exp�−2iω0t��=4;

where jAj2� only contains frequency components with
ω ≥ 0. The electric field is obtained from its envelope
as E�z; t�≡ �A�z; t� exp�−iω0t� � c:c:�=2, and PNL�z; t�≡
�pNL�z; t� exp�−iω0t� � c:c:�=2.

Equation (1) may be easily numerically solved in the
frequency domain as a set of coupled ordinary differential
equations for the different frequency components of the field

A�z; t�. The second- and third-order nonlinearities are mea-
sured in terms of deff � χ�2�=2 and the nonlinear refractive
index n2 � 3χ�3�=8n0, respectively.

3. NUMERICAL RESULTS
In this section, we present a series of numerical tests of the
predictions of the linearized analysis of the three-wave model
(see [12–14]) by directly solving the full GNEE [Eq. (1)] for
describing both phase matched and possibly GV-matched
frequency conversion processes in a PPLN waveguide.

Figure 1 shows the wavelength dependence of the group
delay and group velocity dispersion D for light propagating
along the extraordinary axis in LiNbO3 [27]. As it can be seen
in Fig. 1, the zero dispersion wavelength (ZDW) is found at
about 2 μm; therefore, one may set the GVM between the
pump and idler (or between the two pumps) to zero by sym-
metrically placing their wavelengths about the ZDW value,
which also leads to almost equal group velocities for the
two waves. In order to impose the proper phase matching
among the three interacting wavelengths, we included in
Eq. (1) a square-wave spatial modulation of the second-order
nonlinear coefficient with different quasi-phase-matching
(QPM) periods Λ; we used a quadratic nonlinear coefficient
deff � 27 pm=V and the nonlinear refractive index n2 �
5.3 × 10−15 cm2 W−1.

For the incoherent pumps, we used the simplest possible
model involving bandpass filtering [with a Gaussian filter
transfer function T�f � � exp�−�f − f p�2=�2σ2p��] of the ampli-
tude of the white ASE noise field, by adding to each numerical
frequency component a random variable with independent
and Gaussian real and imaginary parts. Within the numerical
window T � 21 ps, unless otherwise specified, the total
energy of the incoherent pump was set equal to 4.6 mJ=cm2,
corresponding to an average intensity hIpi � 220 MW=cm2.
For a 100 μm2 effective area of the PPLN waveguide, this cor-
responds to an average power of 220 W. Subsection 3.A pre-
sents a first summary of the results for the case of OPG,
whereas in Subsection 3.B we study the case of DFG, and
finally in Subsection 3.C we deal with SFG.

A. Optical Parametric Generation
Let us consider the OPG process, first of all, in order to test the
validity of the predictions of [12–14] by means of the GNEE
approach, and next, to explore the possibility of generating
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Fig. 1. Dependence of dispersion and group delay versus wavelength
for propagation along the extraordinary axis of LiNbO3.
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a downconverted coherent signal by a GV-matched incoherent
pump and idler in conditions well beyond the small-signal
analysis of [12–14].

Figure 2 shows the quantum-noise-induced downcon-
version of a single wideband incoherent pump at λp �
1550 nm with σp � 10 THz. In addition to the pump, the input
field for Eq. (2) contained a one-photon-per-mode noise seed
across the entire simulation bandwidth. The QPM period is
Λ � 30.68 μm, so that the idler wavelength λi � 2363 nm
leads to GV matching or velocity locking between the pump
and the idler as discussed in [12–14]. Figure 2 shows that the
spectral bandwidth (at −10 dB from its peak) of the λs �
4506 nm signal is equal to 0.7 THz, which is reduced by 40
times with respect to the corresponding 28 THz (i.e.,
224 nm) pump bandwidth. On the other hand, Fig. 2 also
shows the broadband content of the downconverted idler:
its bandwidth is even larger than that of the pump. In fact,
the idler fluctuations provide a sort of compensating phase-
conjugate mirror image of the pump intensity and phase fluc-
tuations, so that a coherent narrowband MIR signal results
from the mixing of the broadband noise NIR pump and
MIR idler [12–14].

In order to confirm the prediction that the incoherent pump
and the noise-generated idler are indeed correlated by the
wave mixing process, we numerically computed the pump–
idler correlation function μ, which describes the degree of
their mutual coherence [28], namely,

μ�z� � jΛ0�z�j������������������������������������������������
hjap�z; t�j2ihjai�z; t�j2i

q ; (2)

where the mutual coherence function Λ0�z� �
hap�z; t�a�s �z; t�i �

R hAp�z;ω�A�
s �z;ω�idω, and Ap;s�z;ω� �R

ap;s�z; t� exp�−iωt�dt. In order to extract the pump and idler
fields, we have applied square-shaped frequency filters to the
single-field GNEE solution.

In spite of the fact that the spectral amplitudes of the ex-
tracted pump and idler at L � 1 cm show no apparent mutual
correlation (see the insets of Fig. 3), the dots joined by a
blue solid curve in Fig. 3 clearly show that in the case of Fig. 2
there is a monotonous increase with the distance of the nor-
malized correlation μ between the incoherent pump and the

parametrically generated idler up to the relatively high value
of μ � 0.6 at L � 1 cm [29]. Notice in Fig. 3 that the evolution
of μ exhibits a slight saturation with the propagation distance;
indeed, the mutual correlation increases even further be-
yond L � 1 cm.

Let us briefly compare the temporal fluctuations in the
pump with the temporal dependence of the generated signal
field. As shown in the left panel of Fig. 4, the temporal evolu-
tion of the input pump exhibits large and uncorrelated inten-
sity fluctuations in addition to the simultaneous random phase
fluctuations.

On the other hand, the right panel of Fig. 4 shows that the
intensity fluctuations of the downconverted signal (as ob-
tained by filtering the spectrum of Fig. 2 by a Gaussian band-
pass filter centered at λs � 4506 nm with σp � 2 THz) are
much smoother than the pump intensity fluctuations. Quite
remarkably, a picosecond pulse of relatively high intensity
with respect to the background fluctuations is formed in
the MIR signal.

The generation of a coherent signal in the MIR spectral re-
gion from the downconversion of the incoherent NIR pump is
preserved even in the strong conversion regime, where the
pump is substantially depleted. Indeed, Fig. 5 shows the spec-
tral amplitude of the generated field (in linear scale) at the
output of an L � 4 cm long PPLN. As it can be seen, the peak
spectral amplitude of the signal is nearly three times larger
than the residual pump. Moreover, the spectral bandwidth
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of the signal is unchanged with respect to the small-signal case
of Fig. 2.

Let us underline that the signal coherence recovery re-
vealed by our simulations has been obtained in the presence
of a broadband ASE noise pump, exhibiting rapid and virtually
uncorrelated intensity and phase temporal fluctuations. Note
that the NIR pump bandwidth of 28 THz at λp � 1550 nm is
equal to 15% of the carrier frequency, whereas the MIR signal
bandwidth of 700 GHz at λs � 4500 nm is equal to just 1% of
the carrier frequency, so that a 15-fold coherence improve-
ment (relative spectral narrowing) is obtained through the
GV-matched OPG process.

In order to verify the importance of the GV-matching
condition leading to coherent MIR signal generation, we in-
creased the QPM period Λ � 34.03 μm, so that the phase-
matched idler wavelength grows larger, up to λi � 2800 nm,
and the corresponding signal wavelength decreases to
λs � 3472 nm. In this case, the pump and idler are no longer
GV-matched. As it can be seen from the left panel of Fig. 6, the
signal bandwidth grows up to 4 THz, which is almost ten times
larger than in the GV-matched case of Fig. 2. Indeed, the cor-
responding correlation function μ (squares joined by a dot-
dashed curve in Fig. 3) remains close to zero at all points
in the crystal. Yet from the point of energy conversion effi-
ciency from the pump to the idler, the ratio of total signal
to pump energy at the crystal output remains nearly
unchanged (at 10−6) at L � 1 cm.

In Figs. 2 and 5 we demonstrated the generation of a coher-
ent signal from an ultrabroadband (28 THz) ASE noise pump.
Figure 7 shows that the signal bandwidth is virtually
unchanged with respect to the case in Fig. 2 whenever the
pump bandwidth is reduced down from 28 to 5 THz (i.e.,
σp � 2 THz). However, as far as the energy conversion from
the pump to the generated MIR idler and signal is concerned,
narrowing the spectral width of the pump by 5 times (i.e.,
from the case of Figs. 2 to 7) leads to a 2.5 times efficiency
improvement.

It is interesting to investigate in more detail the dependence
of the output signal bandwidth on the bandwidth of the input
ASE noise pump. For example, whenever a relatively narrow-
band incoherent pump (with a bandwidth of 0.6 THz, or
σp � 200 GHz) is used, the spectral bandwidth of the signal
remains virtually the same as that of the pump.

In order to provide a simple understanding of the spectral
narrowing that is observed in the incoherently pumped para-
metric signal generation process of Fig. 2, it proves con-
venient to display the pump-frequency dependence of the
dimensionless three-wave mixing parametric gain G at high
intensities [30], namely

G � Γ2L2sinh2�γL�=�γL�2; (3)

where L is the waveguide length,

γ � �Γ2 −Δk2=2�1=2; (4)

Γ2 � ωsωi

c2nsni

Ipd
2; (5)

Ip is the pump intensity, ns and ni are the signal and idler
refractive indexes at frequencies ωs and ωi, respectively,
Δk � kp-ks-ki-kQPM is the phase mismatch, and

d � deff

�������
2η0
np

s
(6)

is the second-order nonlinear coefficient expressed in
m=W1=2. In Fig. 8 we compare, for a waveguide of length L �
1 cm and pump intensity Ip � 2 GW=cm2, the variation of the
gain G with pump wavelength for the cases of GV-matched
(for λp � 1550 nm) pump and idler waves (see the top figure,
where the QPM period is Λ � 30.68 μm) or GV-mismatched
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waves (see the bottom figure, where the QPM period
Λ � 34.03 μm).

As can be seen from the top plot of Fig. 8, in the GV-
matched case, the gain band of the signal remains relatively
narrowband and it is virtually unchanged at λs � 4500 nm as
the pump wavelength is varied by 100 nm across 1550 nm. In-
deed, whenever Δk � 0 at a given pump frequency (say,
ωp � ωp0) such that the pump group-velocity vp equals the id-
ler velocity vi, then considering an equal shift frequency δω of
the pump and idler and supposing kp ≅ kp0 � δω=vp and
ki ≅ ki0 � δω=vi, one obtains that at the first order in δω
the mismatch Δk remains equal to zero whenever the signal
frequency is kept unchanged.

This qualitative understanding can be completed by a more
rigorous analytical treatment of the parametric generation
process that takes into account the incoherent nature of
the pump wave. For this purpose, it proves convenient to
resort to a more tractable model based on three-wave inter-
action, in which the evolution of the pump, signal, and idler
components are ruled by three resonantly coupled equations.
Moreover, a simple analysis based on the evaluation of the
characteristic lengths reveals that GVD plays a negligible role
in the three-wave mixing process as compared to the roles of
the nonlinearity and the GV difference among the three waves.
Then, neglecting chromatic dispersion, one can explicitly cal-
culate the gain curve, g�ω�, of the parametric instability for the
signal wave in the presence of the incoherent pump [14,15]:

g�ω� � Re
�
−Δjρij �

�����������������������������������������������������������
4 − ��ρs − ρi�ωτ0 � iΔjρij�2

q �
; (7)

where the variables ρs;i � �vp-vs;i�=vs;i denote the GV differ-
ences between the pump and the daughter (signal and idler)
waves. In Eq. (7), the parameter Δ � τo=τc denotes the nor-
malized spectral width of the pump wave, where
τo � LNL=vp, LNL � 2cnp=ωpd

���������hIpi
p

being the characteristic
nonlinear length [31], and τc is the time correlation of the
incoherent pump. We remark that the derivation of Eq. (7)
implicitly assumes a Lorentzian-shaped pump spectrum, so
that, strictly speaking, the comparisons of the theoretical
predictions given by Eq. (7) with the numerical simulations
discussed below are of qualitative nature.

Before discussing the numerical simulations reported
above through Figs. 2–7, let us briefly comment on the gain

curve given in Eq. (7). First note that in the limit of a coherent
pump, Δ → 0, Eq. (7) recovers the well-known parametric
gain curve, where the factor g�ω � 0� � 2 simply stems from
the fact that the gain is defined as g�ω� � 2Re�p�ω��, where
p�ω� is the growth rate of the parametric instability (see
[14,15] for details). More generally, the gain curve [Eq. (7)]
describes different phenomena of parametric generation un-
der incoherent excitation. We refer the reader to [14] for a
discussion of different interesting limits of the gain g�ω� given
in Eq. (7), e.g., the limit of the degenerate parametric con-
figuration �ρs � ρi� or the limit in which the velocities of
the pump and idler waves are matched �ρi � 0�; which leads
to the phase-locking effect.

We reported in Fig. 9 the plots of the gain curve g�ω� and
the corresponding signal spectrum (∼ exp�g�ω�L�) after propa-
gation through an L � 1 cm crystal length with the numerical
parameters of Figs. 2 and 6 discussed above. First of all, we
remark in Fig. 9(a) that the incoherent nature of the pump af-
fects the signal gain: one may notice a gain reduction by a fac-
tor 0.6 in the case of Fig. 6 (where the pump and idler waves
are not GV-matched) as compared to the GV-matched case
considered in Fig. 2. Note that a significant gain reduction
is also clearly apparent in the numerical simulations of the
GNEE. Besides this gain reduction, we also note in Fig. 9(a)
the generation of a broad background spectral pedestal in the
signal component.

On the other hand, the remarkable result is that the gain
curve g�ω� plotted in Fig. 9(a) with the parameters of Fig. 2
is almost identical to the corresponding gain curve with a fully
coherent pump, as one would expect from the phase-locking
mechanism. Indeed, if the pump and idler group velocities are
matched �ρi � 0�, Eq. (7) reduces to g�ω� � �4 − �ρsωτo�2�1=2,
which does not depend on the pump incoherence parameter,
Δ. Actually, this expression of the gain coincides with the
well-known expression obtained in the presence of a fully
coherent pump wave. This confirms that, thanks to the GV
matching among the pump and idler waves, the signal turns
out to be efficiently amplified as if the pump were fully co-
herent. This velocity-locking effect merely explains why an
increase of coherence in the pump does not lead to a coher-
ence enhancement in the generated signal (compare Figs. 7
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and 2), simply because in Figs. 2 and 7 the group velocities of
the pump and idler waves are almost matched.

Finally, we note that there is a remarkable agreement be-
tween the analytical signal spectrum [see Fig. 9(b)] and the
corresponding numerical simulations of the GNEE. Consider-
ing the group velocities vj given from the crystal dispersion
curve (Fig. 1), a nonlinear length of LNL � 1.45 mm, and a
time correlation of τc � 0.664=δν [where δν � 2�ln�2��1=2σp
is the FWHM of the pump spectrum], one obtains a bandwidth
of the signal spectrum of ∼0.8 THz for Fig. 2 and ∼4.3 THz for
Fig. 4 [at −10 dB, see Fig. 9(b)]. These spectral bandwidths are
in good agreement with those obtained by integrating numeri-
cally the GNEE, i.e., ∼0.7 and 4 THz, respectively. Note that
the theoretical value of 0.8 THz obtained with the param-
eters of Fig. 2 is also in agreement with the numerical simu-
lations reported in Fig. 7, since, as discussed above, the
coherence of the generated signal is not affected by pump in-
coherence for GV-matched pump and idler waves.

Note, however, that the coherence of the signal is slightly
degraded in Fig. 7 as compared to Fig. 2, despite the fact that
pump coherence is increased in Fig. 7 with respect to Fig. 2.
This may be interpreted by remarking that while pump phase
fluctuations are absorbed by the idler wave thanks to the
phase-locking mechanism, the generation of the signal still re-
mains affected by the intensity fluctuations of the pump. This
point can be addressed through the analysis of the character-
istic lengths associated to pump-signal GVM, LGVM �
τc=jν−1p -ν−1s j, and with the nonlinearity. In Fig. 7 one has
LGVM ∼ 12 LNL, whereas LGVM ∼ 0.2 LNL in Fig. 2. This means
that the intensity fluctuations of the pump are averaged
out, thanks to the strong GVM among the pump and signal
waves in Fig. 2, whereas in Fig. 7 the pump fluctuations
are too slow to be averaged out and are thus partly transferred
to the signal component. This effect of convection-induced
averaging of intensity fluctuations has been discussed in
detail in [13].

It is interesting to investigate next whether the signal coher-
ence is robust in the presence of an input ASE noise idler in
addition to the uniform white noise background. In this case
DFG occurs between two ASE noise pumps, and its results
will be described in Subsection 3.B.

B. Difference-Frequency Generation
Let us consider now the possibility of generating coherent
(or spectrally narrowed) signals from the DFG process, that
is, involving an input idler seed source in addition to the NIR
ASE noise pump. In our simulations, we considered the DFG
between two ASE noise pumps of generally different intensity.
Figure 10 illustrates the output spectra that result in the same
conditions as in the simulation of Fig. 2, where we have added
at the input a filtered ASE noise idler with the same bandwidth
as the NIR pump, but an energy 10−4 smaller than the pump.
We underline that the (intensity and phase) fluctuations of the
initial idler wave are generated independently from those of
the pump wave.

As can be seen in Fig. 10, although the signal bandwidth
remains virtually unchanged with respect to Fig. 2, its spectral
intensity grows larger by 25 dB. The temporal profile of the
filtered MIR signal (not shown here) reveals the presence
of a main picosecond-duration peak similar to that of the right
panel in Fig. 4, but with an intensity that is about 22 dB larger

than that of Fig. 4. The result shows that the idler fluctuations,
although independent of the pump fluctuations at the input,
upon propagation evolve in such a way as to effectively
match and cancel pump fluctuations in the generation of
the signal idler.

This situation is shown even more dramatically in Fig. 11,
which was obtained in the same conditions as in the simula-
tion of Fig. 10, but with a broadband ASE noise idler energy
10−2 smaller than the pump. Figure 11 shows that again the
signal bandwidth remains nearly unchanged with respect to
Figs. 2 and 10, but its intensity grows larger by 20 dB with
respect to Fig. 10. Indeed, the spectrum of Fig. 11 (see the
linear scale shown in the inset) shows that the peak intensity
of the signal grows 60% larger than the peak spectral intensity
of the incoherent pump.

Let us finally consider the DFG of a coherent signal from
two equal energy, GV-matched, relatively narrowband waves,
a pump at λp � 1550 nm, and an idler at λi � 2363 nm, with
the common bandwidth σp � 200 GHz. In this case (not
shown here), one obtains a spectral width of 0.4 THz of the
DFG signal at 4500 nm, which is nearly equal to the output
spectral width of the long-wavelength pump and half the out-
put spectral width of the short-wavelength pump. It is remark-
able that the signal spectral bandwidth is nearly unchanged
with respect to the cases shown in Figs. 10 and 11, where
the input pump bandwidths were 50 times larger. Indeed, in
the lower limit the spectral bandwidth of the signal is set
by the intrinsic frequency width of the nonlinear parametric
gain G of Eq. (3).
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Fig. 10. (Color online) Same as in Fig. 2, but with an input idler ASE
noise source of energy 10−4 smaller than the pump.
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Fig. 11. (Color online) Same as in Fig. 2, but with an input idler ASE
noise source of energy 10−2 smaller than the pump. Inset: output
spectrum in linear scale.
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C. Sum-Frequency Generation
It is interesting to see if the SFG process may also lead to sig-
nal spectral narrowing whenever incoherent pumps are em-
ployed, as may be predicted by extending to this case the
small-signal analysis of [12–14]. At first we simulate the
SFG at λs � 936 nm with an equal intensity (with the average
value of 220 MW=cm2) GV-matched incoherent pump at λp �
1550 nm and idler at λi � 2363 nm, respectively. The corre-
sponding QPM period is Λ � 27.19 μm. Both pump and idler
have the same spectral width parameter σp � 2 THz: in this
case the signal spectral width (5 THz, as measured at
−10 dB from the spectral peak) turns out to be only slightly
narrower than the spectral width of the pumps, which is equal
to about 7 THz.

As we have done for the OPG process shown in Fig. 2, let us
now consider the SFG with an ultrabroadband pump at λp �
1550 nm with σp � 10 THz and an average intensity of
220 MW=cm2. Whenever no idler at λi � 2363 nm (except
for the white quantum noise seed) is injected, the SFG process
is effectively quenched by the growth of the second harmonic
of the 1550 nm pump: no sum-frequency signal at λs � 936 nm
is observed in the output spectra.

In order to restore the GV-matched SFG process, it is ne-
cessary to seed the idler: we did that by injecting, alongside
the pump, a broadband ASE noise seed centered at the idler
wavelength λi � 2363 nm with the same bandwidth as the
pump (σp � 10 THz, or a bandwidth of 28 THz, measured
at −10 dB from the spectral peak).

Indeed, Fig. 12 (where an idler ASE noise seed with a total
energy 100 times less than the 1550 nm pump energy) shows
that in this case the seeded SFG process leads to the signifi-
cant growth of a λs � 936 nm signal. Quite remarkably, Fig. 12
shows that the coherence of the SFG signal is increased (or,
equivalently, its spectral width is decreased) by almost a fac-
tor of four with respect to that of the pump. In fact, the signal
spectral width of 7.5 THz means a bandwidth of only 2.3% of
its carrier frequency, which entails a coherence improvement
in the signal in excess of six times with respect to the 1550 nm
pump. Such coherence enhancement may be ascribed to the
mutual compensation of the pump and idler phase and
amplitude fluctuations, which appears to remain in place
for the SFG process, although with a reduced efficiency with
respect to the OPG or DFG case.

Figure 12 involves SFG with GV-matched pumps. On the
other hand, in Fig. 13 we replaced the long-wavelength pump
(idler) of Fig. 12 with a new, relatively short-wavelength pump
(idler) at 1276 nm. Correspondingly, we set the QPM period
Λ � 15 μm, so that the pumps are phase matched to a sum-
frequency signal at λs � 700 nm. In this case the GVM be-
tween λp and λi is nonzero; moreover both pumps have the
same bandwidth, σp � 10 THz, but the energy of the short-
wavelength pump at λi � 1276 nm is set to be 100 times less
than the long-wavelength pump at 1550 nm. As is shown in
Fig. 13, the spectral width of the generated signal is equal
to 3.9 THz, which is almost halved with respect to the sum-
frequency signal bandwidth in the GV-matched case of Fig. 12.
It turns out that the sum-frequency signal bandwidth remains
nearly unchanged when the spectral bandwidth of the idler
and pump is reduced by five times with respect to Figs. 12
and 13, namely, if we set σp � 2 THz.

Until now we considered SFG with ultrabroadband inco-
herent pumps; when reducing the incoherent pump band-
width further by decreasing the optical filter bandpass (e.g.,
by 10 times down to σp � 200 GHz), one finds that the output
signal bandwidth at 700 nm with GV-matched (as in Fig. 12)
or -mismatched pumps (as in Fig. 13) remains nearly equal to
the output bandwidth of the pumps.

In analogy with our discussion in Subsection 3.A for the
OPG case, consider the effect on the sum-frequency signal
of the approximate conservation of the linear phase mismatch
Δk � 0 as both the pump and idler frequencies are varied. If
Δk � 0 at a given pump frequency (say, ωp � ωp0) such that
the pump group-velocity vp equals the idler velocity vi, and
opposite frequency shifts �δω and �δω are imposed to the
pump and idler, respectively, by supposing kp ≅ kp0 � δω=
vp and ki ≅ ki0 − δω=vi, one obtains that at the first order
in δω, the mismatch Δk remains equal to zero whenever the
signal frequency is kept unchanged, which explains the gen-
eration of relatively narrowband sum-frequency signals. How-
ever, this simple reasoning does not explain our numerical
observation of enhanced sum-frequency signal spectral nar-
rowing in the GV-mismatched case as in Fig. 13. We therefore
leave a more detailed analytical investigation of the SFG case
to a forthcoming study.

In conclusion, our numerical study of SFG indicates that in
contrast with the OPG and DFG case, the pump GVM does not
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and an idler (of energy 10−2 less than the pump) at λi � 2363 nm,
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play a significant role in determining the spectral width of the
sum-frequency signal. In any case, we observed that the signal
bandwidth may be significantly reduced with respect to the
pump bandwidth in the case of ultrabroadband incoherent
pumps or continua, with bandwidths equal to or larger
than 10 THz.

4. CONCLUSIONS
We studied the relative bandwidth of pumps and parametri-
cally generated signals in PPLN with incoherent pumps of
different spectral widths. We have shown that whenever ultra-
broadband ASE noise pumps or continua are employed (e.g.,
for pump spectral widths above 10 THz), the mutual cancella-
tion of velocity-locked pump and idler fluctuations leads to a
signal coherence improvement (or spectral narrowing) in ex-
cess of 15 times for both the OPG and DFG processes,
whereas the SFG exceeds coherence improvements of about
6 times. On the other hand, when using relatively narrowband
filtered ASE noise pumps (with spectral widths of the order of
1 THz or less), parametric signals emerging from the above-
mentioned processes exhibit nearly identical spectral widths
of the pumps, nearly independently of the condition of GV
matching between the pump and idler.

ACKNOWLEDGMENTS
We acknowledge stimulating discussions with V. Couderc and
helpful remarks by T. Hansson. This work was carried out
with support from the Fondazione Cariplo grant Nb. 2009-
2730, the Conseil Régional de Bourgogne, and the iXCore
Foundation.

REFERENCES AND NOTES
1. S. H. Harris, “Threshold of multimode parametric oscillators,”

IEEE J. Quantum Electron. 2, 701–702 (1966).
2. J. Ducuing and N. Bloembergen, “Statistical fluctuations in non-

linear optical processes,” Phys. Rev. 133, A1493–A1502 (1964).
3. H. Hsu, “Parametric interactions involving multiple elementary

scattering processes,” J. Appl. Phys. 38, 1787–1789 (1967).
4. R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible

CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
5. A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical para-

metric oscillation excited by an incoherent conical beam,”
Opt. Commun. 143, 72–74 (1997).

6. A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A.
Stabinis, “Parametric superfluorescence excited in a nonlinear
crystal by two uncorrelated pump beams,” Opt. Commun. 158,
101–104 (1998).

7. A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas,
“Combining effect in a multiple-beam-pumped optical para-
metric amplifier,” J. Opt. Soc. Am. B 15, 1135–1139 (1998).

8. A. Piskarskas, V. Smilgevicius, A. Stabinis, and V. Vaicaitis,
“Spatially cumulative phenomena and output patterns in optical
parametric oscillators and generators pumped by conical
beams,” J. Opt. Soc. Am. B 16, 1566–1578 (1999).

9. C. Montes, W. Grundkötter, H. Suche, and W. Sohler, “Coherent
signal from incoherently cw-pumped singly resonant Ti:LiNbO3
integrated optical parametric oscillators,” J. Opt. Soc. Am. B 24,
2796–2806 (2007).

10. G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Op-
tical parametric amplifier pumped by two mutually incoherent
laser beams,” Appl. Phys. B 91, 305–307 (2008).

11. A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of co-
herent waves by frequency up-conversion and down-conversion
of incoherent light,” Phys. Rev. A 82, 053817 (2010).

12. A. Picozzi and M. Haelterman, “Parametric three-wave soliton
generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013
(2001).

13. A. Picozzi, C. Montes, and M. Haelterman, “Coherence proper-
ties of the parametric three-wave interaction driven from an
incoherent pump,” Phys. Rev. E 66, 056605 (2002).

14. A. Picozzi and P. Aschieri, “Influence of dispersion on the reso-
nant interaction between three incoherent waves,” Phys. Rev. E
72, 046606 (2005).

15. A. Picozzi and M. Haelterman, “Condensation in Hamiltonian
parametric wave interaction,” Phys. Rev. Lett. 92, 103901
(2004).

16. C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output
from an incoherent cw-pumped singly resonant optical para-
metric oscillator,” Opt. Commun. 237, 437–449 (2004).

17. G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes,
“Coherent phase-modulation transfer in counterpropagating
parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).

18. G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A.
Picozzi, and C. Montes, “Temporal coherence in mirrorless op-
tical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202
(2012).

19. Y. Yan and C. Yang, “Coherent light wave generated from inco-
herent pump light in nonlinear Kerr medium,” J. Opt. Soc. Am. B
26, 2059–2063 (2009).

20. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov

Spectra of Turbulence I (Springer, 1992).
21. See, e.g., A. Picozzi, “Toward a nonequilibrium thermodynamic

description of incoherent nonlinear optics,” Opt. Express 15,
9063–9083 (2007).

22. S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the
dispersive three-wave interaction,” Europhys. Lett. 79, 64001
(2007).

23. F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello,
and V. Couderc, “Tunable light source from large band conver-
sion of continuum in a quadratic crystal,” Laser Phys. Lett. 9,
359–362 (2012).

24. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope
equation for broadband optical pulses in quadratic media,” Phys.
Rev. A 81, 053841 (2010).

25. M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband op-
tical phenomena in quadratic nonlinear media,” IEEE Photon. J.
2, 600–610 (2010).

26. S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum
generation in quadratic and cubic nonlinear optical media,”
J. Opt. Soc. Am. B 27, 1707–1711 (2010).

27. Dispersion data taken from Handbook of Optics, M. Bass, ed.,
2nd ed. (McGraw-Hill, 1994), Vol. 2.

28. See, e.g., L. Mandel and E. Wolf, Optical Coherence and Quan-

tum Optics (Cambridge University, 1995).
29. Note that the nonzero value of μ at the crystal input z � 0

originates in the relatively small temporal window considered
in the simulations, T � 21 ps. By increasing T , one reduces
the corresponding grid discretization in frequency space,
dω � 2π=T , which thus reduces the value of μ�z � 0�. In other
terms, in the thermodynamic limit (the limit in which the power
P and T tend to infinity keeping constant P=T), the mutual
coherence μ tends to zero. However, given the complexity of
the GNEE, only a relatively small temporal window can be con-
sidered in the numerical integration.

30. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X.
Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric
generation of a mid-infrared continuum in orientation-patterned
GaAs,” Opt. Lett. 31, 71–73 (2006).

31. In our examples, the nonlinear length associated with the non-
linear Kerr effect is about 1000 times longer than Lnl and can be
neglected in our analysis.

Wabnitz et al. Vol. 29, No. 11 / November 2012 / J. Opt. Soc. Am. B 3135


