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Abstract
The usability of high-precision and high-resolution 3D scanners is of crucial importance due to the
increasing demand of 3D data in both professional and general-purpose applications. Simplified, intuitive
and rapid object modeling requires effective and automated alignment pipelines capable to trace back each
independently acquired range image of the scanned object into a common reference system. To this end, we
propose a reliable and fast feature-based multiple-view alignment pipeline that allows interactive
registration of multiple views according to an unchained acquisition procedure. A robust alignment of each
new view is estimated with respect to the previously aligned data through fast extraction, representation and
matching of feature points detected in overlapping areas from different views. The proposed pipeline
guarantees a highly reliable alignment of dense range image datasets on a variety of objects in few seconds
per million of points.
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Introduction

In the last years, 3D datasets acquired with modern optical scanning devices (either based on structured light
projection or laser beams) increased their spatial resolution. Other primary features, such as accuracy and
acquisition speed, have also been improved. Scanner are decreasing their size and weight and their usage is
expected to become more and more intuitive and unconstrained, such as the use of digital cameras. This would
be desirable in response to an increasing demand of “3D” for today professional applications (industry and
design, medicine, cultural heritage, robotics, mechanics, building constructions. . . ) as well as for soon to come
web applications.

The first step toward the 3D modeling of a physical object is the acquisition of multiple scans from different
viewpoints of the surface of interest. After the acquisition, each set of 3D data (either composed by range images
or point clouds) needs to be accurately aligned (or registered) into a common coordinate system [1–3]. Aligned
datasets are then fed to a subsequent step of the object modeling pipeline [4], with the initial alignment quality
influencing the accuracy and fidelity of the resulting object model.

Under the basic hypothesis of a certain degree of overlap among different views, the registration problem can be
conceptually split into a cascade of coarse and fine alignments. Even if they can be considered as instances of a
more general class of problems called ‘shape correspondence’ [5], they are different in nature and require distinct



solving approaches. The goal of coarse alignment is to roto-translate each independently positioned scan (an
example is shown in Figure 1) so that the entire dataset can be roughly brought into a common reference system
(as shown in Figure 2). This takes place without making any assumption on the initial viewpoints. A second
stage fine alignment is then used to accurately register the scans from the first approximate alignment.

Figure 1 A set of scrambled views composing the Dolphin object prior coarse alignment application

Figure 2 The realigned Dolphin after application of the coarse alignment

Both coarse and fine approaches can be performed pairwise or multi-view). Solutions within the first class only
exploit the information present in the overlapping area with respect to a single range image to determine
separately the alignment between each pair of views, while multi-view alignment integrates all the available
overlapping information collected from all acquired scans and exploits it in order to estimate the correct
alignment. Even though pairwise and multi-view coarse alignment approaches may seem equally effective to
accomplish their role, this is not true anymore in a practical acquisition settings. In fact, pairwise coarse
alignment requires each couple of subsequent views in a dataset to possess a certain amount of overlap (from
now on we address such requirement as the overlap constraint). This can be obtained by either forcing the
operator to devise in advance an acquisition path which complies with the overlap constrain (thus limiting the
scanner usability), or by manually reordering the original acquisition path as a preprocessing step (which may
represent a tedious and time consuming process). On the contrary, multi-view approaches allow a more
unconstrained usage of the acquisition devices, in that the overlap condition can be relaxed so that each incoming
scan is only required to possess a certain overlap with respect to any of the previously aligned range data. This
effectively extends the applicability of automated coarse alignment to a greater number of less constrained
acquisition paths. From now on, we shall address as unchained path any acquisition path which abides by the
previously stated relaxed requirement.

In this work, our main focus is on the description of a new multi-view coarse alignment method suited for
high-resolution datasets, specifically designed to fulfill the following requirements: (1) it should improve the
scanner usability by allowing the operator the freedom to choose the acquisition path, (2) it should prove to be
equally effective regardless to the nature of the acquired object as well as its size, (3) the alignments should be
fast so as to give the user on-the-fly visual feedbacks during object digitalization. We will see that effective
multi-view alignment solutions can be designed starting from an efficient pairwise alignment technique. In this
paper we present the proposed solutions in two main parts: pairwise alignment (Section “Pairwise alignment
technique”) and multi-view alignment (Section “Multi-view alignment pipeline”). In particular we propose:

– for Pairwise alignment:

(1) a multiscale feature extraction technique capable of identifying feature points and their scale (Section
“Feature extraction”);

(2) a lightweight feature signature devised to quickly reduce the matches space (Section “Feature
description”);

(3) a matching chain developed to progressively skim the correspondence space (Sections “Feature
matching” and “Correspondence test and selection”);

– for Multi-view alignment:

(1) the definition of a feature database for the multi-view alignment (Section “Feature database update”);

(2) the use of a global adjustment solution to optimize the alignment obtained through the proposed
multi-view pipeline (Section “Global adjustment”);

Each block of the pipeline has been tested in isolation (Section “Comparative tests”). An evaluation of the entire
pipeline performance is proposed (Section “Experimental results”) on a set of range image datasets, presented in
Section “Acquired datasets”, representing different objects taken during real acquisition campaigns. In particular,
in-depth comparative tests with respect to alternative solutions have been made both on the feature extraction and
description phases (Section “Feature extractor and descriptor comparison”) and on the correspondence test and
selection solutions (Section “Correspondence test technique comparison”). Overall performance evaluations are
presented in (Section “Experimental results”) and organized accordingly to the structure of the proposed
solutions: Section “Pairwise alignment results” presents a quantitative evaluation of the pairwise alignment
performance in terms of success rate and computational complexity, while Section “Multi-view alignment



pipeline results” presents a quantitative evaluation of the multiview alignment in terms of success rate,
computational complexity and alignment error. Conclusion are drawn in Section “Conclusions”. The present
paper builds on our conference paper [6], extending it in several parts. The experimental section has been
widened considerably, while performance evaluation of each pipeline block in isolation has been performed.

Related work

Multiple scan alignment without prior knowledge of the scanning viewpoints is a classic problem in 3D
modeling which have found several solutions in the computer vision literature [7]. Some representative works
are [1–3, 7–9]. Being the first step of a modeling chain, its performance is of crucial importance for the
attainment of the final object model, since a certain degree of accuracy is strongly required by the subsequent
fine registration steps to converge to the correct solution. In fact it is well known that, for fine alignment, classic
solutions (e.g. ICP [10] and its variants [11]) are based on optimization routines which often suffer from
convergence to local minima which should be maximally reduced by proper initialization of each view
referencing. Coarse alignment solutions can be traced back to one of the two main philosophies that have
emerged during these years, i.e. with or without the exploitation of feature descriptors. The first approach
exploits the ever-increasing computational capabilities of modern calculators to find, within a large solution
space, the affine transform that better aligns two views. The main advantage of the techniques which fall into this
category is that they are independent from the input data and are more robust to noisy data. On the other hand,
they are usually computationally expensive. The progenitor of this family is considered to be the RANSAC,
devised by Fischler and Bolles [12]. During the years, improvements to this algorithm have been proposed in
order to reduce the computation time, also by exploiting point neighborhood descriptors [13, 14]. A second
approach for coarse registration relied on the extraction and subsequent matching of (global, local or multiscale)
shape descriptors [7, 15]. Advantages with respect to brute-force approaches are mainly related to the
computational gain achieved through an accurate selection and skim of descriptive features. On the other hand,
they usually fail in describing featureless surfaces, and are more sensitive to noise. Feature-based approaches are
widely used in several application fields such as similarity search, object retrieval and categorization [16–18],
shape correspondence and analysis [5, 15]. Multiscale feature-based approaches (such as the one we propose in
this work) allow a better adaptation to features of different kind and dimension. Related works are those
presented by Li and Guskov [19] and Lee et al. [20] which introduced extensions of Lowe’s 2D SIFT [21] to 3D
datasets. Their approach has been subsequently exploited by Castellani et al. [22] and Bonarrigo et al. [6].
SIFT-related feature description distinctiveness against Spin Images has been compared in [23]. Thomas and
Sugimoto [24] proposed to use the reflectance properties for images registration to better perform on featureless
images. In feature-based approaches, feature points are usually associated to descriptors, which ideally should
associate an unambiguous signature to each feature, which is fast to compute and robust to any viewpoint
rotation as well as to variations of point density on the image. Li and Guskov [19] proposed a descriptor based on
a combination of local Discrete Fourier transform and Discrete Cosine transform to describe the neighborhood of
each feature point. Gelfand et al. in [3] proposed the use of volumetric descriptors, that is the estimation of the
volume portion inscribed by a sphere centered at a point of the surface. Castellani et al. [22] proposed a
statistical descriptor based on a hidden Markov chain that is trained through its neighborhood. Despite scan
alignment and similar problems have been thoroughly explored in the literature, meaningful comparisons remain
somehow difficult to accomplish for several reasons: the heterogeneity of each approach, the different way in
which they are combined into functional alignment pipelines, the variability of the addressed performance and
application requirements, the differences of test datasets both in terms of representation primitives (range images,
point clouds, meshes, etc.) and data characteristics (resolution, noise, etc.) related to the differences in data
acquisition setup and scanning hardware. In particular, even if each block of a feature-based alignment pipeline
(feature extraction, description, matching, correspondence selection and transform estimation) can be tested in
isolation with respect to alternative solutions (we will do this in Section “Comparative tests”), critical
interdependencies exist among the different pipeline blocks. In this work we adopted design criteria which take
full account of such interdependency, according to what has been recognized in reference reviewing
work [15, 17]. Bustos et al. [17] indicated that a complete and fair comparison of feature extraction and
description techniques is unfeasible and that the specific application requirements should inspire and provide
guidance for the design of application-driven solutions. Bornstein et al. [15] concluded their review by
suggesting to avoid the design of pipelines composed by unnatural block combinations. Another relevant aspect
is that multiple-view coarse alignment solutions are usually proposed in literature as simple extensions of
pairwise approaches. This leads to a serious limitation on the usability of the acquisition devices. The increased
complexity of a multiple-view coarse alignment has been recognized in [1] with a solution proposed by model
graphs and visibility consistency tests. An approach based on view trees has been adopted in [9] where



multiple-view coarse alignment is obtained by maximization of inlier point pairs. However, these solutions do
not allow interactive acquisition because they work on a graph of the pairwise matches once all the alignments
are completed, and this conflicts with the need of on-the-fly visual feedbacks. By exploiting the possibility of
some range scanners to acquire views at high frame rate (e.g. Kinect and alike sensors), hand-held on-the-fly
acquisition and alignment solutions have been proposed [25, 26] with specific solutions for handling loop closure
problems [27] or computational burden [28]. However, these interesting applications are still too far from today
professional requirements of high point density and metric precision.

Pairwise alignment technique

Overview and notation

In this section we shall introduce some notation, as well as briefly summarize the alignment process. A range
image can be conceived as the projection of a 2D image grid on a 3D target object surface and the acquisition of
depth-related information from that surface. The resulting dataset is a “structured” point cloud, that is a set of
points lying in a 3D space, and associated to a pixel of the acquisition grid. We define a range image as a map
I ⊂ Z2 → R ⊂ R3, where the domain I is a rectangular grid (usually corresponding to the CCD matrix), while
the co-domain R corresponds to the set of 3D points representing the acquired surface. Due to the limitations of
the acquisition procedure (limited measure range, occlusions due to the object shape, etc.), not all pixel positions
i ∈ I may have a valid corresponding point pi ∈ R, therefore only a subset IV ⊆ I of valid points is acquired for
each image. We take advantage of range images data structure in order to speed up the processing: in particular,
by exploiting the image domain I, neighborhood information can be retrieved quickly and efficiently, while data
processing is performed over the 3D target space R. An example of efficient processing obtained by exploitation
of the 2D grid is the normal field estimation method we employ. For a given point c we exploit the 2D grid to
identify its 8 closest neighbours pk, with k ∈[ 0, 7], to estimate the normal n̂c. At first, for every valid point pk the
vectors vk = pk − c are computed. Then the outer products between each valid couple of vectors (vk, v(k+2)%8)

are determined. Once normalized, they are summed together and their average is set as the normal for point c.

Figure 3 describes the pipeline we adopt for the pairwise alignment between the pair of range images RIa and
RIb. All the building blocks highlighted in red are recalled in subsequent sections, while in the following we
briefly summarize the alignment process. Given a pair of range images RIa and RIb, the first step in the pipeline
applies a multi-scale feature extraction method thoroughly described in Section “Feature extraction”, such that
meaningful points (MP) MPa and MPb are identified on the respective surfaces. Following, each point in the sets
MPa and MPb is associated with a signature, described in Section “Feature description”, which encodes
neighborhood information with respect to the meaningful point. The signature is designed to be suitably
discriminative and fast to compute. This way, two sets of feature points FPa and FPb are obtained.
Correspondences between these 2 sets are then established through the matching process described in Section
“Feature matching”, which exploits the signatures in order to identify pairs of compatible feature points so that a
correspondence set Cab is determined. Each correspondence c is constituted of a pair of feature points, one taken
from FPa and the other from FPb. In the next phase, correspondences are grouped to form triplets, as described in
Section “Correspondence test and selection”, and the ones which are most likely to be correct are collected in a
triplet set Tab. We resort to triplets of correspondences since they contain the minimum number of points (that is,
6 3D coordinates, 3 of which lie in the reference system associated to RIa while the others lie in the one
associated with RIb) for which a roto-translation matrix can be estimated, for instance applying the method
described by Horn in [29]. The triplet set Tab is then evaluated so that a single roto-translation matrix RMab is
identified and verified with respect to its correctness.

Figure 3 The pairwise alignment system, composed by: feature extraction (Section “Feature extraction”),
feature description (Section “Feature description”), feature matching (Section “Feature matching”),
correspondence test and selection (Section “Correspondence test and selection”)

Feature extraction

The feature extraction technique we adopt here is a modified version of the approach proposed by Castellani et
al. [22]. His approach is similar to the one introduced by Lee et al. [20], which can be in turn considered as a 3D
extension of the 2D multi-scale analysis proposed by Lowe [21]. Hereafter we shall summarize Lee’s approach,
then we will highlight the modifications introduced by Castellani, as well as our own.



The approach from Lee et al. requires that: (a) given a range image RI, M filtered images G(r), at scales
r ∈[ 1, M], are derived by applying Gaussian kernels of growing dimension; (b) a set of M − 1 saliency maps S(r)
is derived from pairs of G(r) at consecutive scales, from which a set of MP is identified. These MP are candidate
features, and are associated with the scale at which they have been detected. To produce the filtered images G(r)
at various scales r ∈[ 1, M], a geometric Gaussian filtering is applied to each valid point pi in the RI, obtaining
gi(r):

gi(r) =
∑

pj∈B2σr (pi)
pj · e

−∥pi−pj∥2

2·σ2
r

∑
pj∈B2σr (pi)

e
−∥pi−pj∥2

2·σ2
r

(1)

where B2σr

(
pi

)
identifies the points within a euclidean distance 2σr from pi. A filtered image G(r) is thus

defined as the set of points gi(r), with i ∈[ 1, |IV |]. As the kernel radius σr increases, details which size is smaller
than σr are smoothed out from G(r) and, when the kernel size doubles, computations are performed on images
subsampled by a factor two.

Once the filtered versions G(r) have been calculated, M − 1 saliency maps are derived. A saliency map is a 2D
array of scalar values, obtained by pairwise subtraction of G(r) at adjacent scales. This retains only the details
comprised between the two bounding scales r and r + 1, in other words it highlights features which dimension is
comprised between the kernel sizes σr and σr+1. Saliency maps S(r) = {si(r)} are calculated as follows:

si(r) = ∥∥gi(r) − gi(r + 1)
∥∥ (2)

The maximum values of each saliency map S(r) are considered to be MP and located through an iterative search
where, once the greatest valid saliency value for S(r) is found, no other maximum can be selected within an
invalidation neighborhood region B2σr+1

(
pi

)
. This prevents the selection of feature points which descriptors

would partially overlap, since the descriptor size for features detected at scale S(r) is σr+1.

With respect to Lee’s approach, Castellani et al. proposed that, for each valid 3D point, its saliency is estimated
by calculating the projection norm between the pairwise difference and the normal associated to the original 3D
point:

si(r) = ∥∥⟨
n̂i, gi(r) − gi(r + 1)

⟩∥∥ (3)

This correction should help in reducing the saliency values associated to points that, after the filtering, have
moved away from their normal direction. We have found out, however, that such saliency correction (originally
proposed for mesh data) needs to be corrected in order to apply it to range images and point clouds. Since these
types of data usually contain a greater number of 3D points than mesh vertices, their normal field is more subject
to vary due to the filtering process. Therefore, in order to obtain a reliable saliency estimation, we propose to use
the normal field associated to the filtered data itself:

si(r) = ∥∥⟨
n̂i(r), gi(r) − gi(r + 1)

⟩∥∥ (4)

Although such a modification requires an estimation of the normal field for every filtered image G(r), we will
demonstrate in Section “Feature extractors comparison” that it brings a significant performance boost with
respect to feature localization.

This saliency estimation described in (4), brought a slight increment in performance with respect to the approach
initially proposed in [6]. Once the set of MP has been computed, a number of tests on each meaningful point is
performed in order to make sure that: (1) its neighbour points are well distributed and (2) it is not close to a
border or hole, otherwise the associated descriptor would be incomplete; (3) it does not lie over a saliency ridge,
because in such cases small variations in saliency estimation may cause great variations of maximum
localization. If any of these conditions is not met, the point is discarded from the set MP. Hereafter, for a neater
and more compact notation we will omit unnecessary indices when things have general validity.

Feature description

In order to search for correspondences between feature points belonging to different range images we rely on
feature descriptors. We propose to associate to each feature point f ∈ MP detected at scale σr a descriptor which



encodes information extrapolated from both the normal vectors and saliency data of the neighbour points
pj ∈ Bσr+1 (f ). In summary, given a feature point f , we define a polar grid spanning the tangent plane to f . This
grid is composed of M radial sectors and L angular sectors, as shown in Figure 4. Every neighbour point pj
within Bσr+1 (f ) is associated to a grid sector, and for each sector we compute two score values derived by the
normal and saliency information. As a result, our descriptor is composed by 2 × M × L real (floating point)
values. Following, we describe in more detail how the descriptor is computed.

Figure 4 Signature grid description

At first, a local reference system x̂f , ŷf , ẑf is centered on f . Versor ẑf is set toward the direction of the feature
normal n̂f , while the span of {x̂f , ŷf } identifies Pf , i.e. the plane tangent to f . The direction of x̂f is randomly
selected, while ŷf = ẑf × x̂f . A polar grid of radius σr+1 is then defined and subdivided into M radial and L
angular sectors. We have empirically found that M = 3 and L = 36 generate a distinctive signature, while
allowing fast computation. Each point pj belonging to Bσr+1 (f ) is then associated to a given sector of the polar
grid by mapping pj on the plane Pf . This is represented in Figure 4 by the point p̃j = f + ∥v∥ · v̂xy, where
v = pj − f . The sector indexes (mj, lj) associated to pj are computed as follows:

mj =
⌊
∥v∥ M

σi+1
+ 0.5

⌋
lj =

⌊
θj

L
2π

+ 0.5
⌋

(5)

where

θj =
{

arccos(⟨v̂xy, x̂f ⟩) ⟨v̂xy, ŷf ⟩ ≥ 0
2π − arccos(⟨v̂xy, x̂f ⟩) ⟨v̂xy, ŷf ⟩ < 0

φj = arccos(⟨v̂, ẑf ⟩)
v̂xy = v − ∥v∥ cos(φj) · ẑf∥∥v − ∥v∥ cos(φj) · ẑf

∥∥
(6)

Once each point pj ∈ Bσr+1 (f ) has been associated to a sector, it is possible to compute wf , the descriptor
associated to feature point f . At first, for each sector (m, l) the average normal vector n̂(m, l) and saliency s(m, l)
are computed (if a sector does not contain any point, it is considered invalid). Then, given n̂f and sf respectively
the normal vector and the saliency value associated to the feature point f , the sector descriptor wf (m, l) is
computed as follows:

wf (m, l) = [1n(m, l), 1s(m, l)]

1n(m, l) = 1.0 − ∣∣⟨n̂(m, l), n̂f
⟩∣∣

1s(m, l) = 1.0 − s(m, l)
sf

(7)

Each sector descriptor wf (m, l) will therefore contain two scores (1n and 1s, both ∈[ 0, 1]) related to how much
the average normal and saliency values in each grid sector differ from the corresponding feature point values.
The feature descriptor wf is therefore the set of the M × L sector descriptors wf (m, l) thus calculated. Once each
feature point has been associated to its descriptor, they are organized in the set FP for the subsequent processing
stages.

The proposed descriptor is fast to compute since both normals and saliency information are already available (the
latter being a byproduct of the extraction procedure described in Section “Feature extraction”) once the feature
points have been identified. Moreover, it is moderately lightweight as it only requires 2 × M × L floating point
values. Nevertheless, it is enough selective as to allow to skim the correspondence space to a more treatable
dimension while retaining enough correct correspondences. In Section “Feature descriptor comparison” we will
complete these observations by comparing our descriptor to the Spin Images introduced by Johnson [30] and by
demonstrating its superior performance.

Feature matching

Given two feature sets FPa and FPb, estimated on different range images, the objective of this pipeline block is to
calculate all possible feature correspondences by matching the descriptors of each pair of features (f s ∈ FPa,
f d ∈ FPb), and subsequently select a subset of correspondences Cab which is likely to contain the correct ones.
Figure 5 gives the reader an intuition on how feature similarities can define relevant matches.



Figure 5 Feature signatures. Upper part: two range images on which some feature points are highlighted with
different colors. Below, graphical visualization in a red-blue scale of the signatures, contoured with their
corresponding colors. The first two features (yellow and red) as well as the last two ones (orange and pink) have
well matching descriptors

In Section “Feature description” we stated that the direction of x̂f is chosen arbitrarily for each feature descriptor.
This can be modeled with an unknown displacement factor L̄, with L̄ ∈[ 1, L], between the signatures of the same
feature point on two different range images. We therefore compensate this indetermination by performing an
operation similar to the circular correlation, in that one of the descriptors remain fixed, while the other is shifted
along the circular direction for L times. At each rotation step a score is computed, and the maximum score value
is selected as follows:

cscore
sd = max

l̄∈[1,L]

{
cscore

sd (l̄)
}

(8)

with

cscore
sd (l̄) =

M∑
m=1

L∑
l=1

[
nscore

sd (m, l, l̄) · sscore
sd (m, l, l̄)

]
nscore

sd (m, l, l̄) = (
1 − ∣∣1ns(m, l) − 1nd(m, l̄)

∣∣)
sscore

sd (m, l, l̄) = (
1 − ∣∣1ss(m, l) − 1sd(m, l̄)

∣∣)
Once all possible matches between the two feature sets FPa and FPb have been computed, we need to skim the
matches set from its original size |FPa| · |FPb| to a more treatable dimension. We therefore define a
correspondence set Cab of size Q as the list of correspondences cq found between FPa and FPb which possess the
highest correspondence score. We decided to retain the best Q correspondences (in this work we use Q = 150),
rather than fix a hard threshold for the score, since the score distribution is not constant with respect to different
image pairs. Within the set of Q best matches we have also verified that, in general, the majority of correct
correspondences share the top positions of the ranking together with a small number of false matches (generated
by incidental signature similarities). This means that we cannot “blindly" exploit the first correspondences of the
ranking to estimate the roto-translation matrix between the views. We therefore introduce a robust selection step
(described in the following section) to determine the most reliable correspondences within the set Cab.

Correspondence test and selection

In order to determine a roto-translation matrix that references RIb to RIa, at least 3 correct correspondences (a
triplet) need to be identified within the set Cab. Each triplet t is defined as follows:

t = {
cg, ch, cj

}
, with


cg, ch, cj ∈ Cab

g, h, j ∈[ 1, Q]
g ̸= h ̸= j

(9)

Given the correspondence set Cab of size Q, the number of possible non-repeating triplets is (Q3 − 3Q2 +2Q)/6.
Determining which (if any) of the triplets is correct is a computationally expensive task: for Q equal to 150 we
would obtain more than half million triplets, therefore brute-force approaches such as directly test each of the
possible roto-translations is not a viable option. Solutions such as RANSAC [12] and similar ones are known to
be effective solutions in performing these type of searches, however it is also known that the number of trials
required to determine the correct model (in our case, a triplet) grows exponentially with respect to the proportion
of outliers in the set. Unfortunately, in our scenario the number of inliers within the set Cab is likely to be small.
Indeed, it is below 15% in more than half of the considered cases, as we will show in Section “Correspondence
test technique comparison”. Therefore we can expect the computational burden of RANSAC-style approaches to
be high for such scenario.

Alternatively, we propose a robust selection procedure designed to progressively skim the correspondences so
that the computational cost is kept low at each stage. The procedure consists of three steps: (1) every
correspondence within Cab is validated against each other and a score is calculated for each pair of matches; (2)
for each triplet of correspondences a score is computed based on the three pairwise scores previously calculated,
and a subset Tab of U best triplets is retained; (3) for each triplet in Tab, a roto-translation matrix RM is estimated



and applied to the feature set FPb, corresponding points are searched within image RIa. The triplet which collects
the highest number of such corresponding points is considered as the more reliable estimate. The above three
steps are now described in detail.

(1) In order to validate each correspondence with respect to the others we exploit the rigidity constraint, which
states that the distance between two points subject to an Euclidean transformation remains constant. We also
introduce the concept of relative distance between a pair of correspondences, illustrated in Figure 6, and defined
as follows:

Figure 6 Example of correspondences distance dgh of (10).

dgh ≡ d
(
cg, ch

) =
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∥∥∥) (10)

Due to the normalization term at the denominator, the relative distance is bounded between 0 (same distance) and
1 (maximum distance). The evaluation of the relative errors allows to perform a more unbiased ranking than that
it would be with absolute errors (which tend to favor correspondence pairs of features which are close together).
Once the relative distances have been estimated, they are organized into a Q × Q matrix DM:

DM =


0 d12 d13 · · · d1Q

d21 0 d23 d2Q
d31 d32 0 d3Q

...
. . .

...
dQ1 dQ2 dQ3 · · · 0

 (11)

DM is symmetric (dhg = dgh), and possesses zeros over its main diagonal (dgg = 0, ∀g ∈[ 1, Q]). An example of
how such matrix looks like is presented in Figure 7.

Figure 7 A distance matrix DM: blue dots represent low relative distance, while red ones identify distant
matches. The red square clusters present along the diagonal are generated whenever evaluating pairs of
correspondences that share one feature point (leading to a relative distance of 1)

(2) Once DM is calculated, the triplet space is skimmed by determining the set Tab of U triplets (we set U to 25)
which present the maximum value of the following score:

tscore = 1 − dgh + dhj + djg

3

{
g, h, j ∈[ 1, Q]
g ̸= h ̸= j

(12)

Similarly to the skim procedure described in the previous section, this triplet skim procedure is able to retain the
triplets made of correct matches in the highest positions of the ranking.

(3) In order to determine the most correct triplet within the set Tab, for each tu ∈ Tab, u ∈[ 1, U] the following
steps are performed:

• the roto-translation matrix RMu associated to triplet tu is estimated through Horn method [29];

• the feature set FPb is roto-translated through application of RMu;

• corresponding points between FPb and RIa are identified.

The triplet t̄ which is found to possess the higher number of corresponding points is considered as the one that is
most likely to be correct. Its associated roto-translation matrix ¯RM is thus refined by taking into account all the
corresponding points just estimated. At last, the obtained alignment is tested by selecting a subset of points from
RIb, roto-translating them through ¯RM, and verifying that at least a given percentage of points find a
correspondence in RIa. If the number of matches is above this threshold, image RIk is considered as successfully
aligned to the previous one. Coherently with the view overlap constraint we set that threshold to 20%. As we will
demonstrate in Section “Correspondence test technique comparison”, given the typical proportion of inliers for



the set Cab, the speed of our approach outperforms both RANSAC [12] as well as its descendant PROSAC [31]
in determining the best triplet.

Multi-view alignment pipeline

As we will see in the experimental sections, the described pairwise alignment pipeline, even compared to other
solutions, presents good performance and is suitable for automatic alignment of dense range scans in terms of
computational speed and robustness (successful alignment rate). Nevertheless, in order to reconstruct an entire
object through such a pipeline, we would need to either define a chained acquisition path for which every
consecutive image pair complies with the overlap constraint (thus limiting the scanner usability), or manually
reorder the scans prior to applying the alignment (a tedious, time consuming and necessarily off-line operation).
Therefore, from both a conceptual and practical point of view the chained path assumption turns out to be a
limitation to the scanner usability.

For instance, imagine that an operator is using a scanner to acquire a human statue, trying to abide by the policy
imposed by the overlap constraint. He starts acquiring the front of the statue (chest, belly, etc.), then
progressively moves toward the back. At a certain point, however, he realizes that some region on the belly was
not acquired properly, creating a “hole” in the digital model. He therefore decides to acquire another range image
on the front so that the hole can be properly filled. However, in order to comply with the overlap constraint he
would need to capture more range data in regions he has already scanned to create a path between the back and
the belly of the statue. It would be much simpler if he could follow an unchained acquisition path, as defined in
Section “Introduction”. Another advantage of an unchained path multi-view alignment with respect to the
pairwise approach is the fact that overlapping regions from previously aligned views can be cumulated to
improve the chances of alignment: one view may not present enough overlap with respect to all the previously
acquired ones, in such case any pairwise alignment attempt is likely to fail due to lack of reliable
correspondences or because the 20% overlap requirement stated in Section “Correspondence test and selection”
is not met although the union of overlapping regions taken from different views may contain enough overlap (as
well as reliable correspondences) to achieve the alignment.

We then extend the pairwise approach by working with a database of features (indicated with FPdb) which
collects the feature sets associated to all the previously aligned range images, so that the feature set associated to
the current range image FPk is matched to the database FPdb. Figure 8 illustrates the block diagram of the
multi-view alignment pipeline we propose. With respect to the stages described in Section “Pairwise alignment
technique”, we need to introduce a new block (in red in Figure 8), which is responsible of updating the feature
database.

Figure 8 Block diagram representing the multi-view alignment system

Feature database update

Ideally the feature database FPdb could be simply defined as the union of all feature sets FPk associated to the
previously aligned range images, each one brought in the absolute reference system through its own
roto-translation matrix. However, such an approach would create plenty of redundancy in the database, since
every corresponding feature (the ones on which we rely in order to assess the alignment between the views)
would appear as replicas. A better approach would require us to realize an intersection between the feature sets,
in order to effectively curbing the database growth:

FPdb =
k−1∩
i=1

FPi (13)

To do so, for each feature set FPk that needs to be inserted in inserted in the database FPdb we identify any
corresponding appears in the same 3D position (that is, closer than 1/3 of the feature signature radius). For each
pair of concurrent features we select a single representative based on the similarity of the feature normal with
respect to the acquisition direction. In fact, we assume that such features possess better signatures, since their
neighborhood is usually less afflicted by occlusion issues. We also associate to each representative a presence
list, that is a list of all the range images in which that feature appears: this list is exploited during the triplet



verification phase (described in Section “Correspondence test and selection”) to determine on which range
images the test has to be performed.

Global adjustment

After having successfully applied the described multi-view coarse registration technique to a given dataset, we
have the possibility to complete the alignment process toward a high-precision object modeling with a fine
alignment and/or global adjustment step. Considering the multiple view nature of our problem, a multi-view fine
alignment technique should be used to prevent residual errors to propagate along the alignment path (e.g. closure
problems for objects with cylindrical symmetry). Among several methods present in literature we used an
approach we recently proposed [32] which is suitable to accurately align sets of high-resolution range images,
also directly starting from the coarse aligned dataset. This is particularly suitable in cases a chained pairwise fine
alignment (e.g. using ICP) is prevented by the absence of a chained path. Our approach is based on the
‘Optimization-on-a-Manifold’ framework proposed by Krishnan et al. [33], to which we contribute with both
systemic and computational improvements. The original algorithm performs an error minimization over the
manifold of rotations through an iterative scheme based on Gauss–Newton optimization, provided that a set of
exact correspondences is known beforehand. As a main contribution we relaxed this requirement, allowing to
accept sets of inexact correspondences that are dynamically updated after each iteration. Other improvements
were directed toward the reduction of the computational burden of the method while maintaining its robustness.
The modifications we have introduced allow to significantly improve both the convergence rate and the accuracy
of the original technique, while boosting its computational speed [32].

Acquired datasets

In order to compare each new building block of our pipeline in Section “Comparative tests”, as well as to
evaluate both the pairwise and multi-view alignment performances in Section “Experimental results”, we
consider a number of meaningful datasets that we acquired with a commercial high-resolution structured-light
scanner (1280x1024 pixel CCD, i.e. potential 1.3M points/RI). The acquired datasets correspond to 14 scanned
objects for a total of 300 range images, that is 286 RI pairs. They are shown in Figure 9, as they appear after
successful alignment, with different colors associated to each range scan (naturally high color mixing due to scan
interpenetration is present). To make the pairwise and multi-view approaches fully comparable, among all the
possible unchained acquisition paths a chained path has been determined and followed for each dataset. It is
worth noting that for multi-view alignment a chained path can be considered as a regular element (with no
special properties or distinction) of the set of unchained paths (according to the definition given in Section
“Introduction”). In addition, we will also consider alternative unchained paths to further evaluate the multi-view
pipeline. The considered objects are related to cultural heritage (statues and high-reliefs) and biomedical
(orthodontic moulds) application fields, they have been chosen to represent well differentiated aspects and
geometric properties, variegated feature dimensions, morphology and numerosity.

Figure 9 The test datasets: Decoration, Angels, Mould 1, Mould 2, Dog, Cherub, Dolphin, Mould 3, Mould
4, Platelet, Capital, Rose, Hurricane, Venus

Objects size range from 50 up to 600 mm over their main dimension. Despite the acquisition paths aimed to
minimize the number of scans while covering the entire surface of interest, the amount of overlap between the
images can vary a lot due to the implicit characteristics of the surface that is being acquired: if the surface is
quite planar, as for the Angels dataset, the maximum overlap is limited to 30%, whereas for datasets particularly
affected by occlusion phenomena, such as the Rose dataset, many images cover the same area from different
viewpoint angles, thus increasing the region overlap up to 80%. However, in these cases, an higher overlap does
not necessarily imply an easier alignment, since the views can be heavily affected by holes which may cause
instability in the feature localization as well as a degraded reliability of the computed descriptors for the features
close to the hole borders.

Comparative tests

The pipeline we proposed in Section “Pairwise alignment technique” may appear to be constituted by
independent blocks, thus easily interchangeable with alternative ones. However, as anticipated in Section



“Related work”, a certain degree of interdependency is present. In fact, our descriptor incorporates the saliency
information, which is obtained during the multi-scale analysis performed during the extraction phase. A more
subtle dependency regards the correspondence skim procedure: the number of correct correspondences that is
obtained at the end of the matching block can be very limited, therefore the skim procedure has to be very
reliable. This is the reason for which we came out with our own skim procedure rather than relying on heuristic
approaches, which usually have more stringent assumptions with regard to the number of inliers within the
correspondence set. These considerations are to be taken into account when trying to compare the performance
of each pipeline block: substituting a given technique for another one, extrapolated from a different framework,
may result in performance degradation. With these considerations in mind, we now propose a number of
comparisons of our pipeline stages with respect to other works presented in the literature. We tried to identify
solutions that may individually fit into our pipeline in order to reduce performance degradation effects due to
technique unsuitability.

In Section “Feature extractor and descriptor comparison” we evaluate both the feature extractor (proposed in
Section “Feature extraction”) and descriptor (introduced in Section “Feature description”) with respect to similar
approaches on a number of different scenarios we devised, while in Section “Correspondence test technique
comparison” we evaluate our correspondence skim procedure (described in Section “Correspondence test and
selection”) with respect to other solutions by comparing both precision and computational efficiency. All the
comparisons presented in this section have been performed on the same platform described in Section “Pairwise
alignment results”.

Feature extractor and descriptor comparison

In order to assess the performance of the extraction and description blocks of our pipeline, we devised a number
of test scenarios. Hereafter we state what is the objective we pursue for each block; then we describe the test
scenarios.

In order to compare our feature extraction technique with respect to the others, we aim to assess the capability to
detect salient points in the same position, regardless to the possible variations that the surface may undergo due
to various effects. We therefore devised three different scenarios in which we assess the feature repeatability with
respect to: (1) noise added to the surface; (2) holes carved in the data; (3) acquisition viewpoint variation.

For the feature description stage, our objective is to assess how well our descriptor compares with others. To do
so, given two aligned range data we extract features from both of them, match them, and count the ones that are
correct (i.e. the ones for which the Euclidean distance is below a given threshold). Out of all possible
correspondences, we retain the ones that present the best score values in the set Cab, which size Q is set to 150,
and count the correct correspondences that survived the selection step. Intuitively, the better the descriptor is, the
greater its correspondence survival rate will be. Similarly to the previous assessment, we plan the same scenarios
in which we measure the correspondence survival rate. Following, we describe in detail each test scenario.

Noise scenario: for a given range image RI we generate a number of replicas RIk
noise, with k ∈[ 0, 10], where each

replica is smeared with Gaussian noise with zero mean and standard deviation σ = k · 1s, where we set 1s equal
to the average grid spacing. In order to collect enough information to infer meaningful statistics, for this scenario
six different datasets were used, for a total of 105 test images. In Figure 10 an example of noisy data is shown.

Figure 10 Angels particular with added noise at different σ

Hole scenario: for a given range image RI we generate a number of replicas RIk
holes, with k ∈[ 1, 4]. For each

replica we add holes which size varies randomly following a Gaussian distribution with mean
µ = (10 · k · 1s) − 5 and standard deviation σ = (5 · k · 1s) + 10, where 1s is again the average grid spacing.
Similarly to the previous scenario, the same datasets were used during the comparison. Figure 11 reports an
example of carved data.

Figure 11 Angels particular with carved holes at different µ and σ

Viewpoint variation scenario: in this particular setup, we acquired a planar high-relief object surface (the
represented in the Angels dataset) from a number of different viewpoints. We acquired 33 range images varying



the acquisition angle with respect to the plane normal within a range of [ −45◦, 45◦] at step angle of almost 3◦.
The image acquired at 0◦ is then tested with all the other scans separately and, for each of these image pairs,
useful test statistics are gathered, according to the kind of comparison that needs to be performed (see below).
Due to occlusions and limited acquisition volume, the overlapping area between the two scans will vary. To
provide a fair comparison, we estimate the overlapping area of each scan pair and apply proper normalization
factors. This scenario is of particular interest for our application, since relative viewpoint variations are very
likely to occur during object acquisition. In Figure 12 we display the surface, acquired from different viewpoints,
used as a test for this scenario.

Figure 12 The planar surface taken from different acquisition angles θ

Feature extractors comparison

In this section, we compare the feature extraction approach described in Section “Feature extraction” with
respect to Lee et al. [20], here referred as Lea, Castellani et al. [22], Cea, and Bonarrigo et al. [6], Bea. It is
worth to remember that the proposed approach is a variation of Cea, and that both Lea and Cea were originally
conceived to work with mesh datasets, therefore they have been adapted here to work with range images.

In the noise scenario, we assess the feature repeatability with respect to synthetic noise added to the data. To do
so, for each pair of (prealigned) images (RI, RIk

noise) features are extracted and their position is matched in order
to determine the number of repeating features. Since on data RI0

n no noise is added, the number of repeating
features rF0

noise will coincide with the number of extracted features. Therefore, for k ̸= 0, rFk
noise will always

result less than rF0
noise. In Figure 13 we represent the feature repeatability for increasing noise levels as the

percentage 100 · rFk
noise/rF0

noise.

Figure 13 Feature repeatability rate with respect to noise

The graph shows that the proposed approach performs best, while Lea approach fares slightly worse. The
technique we proposed in [6] is around 10% worse, while Cea shows a performance decrease of 20%. The main
critical aspect here resides in the fact that noise corrupts the reliability of the surface normal estimation. This is
detrimental in Cea where original normals are used to improve DoG saliency computation. This problem is
mitigated in Bea and in the proposed modified Cea approaches, where we recompute the normal field on the
Gaussian filtered surfaces. The original Lea approach does not employ normals, therefore it is more robust to
noise effects. Interestingly, even using (smoothed) normal information, the proposed method is more robust than
Lea to noise.

In the hole scenario, we assess the feature repeatability with respect to holes carved in the data. To perform such
evaluation we first check the number of features extracted from RIk

holes, which corresponds to the number of
repeating features rFk,k

holes that one would obtain by matching RIk
holes against itself. Then the (prealigned) image

pair (RI, RIk
holes) is matched and the number of repeating features rF0,k

holes is counted. In Figure 14 we represent
the feature repeatability for different hole levels as the percentage 100 · rF0,k

holes/rFk,k
holes.

Figure 14 Feature repeatability rate with respect to holes

Again, the graph shows that the proposed approach performs best. Bea approach performs 4% worse, while Lea
and Cea perform around 12% worse. Good performance of the Bea solution are related to its inherent robustness
with respect to deformations of the DoG maps induced by unbalanced point density on range images [6] due to
the abnormal quantity of borders and holes present.

For the viewpoint scenario, we report the feature repeatability rate with respect to variations of viewpoint angle.
For a given pair of prealigned scans (RI0

vpoint, RIθvpoint), we determine the number of repeating features rF0,θ
vpoint

and estimate the overlap ratio between the views oR0,θ . As already stated in Section “Feature extractor and
descriptor comparison”, since the overlapping area between the two scans is likely to vary, we apply a
normalization factor to the feature repeatability rate, which is calculated as follows:
100 · rF0,θ

vpoint/(rF0,0
vpoint · oR0,θ ). In Figure 15 the repeatability rate is displayed with respect to viewpoint angle θ .



Figure 15 Feature repeatability rate with respect to viewpoint variation

Once again, the proposed approach performs best, while Bea approach obtains slightly inferior performance. In
the angle interval [ −30◦, 30◦] Lea approach performs 30% worse, while Cea falls around 50% under the
proposed one. For angle values greater than ±30◦, the performance gap decreases, reaching a repeatability rate
of 25% for the proposed approach as well as Bea, and virtually no repeating features for Lea and Cea.

In conclusion, our tests have demonstrated that the proposed extractor outperforms the other techniques with
respect to noise, holes and variation of the acquisition viewpoint. The approach we first introduced in [6] turned
out to perform slightly worse than the proposed one for holes and viewpoint variation, and to be vulnerable with
respect to added noise. A few considerations need to be done with regard to the performances obtained by
Lea [20] and Cea [22] approaches. These approaches were both originally introduced for meshes, which
implicitly smooth the data with respect to range images and point clouds. Moreover, depending on the meshing
algorithm employed, small holes may be closed automatically, or no holes may be present at all (for implicit
surface reconstruction approaches, such as [34]). The low performances obtained for the noise and hole scenarios
are therefore understandable, nevertheless their modest results for the viewpoint variation scenario remain a
critical issue for our particular application field.

Feature descriptor comparison

In the present section we assess the correspondence survival rate of our feature descriptor (introduced in Section
“Feature description”) with respect to the popular Spin Images approach, introduced by Johnson [30]. Since we
apply Spin Images for partial view range data matching, we have to face the problem described in [35] (for the
case of model recognition in cluttered scenes) about the determination of a good tradeoff between distinctiveness
and robustness. The former is favored by global or wide field Spin Images, while robustness to view changes (in
this case due to the nature of the data and of the addressed problem) can be improved by adopting localized
(short range) descriptors. Therefore we first addressed this tradeoff by finding the optimal Spin Image window
size for our data: we experimentally found that a window size of 15 and a bin size equal to the average point
spacing gave the best alignment results on all the test datasets. Being calculated in a multi-scale framework, the
actual average extent of the Spin Images window with respect to the original range images corresponds to
r · p · 15 points, depending on the scale parameter r and the preemptive subsample parameter p. Moreover, since
we are interested in efficient feature-based reconstruction, similarly to what we do with our descriptor we only
compute Spin Images on MP obtained from the extraction phase.

In the noise scenario we assess the correspondence survival rate with respect to synthetic noise added to the data.
To do so, for each pair of (prealigned) images (RI, RIk

noise) all exact correspondences are counted (we can do this
because the image pair is prealigned), and their number recorded as eCk

noise. Then, similarly to what we would do
if the images were unaligned, the entire correspondence set is ranked and skimmed so that only the best 150
correspondences are retained, and the survived exact correspondences are counted and registered as sCk

noise. In
Figure 16 we represent the correspondence survival rate as the percentage 100 · sCk

noise/eCk
noise.

Figure 16 Correspondence survival rate with respect to noise

The graph shows that the two descriptors behave similarly with respect to noise added to the data, with our
approach performing a bit better, especially for lower noise values.

In the hole scenario, we assess the correspondence survival rate with respect to holes carved in the data. To
perform such evaluation, we first check the number of survived correspondences sCk,k

holes between RIk
holes and

itself. Then the (prealigned) image pair (RI, RIk
holes) is matched and the number of survived correspondences

sCk,k
holes is evaluated. In Figure 17 we represent the correspondence survival rate for different hole levels as the

percentage 100 · sC0,k
holes/sCk,k

holes.

Figure 17 Correspondence survival rate with respect to holes



In the graph we can see how the Spin Images performance decreases faster than the proposed descriptor for
bigger holes. Considering the Spin Image descriptor itself this is not surprising, since if a part of the data is
missing, this will have a (proportionally) greater effect on the Spin Image histogram rather than on our grid
descriptor, where only a subset of the sectors will be affected.

For the viewpoint scenario, we determine the correspondence survival rate with respect to variations of viewpoint
angle. For a given pair of prealigned scans (RI0

vpoint, RIθvpoint), we determine both the number of survived exact

correspondences sC0,θ
vpoint and the overlapping ratio between the views oR0,θ . We then apply a normalization

factor to the correspondence survival rate, which is calculated as follows: 100 · sC0,θ
vpoint/(sC0,0

vpoint · oR0,θ ). In
Figure 18 the survival rate is displayed with respect to viewpoint angle θ .

Figure 18 Correspondence survival rate with respect to viewpoint variation

In the graph we can see that, within an angle interval of [ −30◦, 30◦], the proposed descriptor performs 20%
better than Spin Images, while for greater angle values the performance gap decreases up to 10%. This outcome
could have been foresaw: viewpoint variations are likely to introduce holes on the surface due to occlusion. As
we demonstrated for the previous scenario, Spin Images descriptors appear to be more sensitive to holes than our
own, and these results confirm it.

We can conclude that both the descriptors perform similarly with respect to the noise scenario, while the
proposed descriptor outperforms the Spin Images for the holes as well as the viewpoint variation scenarios. With
regard to the time required for generating the descriptors, we estimated that describing a single Spin Image (with
a window size of 15) costs us 0.61 ms, while our descriptor only takes 0.34 ms to compute, thus demonstrating
the fact that our descriptor is extremely fast to compute. Although such difference is small in absolute value, it
becomes significant when considering that the set of MP is usually constituted of hundreds of elements.

Correspondence test technique comparison

For the correspondence skim procedure, our aim is to assess the capability of different techniques to detect a
correct triplet in the correspondence set Cab, as well as the time required to do that. We compare the approach we
introduced in Section “Correspondence test and selection” with respect to the RANSAC approach proposed by
Fischler et al. [12] as well as its descendant PROSAC introduced by Chum et al. [31]. PROSAC should perform
better when, as in our case, a correspondence ranking criterion is available. In fact, while RANSAC treats all
correspondences equally (by choosing random sets), PROSAC works its way progressively down the top-ranked
ones. Since the ranking we obtain through the feature matching procedure is fairly good (for example, in the
Angels dataset the inlier ratio is on average around 70% for the first 25 top positions), in our case the PROSAC
requisite should be satisfied. In order to boost the computational speed for these two techniques, which is heavily
dependent on the inlier rate of the correspondence set, a dynamic estimation of such rate is performed for each
set while running the techniques. This allows the algorithms to terminate faster in case the inlier rate is superior
than in the worst case [36].

In order to perform the comparison, we apply the pairwise alignment pipeline over six different datasets, for a
total of 99 RI pairs. During the process we keep track of the inliers rate within the set Cab, as well as the time
required by each technique to determine their best correspondence triplet within Cab. Once the alignments are
terminated, we visually inspect the alignment outcome and count the number of errors for each technique,
reported in Table 1. Given the same correspondence sets Cab, both the proposed approach as well as the
PROSAC performed best, with a single error. On the contrary, the RANSAC method introduced a considerable
amount of errors. In Figure 19 we also present in logarithmic scale the execution times required by each
technique with regard to the inliers rate. As expected, the time required by RANSAC as well as PROSAC grows
exponentially with the number of outliers in the correspondence set Cab, ranging from 15 up to 8800
milliseconds for RANSAC, or 3400 milliseconds for PROSAC. On the contrary, the proposed skim procedure
has a balanced dynamic, ranging from a minimum of 220 up to 330 milliseconds. It turns out that our approach is
up to 40 times faster than RANSAC and 15 times faster than PROSAC when the inlier rate is low, whereas it gets
down to 20 times slower for higher inlier rates, with curve crossing rate of 16% for RANSAC and 12,5% for
PROSAC. Such analysis may seem to favour the PROSAC technique, however before drawing any conclusion
we also need to take into account the inlier rates distribution, which we estimated from the six test datasets (99
RI pairs). As we can see in Figure 20, the inlier rate is usually very low: for more than half cases, its value is



below 15%, due to the nature of the partial view alignment problem we face. In fact, any variation of the relative
position between the scanner and the object is likely to cause a variation in the overlapping area between
successive scans, with the possible creation of holes due to occlusions, as well as variations on the distribution of
3D points on the surface. All these factors concur in lowering the number, as well as the similarity of repeating
features, thus causing an overall reduction of the inlier rate. Taking into account the inlier rate distribution we
estimated the weighted average execution time for the three skim techniques. It turns out that our approach is the
fastest, since it requires 240 milliseconds to compute its best triplet. RANSAC needs 1460 milliseconds to obtain
its guess, while PROSAC requires 660 milliseconds. In conclusion, considering the results of Table 1 as well as
the average execution times, we can conclude that both our technique as well as PROSAC obtained the best
alignment performances, while our approach is almost 3 times faster than PROSAC, given the inlier distribution
rates of the test datasets.

Table 1 Alignment errors for each skim technique
Dataset Number of RI pairs Number of errors for proposed Number of errors for RANSAC Number of errors for PROSAC
Angels 7 0 0 0
Teeth 7 0 0 0
Dog 13 0 2 0
Dolphin 19 0 1 0
Capital 22 0 0 0
Hurricane 31 1 2 1
Total 99 1 5 1

Figure 19 Execution times for each skim technique

Figure 20 Distribution of inlier rates for the test datasets

Experimental results

We evaluated both the pairwise registration and the complete multi-view alignment pipeline presented in Section
“Pairwise alignment technique” and Section “Multi-view alignment pipeline”, respectively through a series of
tests performed on the datasets presented in Section “Acquired datasets”. Based on the feature size of each
object, we found suitable to define two different parameter configurations, which we address as the standard
feature (std) and the small feature (sml) configurations. The std one is configured as follows: a preemptive factor
2 subsampling of the range image, feature extraction on 3 octaves, one saliency map for each octave and a
Gaussian kernel size set to 4, feature signature with a number of angular sectors equal to 36; whereas the sml
configuration consists in: no preemptive subsample, 3 octaves, one saliency map for each octave, a Gaussian
kernel size set to 3 and a number of angular sectors equal to 18.

Dataset characteristics are presented in the first 4 columns of Table 2, where they are listed in ascending ordered
in terms of number of RI pairs. Average number of valid points per RI and configuration parameters are also
provided.
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Pairwise alignment results

In order to evaluate the pairwise approach, we executed the feature-based pairwise alignment procedure of
Section “Pairwise alignment technique” on each RI pair of each dataset and counted the number of successful
alignments. At first, we visually check the resulting alignment, and count the number of (manifestly) correct and
wrong occurrences. For dubious cases we run an ICP to assert whether the coarse alignment is sufficient or not
for the ICP to converge. Quantitative results are presented in columns 5 and 6 of Table 2. Considering the first 14
datasets, the technique demonstrated to be very robust in that it correctly aligned 96.5% of the RI pairs. Further
analysis performed over the few unaligned pairs concluded that main causes for failure were due to either an
insufficient overlapping area (that is, close to the lower bound of 20%), or particularly featureless areas. A visual
example of the output produced by our pairwise alignment technique is shown in Figure 21.

Figure 21 Pairwise alignmet results for the Dolphin dataset

Computational performance (column 6) are related to a C++ implementation and run on a PC equipped with an
Intel I5 M520 processor and 4 GB of RAM; time required for disk loading/saving of range data is excluded. It is
important to note that the code has not been fully optimized for parallel execution yet, hence there is room in this
sense for further improvements of time performance. Computational performance shows an average alignment
time of 2.5 s. As an example, time breakdown for the Hurricane dataset is distributed as follows: 57% for feature
extraction, 1% for feature description, 32% for feature matching, 8% for correspondence skim and
roto-translation estimation. Lightness of our feature signature is testified by the fact that the feature description
step only takes 1% of the total time. The two main factors that influence computation times are the number of
points per range image to be processed, and the number of features detected over each image. In the “worst case”
(that means, images close to 1 million of points and many features detected at all scales), alignment time reached
a maximum of about 4 seconds. Comparisons of computational speed with respect to the literature is somehow
difficult to infer since (1) not every work declare computational speed, (2) only isolated blocks of the alignment
chain are usually considered (e.g. feature extraction) instead of the entire pipeline, (3) hardware obsolescence.
Nevertheless, our computational time is at least one order of magnitude (comprising hardware obsolescence
compensation) under the times declared in the related works [2, 19, 20, 22].

Multi-view alignment pipeline results

For the multi-view alignment pipeline, our aim is to progressively complete the object coverage with an
unconstrained acquisition procedure. In order to do so, we match the features extracted from the current image
with respect to the entire feature database. Therefore, whenever a single alignment error occurs, there is a chance
that erroneously aligned views may attract more range data, creating clusters of correctly aligned views. This is
the reason for which, in order to assess the multi-view alignment performance, in Table 2 col.7, we state the
number of different clusters created, rather than counting the correct image pairs. If the multi-view alignment
succeeds in its task, a single cluster will result, otherwise more clusters will be created.

In this case we consider as correct an alignment where the current range image is attached correctly to an
existing cluster (that is, we consider as erroneous only the alignment for which a new cluster is created, rather
than all the other images which may attach to it correctly). To verify correct alignments we use the same criteria
stated in Section “Pairwise alignment results”. Quantitative results are presented on the right side of Table 2.
Again, the technique demonstrated its robustness and successful object reconstruction is reached in almost all
cases. With respect to the pairwise approach, the multi-view approach solved the alignment failures of the
Cherub and the Hurricane datasets by exploiting the cumulative information available. A single error occurred on
the Decoration dataset, generating two distinct image clusters, as shown in Figure 22. In terms of correctly
aligned RI pairs, our multi-view alignment reaches a 99.7% performance.

Figure 22 The Decoration clusters: a single error caused the creation of two distinct clusters of correctly
aligned views

As already stated, a major limitation for the chained pairwise alignment is that it can succeed in obtaining a
correct reconstruction only if the range data sequence follows an adequate acquisition path. To exemplify this,
and to assess the path-independence of the multi-view approach, we performed a test on alternative acquisition
paths defined on the Dog, Capital and Hurricane datasets (see the rows of Table 2 marked by a single asterisk).



For these datasets the acquisition path has been rearranged (respecting the assumption of partial overlap with at
least one of the previous range images in the path). In such unconstrained (unchained) condition the pairwise
alignment cannot perform correctly (in fact only about half of the total RI pairs were correctly aligned along the
alternative paths) while the multi-view alignment still performs correctly.

The last two columns of Table 2 present an estimation of the root mean square error among the aligned views,
prior and after performing the global optimization-on-a-manifold adjustment introduced in Section “Global
adjustment”. The alignment was performed only on the datasets which were correctly reconstructed (all except
the Decoration and the Carter). As can be seen, all the (coarsely aligned) datasets have been aligned finely, and
the residual error (generated by scanner miscalibration and noise associated to the acquisition process) is never
greater than 35 µm for an object which main diagonal is 40 cm long, thus a very good alignment. This
demonstrates that the coarse alignment obtained with our approach is good enough to bring the multi-view fine
alignment stage to converge to the correct solution. Interestingly, the three datasets that present an alternative
acquisition path result in the same residual error after the global adjustment phase, which is another confirmation
of the fact that the obtained coarse alignment is good enough for the successive alignment stages to converge
toward the optimal solution. In Figure 23 the Venus dataset is shown for three alignment stages: (a) is the initial
image condition for the dataset; (b) shows the alignment obtained after executing our multi-view pipeline; (c)
represents the dataset after executing our global optimization method [32].

Figure 23 The Venus alignment phases: (a) initial condition, (b) after coarse multi-view alignment, (c) after
global adjustment

As for limitations, our method presents essentially two: a) performance degradation for featureless objects, and
b) complexity increase (although less than linear) with the number of views. For point (a), the last row of Table 2
(the one with double asterisk) reports the alignment performance for the additional dataset Carter. This is a
mechanical piece, with smooth planes and holes carved in, thus a particularly featureless dataset. For this dataset
the alignment performance dropped considerably both for the pairwise and the multi-view reconstruction. In
Figure 24 the dataset is shown, as well as two examples for successful alignments and one failure. Regarding
point (b), the benefits of multi-view alignment come at a cost in terms of computational performance which can
be easily realized by evaluating how the time breakdown varies (again, estimated for the Hurricane dataset): 19%
for feature extraction, negligible feature description time, 78% for feature matching, 3% for correspondence skim
and roto-translation estimation. As the feature database grows, the time required for matching correspondences
between the current dataset FPk and the database database FPdb grows linearly (actually less than linearly, due to
the removal from the database of duplicated features) with the number of views. This cannot be easily inferred
table 2, since each dataset has a different amount of features (for example, the Cherub dataset is processed in less
than one third of the time required for the Dog, which is smaller in RI size but richer in features). Feature
organization solutions, such as clustering or bags of words approaches [18], are possible and should be studied to
cope with this limitation for bigger datasets. Possible solutions to this problem could also stem from the
application domain, for example: (1) try a pairwise alignment before executing the alignment on the entire
database (in fact, in many practical cases unchained paths are made of chained fragments, this could therefore
save a lot of computation time); (2) distribute the feature database in a feature space, so that the matching for
each new feature could be performed on the subset of features which are closer to it in the feature space (3) try to
clear out parts of the database in order to lighten the matching by discarding those features that belong to already
well covered zones. Alternative solutions can be devised according to application-driven requirements.

Figure 24 (a) The Carter dataset: (a) global picture, (b) and (c) two successfully aligned views, (d) an
alignment failure example

Conclusions

In this work we presented a fully automatic, fast and feature-oriented 3D alignment pipeline for high-quality
object modeling from an unchained acquisition of dense range scans. The proposed approach takes as input a set
of range images ordered according to a suitable user-defined acquisition path, then (1) extracts a set of feature
points; (2) describes them through information extrapolated from the local surface; (3) matches the set with
respect to the database of feature points associated to any previously aligned range image; (4) identifies the
reliable matches and (5) tries to compute a roto-translation matrix out of such correspondences. The multi-view
framework allows object alignment under the most reasonable assumption that each new range image must



possess an overlap with respect to any other previously aligned range data, thus weakening the requirement of
having an overlap between each sequential pair of range images. Several comparisons have been performed to
evaluate the performances of each block of the pipeline we introduced with respect to competitor solutions, for a
variety of different use scenarios. The pipeline performance has been evaluated on a group of 14 datasets, for a
total of 300 highly resoluted range scans. Obtained results show a high degree of robustness and reliability of the
technique, and are relevant in terms of improving the usability and the handiness of modern 3D scanners by
allowing interactive (on-the-fly) object alignment and therefore fast modeling. In few cases clusters of correctly
aligned views appeared, mostly due to possible inter-object feature similarities. However, the detection of this
kind of problem can be rendered automatic or semi-automatic and deferred at an implementation level according
to specific application requirements. A major issue that we observed is the increased amount of computational
time due to the matching with a database of features. Solutions can be devised by using feature space
organization approaches. However, this usually does not impair an interactive usage of the scanner, except for
very big datasets. In conclusion, for the greatest part of the considered real life datasets, the proposed method
guarantees competitive performance for a robust, fast, accurate and automated object alignment, consequently
boosting the usability of high-end 3D scanners.
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