Article title: Involvement of $\alpha_{v}\beta_{3}$ integrin in gremlin-induced angiogenesis

Authors: Cosetta Ravelli, Stefania Mitola, Michela Corsini and Marco Presta

Journal: Angiogenesis

To whom correspondence should be addressed: Marco Presta, General Pathology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy, Tel.: (39) 030-3717311; Fax: (39) 030-3701157; Email: presta@med.unibs.it.

Online Resource 1:

Figure Legends:

Fig. S1. β_3 integrin down-regulation inhibits the chemotactic activity of gremlin. **a)** HUVECs were treated for 24 h with anti- β_3 or control nontargeting (nt) siRNAs and analysed for surface β_3 integrin expression by FACS. Cells were incubated on ice with anti- β_3 integrin antibody (BV4) and with anti-mouse Alexafluor 488 IgG. The secondary Ab alone was used as a control (red line). FACS analysis was performed with a Cyflow Partec flow cytometer (Partec). β_3 integrin down-modulation caused a partial but significant reduction of β_3 integrin expression on EC surface (orange line). **b)** siRNA transfected HUVECs were assessed for their capacity to migrate in response to 50 ng/ml of gremlin or 30 ng/ml VEGF-A in a Boyden chamber assay. After 4 h, cells migrated to the lower side of the filter were counted and data were expressed as fold increase *versus* cells migrated in the absence of a chemotactic stimulus. β_3 -siRNA transfection suppresses the chemotactic activity of gremlin and VEGF-A (*, P<0.05, Student's *t* test).

Fig. S2. Kinetics of VEGFR2/ β_3 integrin complex formation. **a)** Serum-starved HUVECs were incubated for 3, 15, 30, 60 min with 50 ng/ml gremlin or 30 ng/ml VEGF-A. Next, cell lysates were tested in a sandwich ELISA for the presence of VEGFR2/ β_3 integrin complexes as detailed in Materials and Methods section. **b)** Anti- β_3 integrin antibody BV4 prevents VEGFR2/ $\alpha_v\beta_3$ integrin complex formation in ECs. HUVECs were incubated for 15 min at room temperature with 30 ng/ml VEGF-A in absence or presence of anti- β_3 integrin antibody BV4. Cells were then lysed and VEGFR2/ β_3 integrin complexes were quantified by sandwich ELISA.

Fig. S3 Gremlin does not bind $\alpha_v\beta_3$ integrin. **a)** Parental and $\alpha_v\beta_3$ integrin-overexpressing HEK 293 cells were seeded on polystyrene non-tissue culture microtiter plates uncoated (control) or coated with 2 µg/ml of FG, CO, FN or gremlin. After 2 h, adherent cells were washed, fixed, stained with methylene blue/Azur II, solubilized with acetic acid and plates were read with a microplate reader at 595 nm. $\alpha_v\beta_3$ integrin overexpression caused a significant increase of HEK 293 cell adhesion to immobilized FG but not to the other immobilized proteins (*, P<0.05, Student's *t* test). **b)** Serumstarved HUVECs were incubated for 2 h at 4°C in the absence or in the presence of 50 ng/ml gremlin and the BS3 cross-linker. After Tris-HCl saturation, cells were lysed and cell lysates (1.0 mg of protein) were immunoprecipitated with an anti- β_3 integrin antibody (clone BV4), separated on a SDS-PAGE gel under reducing conditions, and probed in a Western blot with anti- β_3 integrin and anti-gremlin antibodies. Note the absence of any gremlin-integrin complex in the anti- β_3 IP of gremlin-treated sample

Fig. S4 Kinetics of VEGFR2 activation by gremlin in FG-adherent ECs. HUVECs were seeded on FG or on uncoated wells in M199 *plus* 5% FCS. 2 h after plating, cells were stimulated with 50 ng/ml gremlin for 0, 3, 5, 15 or 30 min. Then, 50 µg of total cell lysates were separated on SDS-

PAGE and assessed for VEGFR2 phosphorylation in a Western blot using an anti-phospho-VEGFR2 (pTyr1175) antibody (upper panel). Uniform loading of the gel was confirmed by reprobing the membrane with an anti-VEGFR2 antibody (lower panel)

Fig. S1

а

Fig. S2

b

