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The aim of this paper is to analyse the effect introduced in the dynamics of a financial market
when agents anticipate the occurrence of a correlation breakdown.What emerges is that correlation
breakdowns can act both as a consequence and as a triggering factor in the emergence of financial
crises rational bubbles. We propose a market with two kinds of agents: speculators and rational
investors. Rational agents use excess demand information to estimate the variance-covariance
structure of assets returns, and their investment decisions are represented as a Markowitz optimal
portfolio allocation. Speculators are uninformed agents and form their expectations by imitative
behavior, depending on market excess demand. Several market equilibria result, depending on the
prevalence of one of the two types of agents. Differing from previous results in the literature on
the interaction between market dynamics and speculative behavior, rational agents can generate
financial crises, even without the speculator contribution.

1. Introduction

This paper is concerned with a dynamic model of market behavior. Several authors have
analyzed market dynamics focusing on different frameworks such as agent utility, herding
or asymmetries in the information set (see, e.g., the review in [1]). In many examples
such models can explain how markets can collapse and then eventually revert to normal
conditions. During financial crises an often debated issue is the one known as “correlation
breakdown,” that is, a sudden change in the correlation of the structure of financial assets
returns resulting in a dramatic loss of the original diversification properties of portfolios.
This topic is therefore remarkably relevant to the industry of managed funds.

Evidence on varying correlation between asset returns has been reported and analyzed
in different studies. Examples of this literature are the works of the authors of [2, 3], who
found evidence of an increase in the correlation of stock returns at the time of the 1987 crash.
Also, the work in [4] reports correlation shifts during the Mexican crisis while, [5] finds
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significant increases in correlation for several East Asian markets and currencies during the
East Asian crisis. In [6] the origin of the Russian default in August 1998 has been identified
in the “breakdowns of historical correlations.” Factors influencing joint movements in the
US-Japan markets are identified by [7] using regression methods.

Early analysis on crisis and correlation breakdown include also [8–10] who studied
models based on extreme value theory while others, like [11–13], exploredMarkov switching
models. To accommodate structural breaks in the variance of asset returns, in [14] the
authors examine the potential for extreme comovements via a direct test of the underlying
dependence structure.

In this paper we analyze a market with two kinds of agents: uninformed speculators
and informed rational investors. We model rational investment decision as an optimal port-
folio allocation in a Markowitz sense. However differently from usual CAPM assumptions,
rational agents use excess demand information to estimate next period variance-covariance
structure of traded assets returns. We show how such a (rational) anticipatory stance can
drive the market to conditions where correlation breakdown even self-reinforces. Our model
can explain several market dynamics, including market crashes, creation of rational bubbles,
or cycles of diverse periods. These different results will depend on the initial conditions
and some market characteristics, such as the percentage composition of the market between
rational and irrational agents or their attitude to respond more or less aggressively to shocks
in the excess demand.

Differing from previous results which appeared in the literature on the interaction
between market dynamics and speculative behavior, we show that rational agents can
generate financial crises, even without the “help” of speculators.

Financial research has already tried to address the origin of financial crises to
“contagion” mechanisms (see, e.g., [15]). While this paradigm helps to explain important
dynamics of financial markets such as financial crises and speculative bubbles, it tends
(with some exceptions, e.g., [16]) to interpret these two phenomena as symmetric results
of the same price formation process. Indeed Lux [17] defines the probabilities of becoming
optimistic from a pessimistic stance in a symmetric way, and consequently also the switching
from bear to bull market follow a symmetric contagion process; in [18] the authors model
a financial market where both bubbles or crises emerge as a consequence of different initial
conditions through the same price formation process. In a market composed by band-wagon
speculators and fundamentalists, [19] also develops a market where the investment attitude
waves symmetrically from bear to bull market. However, there are well known reasons
evidencing that such a symmetry is not realistic. Risk aversion theory as well as several
results in behavioral finance (e.g., [20, 21]) show that investment decisions are affected
asymmetrically by losses and gains opportunities. Empirical researches exist (e.g., [22–24])
showing that bear market periods tend to follow different dynamics than bull market periods.

In this work wemodel speculators of both “momentum” and “contrarian” types. They
are subject to contagion mechanism, as their demand depends on market excess demand.
However, also rational agents are somehow subject to contagion in this model, as they use
information on excess demand to update their estimation of the variance-covariance structure
of traded asset. They do not use it to update the returns expectations.

In the setting of this work we also obtain a symmetric origin for crisis and
booming market when speculators dominate the market. However, when rational agents are
prominent, we show how they can generate a stable nonfundamental equilibrium, with prices
steady below their “true” values, which is asymmetric in the sense that it does not have a
mirroring bubble as a counterpart.
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Figure 1: Frame of the discrete model.

The paper is organized as follows. Section 2 introduces the dynamic model of a two-
assets financial market. Section 3 solves the optimization problem for a Markowitz portfolio
where the variance-covariance matrix depends on time t − 1 excess demand. Section 4 dis-
cusses the fundamental equilibrium of the system as well the non fundamental solutions for
three market scenarios: all agents are speculators, all agents are informed rational investors,
and the market is composed by a mix of these types of agents. Section 5 concludes the paper.

2. Market Description

We consider a market composed by two kinds of agents: informed rational investors and
uninformed speculators. The relevant difference between the two kinds is that uninformed
agents base their investment decision through an imitative behavior (also called herding)
while informed ones follow a rational portfolio strategy based on an updated information of
the fundamental value of assets and of the variance-covariance structure of asset returns.

Only two risky assets are traded on the market, a stock (s) and a bond (f), where
the former shows more return volatility than the latter. We assume that the bond is available
in unbounded quantity, so no excess demand applies to it. Since it cannot generate excess
demand, the dynamics of this market will be analyzed observing only the riskier asset. We
consider a discrete time version of the model (see Figure 1).

Following this frame at time t − 1, the closing price of stock (Pc
t−1) coincides with

opening price at time t (Po
t ). However, to simplify the notation we will use Pt as a shorthand

for Po
t . The fundamental value of the stock (Pt) is revealed to informed agents at the

beginning of each period t. Pt can be any process, possibly depending on time. Let rf,t be
the expected bond rate of return and rs,t the expected rate of return of the stock. Both rates
are expressed per unit time period. Rational investors observe Pt and use their information
on Pt to update their (conditional) return expectation:

rs,t = ln

⎛
⎜⎝

Pt + k
(
Pt − Pt

)

Pt

⎞
⎟⎠. (2.1)

Equation (2.1) describes a mean reverting attitude of informed agents. Their expected
returns is positive when current price is less than its fundamental value, and vice versa when
it is higher. In the development of this work we let Pt = P . This restriction reduces the
generality of the results, in particular it eliminates the random component from the model.
However, in this analysis the variety of the initial settings can be taken as the “surprise
component” which will trigger different market dynamics and equilibria. The restriction
does not alter significantly the main economic features of this model and it simplifies the
analytical treatment. Coherently with a world where the fundamental value of the riskier
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asset is constant, we can set expected return of the bond equal to zero (rf,t = 0). We express as
Y ∈ [0, 1] the market fraction composed of uninformed agents (the complement to unity will
consist of informed agents) and k ∈ (0, 1) is a mean reversion speed coefficient. The excess
demand for the stock which occurred in period t−1 (i.e.,wt−1) is taken as the expected excess
demand for period t:

we
t = wt−1. (2.2)

Such expectation is relevant to speculative purposes. Technical analysis, through its large
variety of rules, is substantially as an attempt to infer excess demand (along with its sign)
from the statistical analysis of past prices. Indeed in the real world, financial markets can
be expected to take precise directions (either bull or bear) if a significant volume in the
excess demand grows (taking one of the two possible signs). Such are the occasions where
speculators can profit. We assume that uninformed demand for the riskier asset is driven by
speculative motivation and is defined as

wY
t = Yχ1

we
t

1 +
∣∣we

t

∣∣ , (2.3)

where χ1 ∈ R−{0} is a sensitivity parameter. Linking current excess demand to its expectation
is a classical way to model a contagion mechanism (e.g., [18]). We do not specify how
uninformed agents obtain an estimate of we

t (it can be argued that some popular methods
based on the observation of past prices such as chart or technical analysis are adopted to
this purpose), nor dos we give details on the mechanism translating those estimates into
an investment decision. However, the overall result of such process is synthesized through
(2.3), where the higher the expected excess demand, the higher (in absolute value) the excess
demand which really occurs. Depending on the sign and the value of χ1 we can classify the
overall population of uniformed agents as momentum (χ1 > 0) or contrarian (χ1 < 0).

Turning to informed agents, we develop in what follows a model for their portfolio
optimization. Letting qRt and 1−qRt the time tweights of the stock and the bonds, respectively,
we specify the following equation for the rational excess demand of the risky asset:

wR
t = (1 − Y )χ2

(
qRt
(
we

t , rs,t−1
) − qRt (0, rs,t−1)

)
, (2.4)

where χ2 ∈ R − {0} is a sensitivity parameter for the rational demand and the expression
qRt (w

e
t , rs,t−1) shows the dependence on the expected return and the excess demand of the

equity. Equation (2.4) tells us that the excess demand generated by rational agents is a
(linear) function of the difference between qRt (w

e
t , rs,t−1) and qRt (0, rs,t−1), where the latter is

the quantity held by a rational investor in the absence of any excess demand.
Summing up wY

t and wR
t we obtain the expression of the market excess demand:

wt = wY
t +wR

t

= Yχ1
we

t

1 +
∣∣we

t

∣∣ + (1 − Y )χ2

(
qRt
(
we

t , rs,t−1
) − qRt (0, rs,t−1)

)
.

(2.5)
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We can now discuss price dynamics. Time t actual return of the risky asset is modeled
as

Δpt = ln

⎛
⎜⎝

Pt−1 + k
(
P − Pt−1

)

Pt−1

⎞
⎟⎠ + λwt−1, (2.6)

where Δpt = ln(Pt/Pt−1) represents the logarithmic return of the price, λ > 0 is a reaction
coefficient of price to excess demand. Equation (2.6)models price dynamics as a combination
of two components: the first is linked to the fundamental value of the stock and it is driven
by expectation of rational informed agents, the second is the influence of excess demand.
The case λ = 0 implies that excess demand does not affect (future) prices. The informational
driver and the herd behavior driver in (2.6) will dominate one over the other depending not
only on the direct effect of the coefficients k and λ. Consider, for example, a market condition
where at a given time twe observe high prices (Pt > P) and positive excess demand (wt > 0).
If the irrational investors dominates the market (i.e., Y tends to 1) and they applies aggressive
momentum strategies (χ1 > 1), the second component in (2.6)will sustain inflation of P , and
it will possibly dominate over the information driver which always acts as a mean reverting
of the stock price.

Notice that time t expected return of the stock is calculated by rational agents through
(2.1) leveraging on the information of the fundamental value P . Such expectation (2.1) will
not (in general) be equal to actual time t return (2.6). In other words rational investors cannot
be perfect price forecasters.

Denoting qRt (0, rs,t−1) as q̃t, we are now able to specify a dynamic model for the price
of the risky asset:

wt = Yχ1
wt−1

1 + |wt−1| + (1 − Y )χ2
(
q∗t − q̃t

)
,

q∗t = argmax g(wt−1, rs,t−1),

Pt =
[
Pt−1 + k

(
P − Pt−1

)]
expλwt−1,

rs,t = ln

⎛
⎜⎝

Pt + k
(
P − Pt

)

Pt

⎞
⎟⎠,

(2.7)

where g is a function depending on Markowitz efficient portfolios.

3. Rational Agent Optimization

Rational agents form their portfolio at time t optimizing the following performance indicator,
which is closely related to the Sharpe ratio:

g =
E[rπ]
Var[rπ]

, (3.1)
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where rπ is the return of a portfolio. The equivalence of the performance indicator g to the
Sharpe ratio [25] is clear: the variance of portfolio π is used instead of its standard deviation.
As it is known in the literature (e.g., [26, page 626]), the indicators of the type as g in (3.1)
show larger values for portfolios which are mean-variance efficient. It can be shown that an
optimal Sharpe ratio portfolio is also Markowitz efficient. To simplify the notation, next we
will denote the one period expected rate of return of the riskier asset rs,t−1 as rs and rf instead
of rf,t−1 for that of the bond whenever this will not generate confusion.

Based on standard portfolio theory, such objective can be expressed as the search of an
optimal weight vector q∗t satisfying:

q∗t = argmax g = argmax
qT
t r

qT
t Vt−1qt

, (3.2)

where rT = [rs rf] is the vector of stock and bond portfolio expected returns, qT
t = [qt 1−qt]

the vector of their percentageweights, Vt−1 is the variance-covariance estimatedmatrix at time
t − 1.

This paper proposes contagion as the baseline factor to generate a correlation
breakdown of assets returns. However, contagion is at the origin of other local changes in
the behavior of prices of financial assets, as it has been variously discussed in the literature
[8–10]. A first impact is the emergence of rational bubbles (or crashes) in the markets, where
prices follow evident climbing (or downhill) trends, which can been explained by a growing
“blind” consensus about the continuation of the going pattern. As long as such common belief
extends to other investors it self-realizes, as new buying (or selling) orders will extend in time
the bull (or the bear) phase. A second potential impact, which has received less attention
in the literature, is that on the variance of returns. Following logical arguments, growing
consensus is equivalent of a spreading common vision in the market. If a natural explanation
for the variance of returns is nonhomogeneity of agents’ beliefs, then markets are expected
to show decreasing variance of returns when consensus is spreading, such as during marked
bull (or bear) periods. Indeed, also from a mathematical point of view, given two sequences
of returns with the same absolute values, they will show a lower variance when they have
the same sign than in the case where their sign changes randomly. A persistent prevalence of
a sign in the returns is exactly what can be observed during bull or bear periods.

To summarize these facts, in this paper we assume that rational agents expect that
when the excess demand (positive or negative) increases:

(i) the variance of returns decreases;

(ii) the correlation of the two assets tends to unity.

In particular they use the following functions to estimate the variance (v) and the
correlation (ρ) as functions of the excess demand estimated at time t − 1:

vt−1 = α2e−2μw
2
t−1 ,

ρt−1 = −e−μw2
t−1 + 1,

(3.3)

where α ≥ 0 is a scale parameter of variance and μ ≥ 0 is a sensitivity parameter mitigating
or reinforcing the relevance of a contagion mechanism in a given market. When μ = 0 the
correlation does not depend anymore on the excess demand and it takes its natural value



Discrete Dynamics in Nature and Society 7

V

0

0.05
0.1

0.15
0.2

μ
−4

−2
w

2
4

0.02

0.04

0

(a)

0

0.05
0.1

0.15
0.2

μ
−4

−2
w

2
4

ρ

1

0.5

0

(b)

Figure 2:Graph of the variance (a) and of the correlation (b) as a function of excess demand and parameter
μ.

(i.e., the one in force under normal regime), which we assume to be zero for the two assets of
our model (see Figure 2).

We obtain the following model for Vt−1:

Vt−1 =

⎡
⎣ α2

1e
−2μw2

t−1 α1α2e
−2μw2

t−1ρt−1

α1α2e
−2μw2

t−1ρt−1 α2
2e

−2μw2
t−1

⎤
⎦. (3.4)

In general the portfolio variance in (3.2) is a risk measure depending negatively on the
absolute value of excess demand.

The optimization problem in (3.2), where Vt−1 is specified as in (3.4), has an explicit
solution (details are given in the appendices) depending on rs and wt−1:

q∗t (wt−1, rs)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− rf

rs − rf
+

√(
α2
1 + α2

2+2α1α2

(
e−μw

2
t−1 − 1

))((
rsα2 − rfα1

)2+2α1α2rfrse
−μw2

t−1
)

(
rs − rf

)(
α2
1 + α2

2−2α1α2

(
−e−μw2

t−1+1
)) if rs/=rf ,

α1α2

(
−e−μw2

t−1 + 1
)
−α2

2

2α1α2

(
−e−μw2

t−1+1
)
−α2

1−α2
2

if rs=rf .

(3.5)

Figure 3 plots the solution (3.5) for some values of the other parameters.
Recalling that q̃t = qRt (0, rs), from the expression (3.5) the value of q̃t can be easily

obtained as

q̃t = − rf

rs − rf
+

√
r2sα

2
2 + r2

f
α2
1

(
rs − rf

)√
α2
1 + α2

2

. (3.6)

In Appendix A, we give the mathematical details of the solution to the optimization
problem in (3.2) and briefly discuss its properties.
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Figure 3: Plot of the solution q∗t (wt−1, rs)with rf = 0.025, α1 = 0.15, and α2 = 0.1.

4. Dynamic System

We now observe that the third equation in (2.7) can be written in a more useful expression
in terms of rs,t. Indeed rs,t = ln((Pt + k(P − Pt))/Pt) implies that Pt = kP/(exp rs,t + k − 1)
provided that exp rs,t + k − 1/= 0. Such exclusion is economically justified, as it is equivalent to
excluding that P = 0, as it can be easily seen letting rs,t = ln(1 − k) in (2.1).

The third equation can be rewritten as

kP

exp rs,t + k − 1
=

(
kP

exp rs,t−1 + k − 1
+ k

(
P − kP

exp rs,t−1 + k − 1

))
expλwt−1, (4.1)

yielding

1
exp rs,t + k − 1

=
exp(rs,t−1 + λwt−1)
exp rs,t−1 + k − 1

, (4.2)

and finally

rs,t = ln
(

exp rs,t−1 + k − 1
exp(rs,t−1 + λwt−1)

− (k − 1)
)
. (4.3)

Putting together (2.5), (3.5), and (4.3), the evolution of the dynamic variables wt, rs,t
and q∗t is described by a three-dimensional discrete dynamic system:

wt = Yχ1
wt−1

1 + |wt−1| + (1 − Y )χ2
(
q∗t − q̃t

)
,

q∗t = argmax g(wt−1, rs,t−1),

rs,t = ln
(

exp rs,t−1 + k − 1
exp(rs,t−1 + λwt−1)

− (k − 1)
)
.

(4.4)
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At time t, starting from rs,t−1 and wt−1, the third equation supplies the return expected
by rational agents at time t for the risky asset whereas the second one gives the optimal
rational holdings q∗t . Finally we findwt by the first equation. Given the new valueswt and rs,t
the system can be iterated. Since q∗t is known given rs,t−1 andwt−1, we can eliminate the second
equation (which we analytically solve in Section 3) and finally consider a two-dimensional
map (wt−1, rs,t−1) → (wt, rs,t) defined as

wt = Yχ1
wt−1

1 + |wt−1| + (1 − Y )χ2
(
q∗t − q̃t

)
,

rs,t = ln
(

exp rs,t−1 + k − 1
exp(rs,t−1 + λwt−1)

− (k − 1)
)
,

(4.5)

which will generate different evolution of the system depending both on the coefficients and
the initial condition (w0, rs,0). The coefficients of the system (4.5) are χ1, χ2, Y, k, and λ, whose
possible values have been already discussed, and, next to this, the coefficient μ influencing
the optimal portfolio q∗t .

Our discussion will focus on the influence of several coefficients on the behavior of
system (4.5). Besides this we will try to show how some initial conditions (excess demand in
particular) will influence the emergence of fundamental and non fundamental equilibria, as
well as price orbits.

4.1. Fixed Point Analysis

To simplify notations, let us introduce the unit time advancement operator “′” to reexpress
(4.5):

w′ = Yχ1
w

1 + |w| + (1 − Y )χ2
(
q∗ − q̃

)
,

r ′s = ln
(
exp rs + k − 1
exp(rs + λw)

− (k − 1)
)
.

(4.6)

The fixed points (w∗, r∗s) of system (4.6) will be named fundamental equilibria when the
condition P ∗ = P is verified, where P ∗ is the corresponding price to r∗s . Other equilibria will
be named non fundamental.

In the following proposition we show the existence of at least one equilibrium point
(fundamental solution) for the system (4.6), given by the fixed points of the map (4.6).

Proposition 4.1. The pointQ0 = (w∗, r∗s) = (0, 0) is an equilibrium for the model (4.6) for all values
of the parameters.

Proof. The following system is satisfied at the equilibrium:

w∗ = Yχ1
w∗

1 + |w∗| + (1 − Y )χ2
(
q∗ − q̃

)
,

r∗s = ln
(

exp r∗s + k − 1
exp(r∗s + λw∗)

− (k − 1)
)
,

(4.7)
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rearranging terms, the second equation becomes:

exp r∗s + k − 1 =
exp r∗s + k − 1
exp(r∗s + λw∗)

, (4.8)

yielding

exp(r∗s + λw∗) = 1. (4.9)

Solving such equality, system (4.7) is equivalent to

w∗ = Yχ1
w∗

1 + |w∗| + (1 − Y )χ2
(
q∗ − q̃

)
,

r∗s = −λw∗.

(4.10)

When w∗ = 0, the first equation is satisfied, since q̃ = qR(0, rs) by definition and the second
equation yields the solution r∗s = 0 for every λ/= 0. This completes the proof.

Observe that when Pt = P then rs = 0, as it can be verified by inspection of (2.1).
Rational agents fix to zero the expected return of the risky asset when current price is equal to
its fundamental value. So Pt = P coupled withwt = 0 and rs = 0 is a fundamental equilibrium
solution for (2.7).

When rs = r∗ /= 0 eventual other equilibria have the form (w∗,−λw∗), where the
expression of w∗ is implicitly described by the first equation in (4.10).

Given that rs is obtained through a monotone transformation of price Pt, we do not
risk losing possible solutions of the original system.

4.2. Local Stability Analysis of the Fundamental Solution (0, 0)

4.2.1. The Contagion Effect

In the previous paragraph we have shown that Q0 = (w∗, r∗s) = (0, 0) is an equilibrium point
for the model (4.6); now we want to study the existence of other equilibria and their stability
when all agents act following the market demand (Y = 1). In this case the system (4.6)
becomes

w′ = χ1
w

1 + |w| ,

r ′s = ln
(
exp rs + k − 1
exp(rs + λw)

− (k − 1)
)
,

(4.11)

as the rational component vanishes. Following the standard dynamic systems theory (see
[27]), the local stability analysis of the fixed point is based on the location, in the complex
plane, of the eigenvalues of the Jacobian matrix (for this and the other cases we refer to
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Appendix B for detailed calculations needed to construct the Jacobian matrix):

J(0, 0) =

[
χ1 0

−kλ 1 − k

]
. (4.12)

The eigenvalues are λ1 = χ1 and λ2 = 1 − k; observe that λ2 is always less than 1 in
absolute value, given that k ∈ (0, 1) under the hypothesis of our model; then the stability
analysis of (0, 0) depends on the λ1 eigenvalue (i.e., on the value of the parameter χ1).

More precisely, Q0 = (0, 0) is a stable equilibrium if |χ1| < 1. χ1 = 1 and χ1 = −1 are
bifurcation values. When |χ1| > 1 the point Q0 becomes unstable and different situations can
occur depending on cases χ1 > 1 and χ1 < −1. When χ1 > 1, two new equilibria w∗

1 = χ1 − 1
andw∗

2 = −χ1 +1 appear corresponding to the pointsQ1 = (χ1 −1,−λ(χ1 −1)) andQ2 = (−χ1 +
1,−λ(−χ1 + 1)) in the phase plane (w, rs), as a consequence of the bifurcation occurring when
χ1 = 1. The nature of this bifurcation can be examined by studying the one-dimensional fam-
ily of maps w′ = f(w, χ1), where f(w, χ1) = χ1(w/(1 + |w|)) depending on the parameter χ1.

At (0, 1) we obtain

∂f(0, 1)
∂w

= 1,
∂2f(0, 1)
∂w∂χ1

= 1,
∂3f(0, 1)
∂w3

= 6, (4.13)

so the conditions (4.13) guarantee that (0, 1) determines a supercritical pitchfork bifurcation.
A value of χ1 > 1 shows the tendency of the uninformed agents to overreact to

signals about excess demand. Whenw is just greater than 0, they respond raising next period
demand further until level w∗

1 = χ1 − 1 is reached. At that point excess demand stabilizes.
At the same time the equity price grows to P ∗

1 = k/(e−λ(χ1−1) − 1 + k)P . Since P ∗
1 > P ,

if excess demand is positive the factor k/(e−λ(χ1−1) − 1 + k) is greater than 1; this implies
1 < χ1 < ((λ − ln(1 − k))/λ). So a further condition χ1 < ((λ − ln(1 − k))/λ) is also required to
guarantee market consistency. Mean reverting expectation of rational investors r∗s = −λ(χ1−1)
is negative when P ∗

1 > P . However, price remains high when Y = 1 no rational investors are
present in the market to balance the positive excess demand generated by the speculators.

On the contrary when excess demand is negative, uninformed agents respond selling
even more until the level w∗

2 = 1 − χ1 is reached. Following similar arguments when w < 0
an equilibrium price is reached at price P ∗

2 = k/(e−λ(1−χ1) − 1 + k)P which must be less than
P under standard market conditions. The inequality χ1 > (λ − ln(1 − k))/λ must be satisfied
and corresponding rational expected return r∗s = −λ(1 − χ1) is positive.

In order to study the local stability of the new fixed pointsQ1 = (χ1−1,−λ(χ1−1)) and
Q2 = (−χ1 + 1,−λ(−χ1 + 1))we compute the eigenvalues of the Jacobian matrix in Q1 and Q2.

Being

J(Q1) =

⎡
⎣

1
χ2
1

0

−λ + λ(k − 1)eλ(χ1−1) (1 − k)eλ(χ1−1)

⎤
⎦, (4.14)

the eigenvalues are λ1 = 1/χ1 and λ2 = (1 − k)eλ(χ1−1); as we are examining the case χ1 > 1, λ1
is always in absolute value less than 1; |λ2| < 1 when (1 − k)eλ(χ1−1) < 1 that implies χ1 <
(λ− ln(k−1))/λ. As we already observed, in the casew > 0 this inequality is always satisfied,
as coherent with the condition of market consistency.
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With similar calculations

J(Q2) =

⎡
⎢⎢⎣

1
χ2
1

0

−λ + λ(k − 1)eλ(−χ1+1) (1 − k)eλ(−χ1+1)

⎤
⎥⎥⎦, (4.15)

with eigenvalues λ1 = 1/χ1 and λ2 = (1 − k)eλ(−χ1+1); the first one is always less than 1 in
absolute value whereas |λ2| < 1 when (1− k)eλ(−χ1+1) < 1, which implies χ1 > (λ− ln(1− k))/λ
that is always satisfied.

PointsQ1 andQ2 correspond to two nonfundamental asymptotically stable equilibria.
Finally, if χ1 = −1 a flip bifurcation occurs and when χ1 < −1 a two-period cycle

appears in the phase plane (w, rs), whose elements are {w∗
3,w

∗
4},w∗

3 = χ1 + 1,w∗
4 = −χ1 − 1.

These elements can be identified through a double iteration of the system (4.11):

w′′ = χ2
1

w(
1 +

∣∣χ1(w/(1 +w))
∣∣)(1 + |w|)

r ′′s = ln

( (
exp rs + k − 1

)
/ exp(rs + λw)((

exp rs + k − 1
)
/ exp(rs + λw) − (k − 1)

)
expλχ1(w/(1 + |w|)) − (k − 1)

)
,

(4.16)

yielding two fixed points Q3 = (−χ1 − 1, ln((1 + (1 − k)eλ(χ1+1))/(eλ(χ1+1) + 1 − k))) and Q4 =
(χ1 + 1, ln((1 + (1 − k)e−λ(χ1+1))/(e−λ(χ1+1) + (1 − k)))).

As a consequence of the contrarian attitude of this market (χ1 < 0), positive excess
demand in period t turns into negative demand in period t + 1. In particular the values of
the excess demand orbit are w∗

3 = −χ1 − 1 and w∗
4 = χ1 + 1. The pressure on the price will

accordingly wave from up and down. Corresponding market prices oscillate between two
values P3 < P < P4. In particular we have

P3 =
eλ(χ1+1) + (1 − k)

2 − k
P < P ,

P4 =
e−λ(χ1+1) + 1 − k

2 − k
P > P .

(4.17)

Appendix C shows all required calculations and other details of such results.
The analysis of the two-period orbit stability is not an easy task, as must be done by

studying the stability of fixed pointsQ3 andQ4; however, simulation analysis reveals a stable
orbit (see Figures 4 and 5).

Figure 6 shows the equilibria stability in an example with different values of
parameters χ1. Figure 6(a) shows the graph of f(w, χ1) for two values of χ1; from χ1 = 0.8 to
χ1 = 4 a Pitchfork bifurcation occurs. Figure 6(b) shows the graph of f(w, χ1) for two values
of χ1 (i.e., −0.8 and −4) and the equilibrium valuesw∗ included in the two-periods orbit. The
convergence path is clearly pointing to the origin when χ1 = −0.8; vice versa it draws a cycle
of period two when χ1 = −4.

We summarize the results of this section in Table 1.
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Table 1: Fixed point solutions depending on parameter χ1.

Case Asymptotic stability Equilibrium price

χ1 > 1
Q0 = (0, 0) unstable P0 = P unstable
Q1 = (χ1 − 1,−λ(χ1 − 1)) stable P1 > P stable
Q2 = (−χ1 + 1,−λ(−χ1 + 1)) stable P2 < P stable

−1 ≤ χ1 ≤ 1 Q0 = (0, 0) stable P0 = P stable
χ1 < −1 2-period orbit {w∗

3,w
∗
4}, w∗

3 = −χ1 − 1,w∗
4 = χ1 + 1 2-period orbit (P3,P4)

4.2.2. The Rational Effect

Let us suppose now that all the investors act rationally (Y = 0); in this case system (4.6)
becomes

w′ = χ2
(
q∗ − q̃

)
,

r ′s = ln
(
exp rs + k − 1
exp(rs + λw)

− (k − 1)
)
,

(4.18)

where q∗ is calculated as in (3.5) and q̃ as in (3.6).
The Jacobian matrix in (0, 0) is

J(0, 0) =

[
0 0

−kλ 1 − k

]
, (4.19)
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whose eigenvalues are λ1 = 0 and λ2 = 1 − k. Since under standard assumptions k ∈
(0, 1), the eigenvalues are always less than 1 in absolute value, the solution (0, 0) is always
asymptotically locally stable for every value of the parameter χ2.

This can be easily seen also from system (4.18). When all rational investors start from
a zero excess demand (wt−1 = 0) their optimal demand for the risky assets is q∗ = q̃ (by the
definition of q̃). As a consequence next period excess demand is again wt = 0.

Inspecting again system (4.18)we obtain that rs,t = 0, which implies that current price
of the risky asset is equal to its fundamental value (Pt = P).

Outside the fundamental solution the inspection of other fixed points is by far less
simple. Actually some simulation and numerical analysis can be the only way to inspect
other possible equilibria resulting in a market fully populated by informed agents. Figure 7
represents w′ as a function of w and the parameter α1, that is, the one-dimensional family of
maps w′ = g(w, α1). In all three panels the plane w′ = w always intersects g(w, α1) at w = 0,
that is corresponding to the fundamental solution. However it is also possible to observe that
for values of parameter α1 less than about 0.05 (panel (a)) and 0.025 (panel (b)), g(w, α1)
intersects the plane w′ = w in other two points, call them w1 and w2. Corresponding to such
intersections, we see in Figures 7(a) and 7(b), that the graph of g(w, α1) “vanishes” below the
bisecting plane w′ = w. See also Figure 7(d) where these intersections (w1 and w2) are also
shown for a fixed value of parameter α1. For simple analytical properties of g(w, α1) points
w1 can never be a stable solution. On the contraryw2 can be both a stable or unstable solution.
In the cases represented in Figure 7(d), where χ2 = 30 and χ2 = 15 we can observe that w2 is,
respectively, an unstable and stable solution.

Besides a stable non equilibrium fixed point, the full rational scenario can also generate
stable orbits of various periods. The occurrence of such a situation can be attributed to
particular combinations of the parameters and the initial values of the system. Markets can be
hit occasionally by unexpected good (bad) news, shifting the fundamental value of the risky
asset and attracting (chasing away) new significant portions of demand. Rational traders can
then try to anticipate a possible demand rush and change the correlation estimate based on
(3.3). Depending on the values of some parameters, even a market dominated by rational
investors can be captured into dynamics keeping the system steadily out of equilibrium.
Paradoxically at the origin of such imbalance is a “rational” yet myopic intent to prevent
it. Indeed each agent optimizes rationally a private portfolio problem, without considering
that many individuals, with an identical intent, are jointly swelling the order book on the
same side.

In Figure 8 panels (a.1) and (a.2) show the trajectories of stable orbits of period 5.
In particular panel (a.1) shows the corresponding time series of rs and w while in panel
(a.2) the trajectories are plotted in the phase plane. The emergence of orbits tend to occur
especially when coefficient χ2 is high (i.e., high impact on demand as a consequence of
portfolio adjustments), when the ratio α1/α2 ↓ 1 (i.e., small difference in volatility between
the two traded assets), and coefficient μ is high (i.e., the correlation breakdown effect
increases).

When χ2 assumes intermediate values such as 20 and the ratio α1/α2 lays in an interval
similar to that already discussed in Figure 7, the system allows the emergence of two stable
equilibria (see Figure 8 panels (b.1) and (b.2)): one is the fundamental solution (w = 0, rs =
0,P = P), the other is a non-fundamental equilibrium (with w < 0, rs > 0 and P < P). Finally
if the influence parameter is low enough such as χ2 = 5 (see Figure 8(c)), then the only fixed
point appears to be the fundamental solution whatever the starting point.
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4.2.3. Mixed Rational and Speculators Market

In the more general case the market is composed of a positive percentage of both informed
and uninformed agents; in this case the market dynamics are described by the following
system:

w′ = Yχ1
w

1 + |w| + (1 − Y )χ2
(
q∗t − q̃

)
,

r ′s = ln
(
exp rs + k − 1
exp(rs + λw)

− (k − 1)
)
.

(4.20)

The Jacobian matrix in (0, 0) is

J(0, 0) =

[
Yχ1 0

−kλ 1 − k

]
, (4.21)

with eigenvalues λ1 = Yχ1, λ2 = 1 − k.
The situation we can observe is due to the convex combination (with coefficient Y )

of the two different effects (contagion and rational), thus the analysis of the fundamental
equilibrium (0, 0) is similar to the analysis already done: taking k ∈ (0, 1), the condition
|λ2| < 1 is always satisfied, the solution (0, 0) is locally asymptotically stable if |Yχ1| < 1.
When |Yχ1| > 1, the equilibrium point becomes unstable; Yχ1 = −1 and Yχ1 = 1 are
bifurcation values. In particular, when Yχ1 = 1 a pitchfork bifurcation occurs and for
Yχ1 > 1 the equilibrium (0, 0) loses stability whereas two new equilibria, having the form
(w,−λw), appear. Figure 9 depicts this situation for χ2 = 5 and for suitable values of the
other parameters.

When Yχ1 = −1 a flip bifurcation occurs, and a 2-period cycle appears as a solution of
the system (4.20).

As pointed before, in the case |Yχ1| < 1 the analytical study allows us to conclude that
the solution (0, 0) is always locally asymptotically stable, but we have no other information
concerning the existence of eventual other fixed points; actually, some simulation study
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shows that as −1 < Yχ1 < 1 two other solutions of system (4.20) can appear, both for negative
values of the variable w (see Figure 10).

As one can imagine, the combination of rational and irrational agents will generate
intermediate market conditions of the two already discussed. Given the partial analytical
tractability, we can only extract some qualitative observations from Figure 11, where four
representative cases are shown. In Figure 11 we plot the graph of excess demand as a function
of the percentage Y of irrational agents and the excess demand level in t−1. Those graphs are
intersected by the plane w = w′, so the intersections represent the fixed points of our system.
Parameter χ2 is set to 15, that is, the intermediate value used in the rational agents subsection.

Starting from the case where χ1 = 4 (Figure 11(a)), we observe that the combination
of highly responsive momentum speculator and rational agents generate a large variety of
market dynamics. The fundamental solution is composed by the segments U0 and S0 which
lay on the line of coordinates (Y, 0, 0) and are separated by a value Y0. This percentage of
Y is low enough to let rational mean reversion contrast the momentum speculation and to
turn as a result the fundamental solution from unstable to stable. Under the same setting
of Figure 11(a) we also can obtain two stable non fundamental equilibria S1 and S2; with
respect to S1, this equilibrium consists of a price steadily higher than P and sustained by the
speculators. On the contrary S2 consists of a stable equilibriumwhere the price remains below
P ; despite its geometrical continuity its origin is very different depending on the prevalence
of speculators rather than rational investors. Finally it must be said that when there is a
prevalence of rational agents we can suppose that a two-period orbit appears with excess
demand waving from negative to positive, and prices alternatively switching from above
and below the fundamental value.

Turning to Figure 11(b)we mix extremely contrarian speculators (χ1 = −4) along with
rational agents. Similarly as in the case of Figure 11(a) the fundamental solution is stable
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Figure 11: Different behaviours of agents for χ2 = 15 and many values of χ1.

only if there is a large presence of rationals (segment S0). Besides, the large presence of
rationals can also determine non fundamental solutionsU1 (unstable) and S1 (stable), as long
as the excess demand goes lower than zero, which we have already discussed. If contrarian
speculators prevail, we can suppose that the two-period orbit appears.

In Figure 11(c) we combine moderately momentum speculators (χ1 = 0.8) with
rational agents. As we expect from the separate analysis of the two kinds of agents, the
fundamental solution (S0) is always stable; surprisingly enough, the only source of possible
non equilibrium solutions is represented by the large presence of rational agents. As the
excess demand lowers below zero, two equilibrium solutions appears, U1 (unstable) and
S1 (stable). As in the previous cases, S1 is characterized by a price of the risky asset lower
than its fundamental value.

In Figure 11(d) (χ1 = −0.8) the market conditions are quite similar to those in
Figure 11(c), even though speculation is moderately contrarian in this case. The fundamental
solution S0 is stable for any level of Y , the emergence of non fundamental equilibrium S1 is
still represented by a large presence of rational agents, even though less are required than in
the case of Figure 11(c). The contrarian speculator, indeed, enhances the emergence of this
non fundamental solution.

Figure 12 shows several interesting properties of our model. It is organized in two
columns of five plots on the left (Figure 12(a)) and five on the right (Figure 12(b)). In
particular, Figure 12(a) refers to a case where rational investors are more critical then
speculators: parameter χ2 (χ2 = 30) is much larger than χ1 (χ1 = 0.5). In this way the decisions
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Figure 12: Continued.
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Figure 12: Plot of time evolution of some variables (mixed case).

of the rational investors have a larger impact on the market than those of speculators,
although the numerical composition of the two kinds of agents is even (Y = 0.5). We
can think of this case as one where the individuals in the rational group are on average
wealthier and dominate the market. Besides, it is worth recalling that a parameter χ1 = 0.5
corresponds to the case where speculators are moderately “momentum.” The five plots of
Figure 12(b) represent a case which in some sense is opposed to (a). Indeed here speculators
have a stronger impact than rational investors, as it can be deduced observing the sensitivity
parameters χ1 = −4 and χ2 = 3.

Both panels show the dynamics of five key variables of our model: expected returns
(rs), excess demand (w), correlation between the two assets (ρ), price of the risky asset
(P), and the difference between the optimal quantities of the risky asset in the portfolio
of rational agents (i.e., q∗t − q̃t = q∗t (wt−1, rs) − q̃t(0, rs) which appears in the system (2.7)).
The dynamics of each variable is computed starting from five different values of the excess



22 Discrete Dynamics in Nature and Society

St
an

d
ar
d
d
ev

ia
ti
on

st
oc
k
in
d
ex Same week

8days later

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

−6 −5 −4 −3 0 3 4 5 6

Prevailing signs of the US Datastream Stock Index return
observed over a week period

(a)

Same week

8days later

St
an

d
ar
d
d
ev

ia
ti
on

bo
nd

pr
ic
e

−6 −5 −4 −3 0 3 4 5 6
0.0036

0.0038

0.004

0.0042

0.0044

0.0046

0.0048

0.005

Prevailing signs of the US Datastream Stock Index return
observed over a week period

(b)

Figure 13: The figure shows the dependency of the standard deviation of given returns from a “consensus”
variable, which sums up the prevailing sign on a period of 6 days observed on the daily return series of the
Datastream US Stock Index. We call prevailing sign that most frequently observed on a given number
of returns. The cases of −3 and 3 verify when a period of 6 days reduces to 5 due to, for example, a
market close. The case of 0 is that of no prevailing sign. (a) shows the weekly standard deviation of the
daily returns of the Datastream US Stock Index. (b) shows the weekly standard deviation of the returns
calculated on the daily price of the 25 yrs. Treasury bond issued on september 1986.

demand (w0 = −2,−1, 0, 1, 2), so we distinguish five trajectories in each graph. The trajectory
originating inw0 = 0 respects only one of the conditions of the fundamental equilibrium. The
other (i.e., rs,0 = 0) is not met, as in both panels the starting price (P0) is fixed to 1.1, so, given
a fundamental value P = 1, the initial expected return of the risky asset is equal to −0.01835
for all five the trajectories. So none of them starts in an equilibrium.

It is possible to observe in Figure 12(a) that two trajectories are clearly unstable
(trajectories number 1 and 5, resp., the darker and the lighter lines) in all the five plots. It
is interesting to observe that these two trajectories correspond to the most extreme starting
values of the excess demand (i.e., w0 = −2,w0 = 2, excess demand of Figure 12(a)). What
explains such behavior is that excess demand influences price formation (i.e., the contagion
effect) and when it takes large values, it moves prices away from their fundamental value. At
the same time rational investors use the extreme values of excess demand to fix a correlation
estimate close to 1 (see plot of correlation in Figure 12(a)). In this way they form their
portfolios asking for percentages of the risky asset somewhat different from the case of small,
or null value of excess demand (see plot of q∗t − q̃t, Figure 12(a)). However, their choice
contributes significantly to next period excess demand, and so they reinforce next period
contagion mechanism.

Quite an opposite case takes place in Figure 12(b), where speculators are dominant
and are of contrarian type, that is they bet on the reversal of the excess demand. Such
antithetic behavior forbids excess demand to deviate significantly from zero, so that also
all other relevant variables do not deviate significantly from the fundamental equilibrium.
As it is possible to observe in the first plot of Figure 12(b), the four expected returns
trajectories corresponding to an initial nonzero value of excess demand oscillate around the
one corresponding to the initial valuew0 = 0. Such fluctuations are well evident in the graph
of excess demand (Figure 12(b)), with w switching symmetrically from −.89 to .89. These
alternating values correspond to the strategy of contrarian investors, which keep recorrecting
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their previous move. In this way they end up with neutralizing most of their influence on
prices, which in the long run revert towards their fundamental value. Such reversion can
be observed in the graph of price (Figure 12(b)). Though prices keep oscillating, the center
of these trajectories tends indeed to P = 1. In the end expected returns, prices, and excess
demand enter into a 2-period orbit similarly to the case when only (contrarian) speculators
populate the market. It is finally worth noticing that contrarian speculators and rational
agents tend indeed to neutralize each other. This can be observed comparing q∗t − q̃t and
w which (after the first 8 periods) regularly take opposite signs.

4.3. Some Empirical Evidence

We report some empirical evidence which justify part of the assumptions of this work, with
particular reference to the form of the variance-covariance estimate used by rational agents
in (3.4). We collected the daily series of the of the US Stock Index calculated by Datastream
and the daily series of prices of US Treasury bond, 25 years maturity, issued on September
1986, for the period from janurary-1-1993 to March-31-2008.

To the purpose of obtaining a proxy of the excess demand for the stock index, we
elaborated a “consensus” variable based on the number of signs observed on the returns on
a period of 6 days. In particular we considered the following summations:

#+t =
5∑
i=0

IR+(rt−i),

#−t =
5∑
i=0

IR−(rt−i),

(4.22)

where I(·) is the indicator function and rt is the return observed on the Datastream US Stock
Index. Those summations count, respectively, the number of positive and negative returns
occurred in the six days from t back to t − 5 (including t). Our consensus variable is then
defined as

ct =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

#+t if #+t > #−t ,

−#−t if #+t < #−t ,

0 if #+t = #−t .

(4.23)

The reason why ct can be considered as a proxy for the excess demand at time t is the it can
be argued that when contagion mechanism is acting in a market during a given period, then
a sign of the returns should clearly prevail, depending on the kind of sentiment. Moreover,
it can be assumed that the stronger a sign is prevailing in a given period, the stronger is the
contagion hitting a market.

Figure 13 shows the graph of the weekly standard deviation of the returns of the two
series as a function of the consensus variable. More precisely letting ct the consensus observed
in t, the standard deviation has been calculated on two periods of time: the “same week”
(i.e., between t and t − 4) and “8 days later” (i.e., between t + 8 and t). It can be noticed
that the standard deviation of the returns of both the series in usually higher when there is
no strong sign prevalence, that is, when ct = {−4,−3.0, 3, 4} (the cases −3 and 3 arise when
one day out of six corresponds to a market close). The same statistic clearly lowers when
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Figure 14: Correlation between the returns of the stock index and the bond price.

the consensus variable takes more extreme values. It is interesting to notice that the decrease
in the standard deviation is more marked about a week later, especially for the extremely
negative value of ct (i.e., −6) and with particular reference to the bond series. This seems to
show that in the US market agents “remember.” In other words the effects of contagion (as
long as they are captured by our consensus variable) tend to last longer than the week they
first appeared. In the case of the bond series, the effects of negative contagion (on the stock
market, which is what is measured by ct) take about a week to appear. Figure 14 shows the
correlation between the returns of the stock index and the bond price, calculated considering
five consecutive working days dating back from t+ 2, t+ 3, t+ 5 and t+ 10 for different values
of the consensus ct. The four graphs are very similar, showing increasing positive correlation
when ct is extremely negative or positive. Again, such correlation seems stronger 10 days
later than in the week where the consensus was calculated.

Such evidence is strongly consistent with the variance and the correlation functions
which we assumed in (3.3). Also the hypothesis that rational investors anticipate the event of
the correlation breakdown appears to be justified, given the persistence of contagion effects
on the correlation and the standard deviation.

This evidence is also consistent with some of the results which we obtained through
our model. The persistence of positive correlation between the stock index and the bond after
that a marked pessimistic or optimistic contagion has spread in the market, is also predicted
from our model. When the market is characterized by a significant portion of rational agents,
our model can generate stable orbits where returns and excess demand swing from periods
where they are markedly positive to periods where they are negative, so that predicted
correlation keeps close to one for several more periods (infinitely many times).

5. Conclusions
We have developed amodel where excess demand directly influence variance and correlation
of asset returns. Informed investors follow rational portfolio decisions. Uninformed investors
may act as momentum or contrarian speculators, based on their expectation of excess
demand. We have found the conditions under which a market entirely driven by speculators
converges towards a stable fundamental equilibrium (price reflecting its intrinsic value) or
diverges to an orbit with prices oscillating around their fundamental value.
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More surprising is the analysis of equilibrium when market is entirely based on
rational informed investors. We have shown that when these agents anticipate the effect of
excess demand they can generate both stable fundamental equilibrium as well as unstable
price dynamics. The explanation of this (somehow) surprising result is due to the anticipation
effect of excess demand on rational portfolio decision. When excess demand reaches (for
external reasons) unusually high or low values, informed investors anticipate the “escape
to unity” of returns correlation. However, following standard portfolio theory they will also
alter their portfolio composition favoring extreme solutions (i.e., portfolio composed by all
stocks or all bonds). In conclusion, anticipating events can be the origin of market instability,
even when rational behavior dominates the market. The implication for the rational investors
is to be cautious in their attempt to anticipate possible correlation breakdowns, since they
can end up reinforcing the contagion effects more than protecting from it. The analysis of
how rational investors should optimally use their information advantage can be the object of
further research.

When finally the market is composed of both informed rational investors and uninfor-
med speculators, the effects are mixed and prices can show various dynamics. Through
simulation analysis we identify the minimal percentage of rational investors assuring a local
fundamental market equilibrium for such a general case.

Appendices

A. Rational Agent Optimization: Solution of the Problem

Here we give the necessary calculations in order to solve the optimization problem examined
in Section 3. We can solve the problem in a general case of a variance-covariance matrix V =[
α γ
γ β

]
, where coefficients represent the variance (α and β) of two assets and γ their covariance.

It is well known that this matrix is symmetric and definite positive, and that qT
t Vqt

represents the portfolio variance:

qT
t Vqt = αq2t + 2γqt

(
1 − qt

)
+ β
(
1 − qt

)2
. (A.1)

The problem of maximizing the performance indicator (3.1) is related to the solution of
financial portfolio diversification depending on the variable qt, then it can be solved searching
the maximum value of the following one-variable function f(qt):

f
(
qt
)
=

qtrs +
(
1 − qt

)
rf

αq2t + 2γqt
(
1 − qt

)
+ β
(
1 − qt

)2 . (A.2)

Being f(qt) a differentiable function, its extreme values are obtained by applying
standard optimization methods; elementary calculations yield

f ′(qt
)
=

(
rs − rf

)(−αq2t + 2γq2t − βq2t
) − 2rf

(
αqt − 2γqt + βqt

)
+
(
rs − rf

)
β − 2rf

(
γ − β

)
(
αq2t + 2γqt

(
1 − qt

)
+ β
(
1 − qt

)2)2 .

(A.3)
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When rs /= rf , the equation f ′(qt) = 0 yields the two solutions q∗1,t and q∗2,t which can be
seen as functions of the variable rs

q∗1,t(rs) =
rf
(
α − 2γ + β

) −
√
r2
f

(
α − 2γ + β

)2 − (rs − rf
)(−α + 2γ − β

)((
rs − rf

)
β − 2rf

(
γ − β

))
(
rs − rf

)(−α + 2γ − β
) ,

q∗2,t(rs) =
rf
(
α − 2γ + β

)
+
√
r2f
(
α − 2γ + β

)2 − (rs − rf
)(−α + 2γ − β

)((
rs − rf

)
β − 2rf

(
γ − β

))
(
rs − rf

)(−α + 2γ − β
) ,

(A.4)

observe that (−α+2γ−β) < 0 under standard conditions. Two different cases may be discussed
depending on rs ≷ rf :

(i) rs < rf ; in this case it is easy to verify that q∗1,t < q∗2,t, the function f(qt) is monotone
decreasing in (q∗1,t, q

∗
2,t) and increasing otherwise, then q∗1,t is a point of maximum

for f(qt);

(ii) rs > rf ; in this case q∗1,t > q∗2,t, the function f(qt) is monotone increasing in (q∗1,t, q
∗
2,t)

and decreasing otherwise, then again q∗1,t is a point of maximum for f(qt).

When rs = rf the optimal solution q∗1,t(rs) is not defined, as it is easily checked in (A.4);
however (the authors will provide all the mathematical details should the reader request
them):

lim
rs → rf

q∗1,t(rs)

= lim
rs → rf

rf
(
α − 2γ + β

) −
√
r2f
(
α − 2γ + β

)2 − (rs − rf
)(−α + 2γ − β

)((
rs − rf

)
β − 2rf

(
γ − β

))
(
rs − rf

)(−α + 2γ − β
)

= −
(
γ − β

)

α − 2γ + β
.

(A.5)

Moreover when rs = rf the equation f ′(qt) = 0 gives only one solution q∗t = −(γ − β)/(α −
2γ + β), which coincides with the previous limit. So limrs → rf q

∗
1,t = q∗t and the function q∗1,t(rs)

is continuous in rf .
As an additional confirmation observe that the function f(qt) is monotone increasing

in qt < −(γ − β)/(α − 2γ + β) and decreasing otherwise, then q∗1,t(rs) is overall maximum.
We are finally able to define the maximum value of f(qt) as a real-valued continuous

function q∗t : R → R:

q∗t (rs)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

rf
(
α− 2γ+ β

)−
√
r2f
(
α−2γ+ β

)2−(rs−rf
)(−α+ 2γ− β

)((
rs−rf

)
β − 2rf

(
γ − β

))
(
rs−rf

)(−α+2γ− β
) if rs/=rf

−(γ−β)

α−2γ+β if rs=rf .

(A.6)
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Figure 15: Zero-points curve of the equation f ′(qt) = 0.

Let us observe again that, being

lim
rs →±∞

q∗t (rs) = ± β√
β
(
α + β − 2γ

) , (A.7)

q∗t (rs) is a limited function between the values −β/√β(α + β − 2γ) and β/
√
β(α + β − 2γ).

Figure 15 shows the graph of q∗1,t(rs) and q∗2,t(rs).

A.1. Specification of Variance and Covariance Matrix Vt

Now we apply the previous results to compute q∗t in the case of the variance-covariance
matrix Vt−1 defined in the Section 3.

First, it is convenient to rewrite q∗t (rs) as follows

q∗t (rs)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− rf

rs − rf
−

√
r2
f

(
α − 2γ + β

)2− (rs − rf
)(−α+2γ−β)((rs−rf

)
β−2rf

(
γ−β))

(
rs − rf

)(−α + 2γ − β
) if rs/=rf ,

−(γ − β
)

α − 2γ + β
if rs=rf .

(A.8)

Recall that the expression of the matrix Vt−1 is

Vt−1 =

⎡
⎣ α2

1e
−2μw2

t−1 α1α2e
−2μw2

t−1
(
−e−μw2

t−1 + 1
)

α1α2e
−2μw2

t−1
(
−e−μw2

t−1 + 1
)

α2
2e

−2μw2
t−1

⎤
⎦, (A.9)
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which can be decomposed in the following way to focus on the correlation between the two
assets:

Vt−1 =

⎡
⎣α1e

−μw2
t−1 0

0 α2e
−μw2

t−1

⎤
⎦
⎡
⎣ 1 1 − e−μw

2
t−1

1 − e−μw
2
t−1 1

⎤
⎦
⎡
⎣α1e

−μw2
t−1 0

0 α2e
−μw2

t−1

⎤
⎦, (A.10)

when μ = 0 we revert to the case of two uncorrelated assets with fixed variance α2
1 and α2

2,
which is a standard case of Markowitz analysis:

Vt−1 =

[
α2
1 0

0 α2
2

]
. (A.11)

Computing

(−α + 2γ − β
)
= e−2μw

2
t−1
[
−α2

1 + 2α1α2

(
−e−μw2

t−1 + 1
)
− α2

2

]
,

β − γ = e−2μw
2
t−1
[
α2
2 − α2α1

(
−e−μw2

t−1 + 1
)]

,

(A.12)

we have, for rs /= rf

q∗t (wt−1, rs) = − rf

rs − rf
+

√(
α2
1 + α2

2 + 2α1α2

(
e−μw

2
t−1 − 1

))((
rsα2 − rfα1

)2 + 2α1α2rfrse
−μw2

t−1
)

(
rs − rf

)(
α2
1 + α2

2 − 2α1α2

(
−e−μw2

t−1 + 1
)) ,

(A.13)

and, for rs = rf

q∗t (wt−1, rs) =
−(γ − β

)

α − 2γ + β
=

α1α2

(
−e−μw2

t−1 + 1
)
− α2

2

2α1α2

(
−e−μw2

t−1 + 1
)
− α2

1 − α2
2

, (A.14)

which are reported in (3.5).
When in particular μ = 0 we obtain

q∗t (wt−1, rs) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− rf

rs − rf
+

√(
α2
1 + α2

2

)(
r2sα

2
2 + r2

f
α2
1

)

(
rs − rf

)(
α2
1 + α2

2

) if rs /= rf

α2
2

α2
1 + α2

2

if rs = rf .

(A.15)
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B. Jacobian Matrix: Computation of the Partial Derivatives

Here we report all the detailed calculations in order to construct the Jacobian matrix used in
the local stability analysis.

In the general case (presence of both informed and uninformed agents) the market
dynamics are described by the system:

w′ = Yχ1
w

1 + |w| + (1 − Y )χ2
(
q∗ − q̃

)
,

r ′s = ln
(
exp rs + k − 1
exp(rs + λw)

− (k − 1)
)
,

(B.1)

where the expression of q∗ = q∗(w, rs) is calculated as in (3.5) and q̃ as in (3.6). Starting from
the first equation, the partial derivatives of w′ with respect to variables w and rs, evaluated
at point (w, rs), are

(i)

∂w′(w, rs)
∂w

= Yχ1
1

(1 + |w|)2
+ (1 − Y )χ2

(
∂q∗
∂w

− ∂q̃

∂w

)
, (B.2)

observing that q̃ does not depends on w, ∂q̃/∂w = 0, hence:

(ii)

∂w′(w, rs)
∂w

= Yχ1
1

(1 + |w|)2

+ (1 − Y )χ2

wμe−w
2μ
(
2α1α2rf

(
2α1α2 −

(
α2
1 + α2

2

))
+
(
rsα2 − rfα1

)2(
α2
1 + α2

2

))

(
rs − rf

)(
α2
1 + α2

2 + 2α1α2
(
e−μw2 − 1

))√(
α2
1 + α2

2 + 2α1α2
(
e−μw2 − 1

))((
rsα2 − rfα1

)2 + 2α1α2rf rse−μw
2
) ,

(B.3)

(iii)

∂w′(w, rs)
∂rs

= 0 + (1 − Y )χ2

⎛
⎜⎜⎝

2α1α2rfe
−μw2

+ 2α2
(
rsα2 − rfα1

)

2
(
rs − rf

)√(
α2
1 + α2

2 + 2α1α2
(
e−μw2 − 1

))(
2α1α2rsrfe−μw

2 +
(
rsα2 − rfα1

)2)

−

√
2α1αrsrfe−μw

2 +
(
rsα2 − rfα1

)2
(√(

α2
1 + α2

2 + 2α1α2
(
e−μw2 − 1

))(
rs − rf

)2) +
r2
f
α2
1 + rsrfα

2
2((

rs − rf
)2√

α2
1 + α2

2

√
r2
f
α2
1 + r2sα

2
2

)

⎞
⎟⎟⎠.

(B.4)
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Looking at the second equation of the system, the partial derivatives of r ′s with respect
to variables w and rs, evaluated at point (w, rs), are

(i)

∂r ′s
∂w

=
kλ − λ + λ exp rs

k exp(rs +wλ) − exp rs − exp(rs +wλ) − k + 1
, (B.5)

(ii)

∂r ′s
∂rs

=
k − 1

k exp(rs +wλ) − exp rs − exp(rs +wλ) − k + 1
. (B.6)

Evaluating the four derivatives at the equilibrium point (0, 0) we have:

(i)

∂w′(w, rs)
∂w

= Yχ1 + (1 − Y )χ2

⎛
⎜⎝ 0

−rf
(
α2
1 + α2

2

)√(
α2
1 + α2

2

)
r2
f
α2
1

⎞
⎟⎠ = Yχ1, (B.7)

(ii)

∂w′(w, rs)
∂rs

= (1 − Y )χ2

⎛
⎜⎜⎝

2α1α2rf − 2α2α1rf

2
(−rf

)√(
α2
1 + α2

2

)((−rfα1
)2)

−

√(−rfα1
)2

√(
α2
1 + α2

2

)(−rf
)2 +

r2
f
α2
1

(−rf
)2√

α2
1 + α2

2

√
r2
f
α2
1

⎞
⎟⎟⎠

= (1 − Y )χ2

⎛
⎜⎝0 −

√
r2
f
α2
1

r2
f

√
α2
1 + α2

2

+

√
r2
f
α2
1

r2
f

√
α2
1 + α2

2

⎞
⎟⎠ = 0,

(B.8)

(iii)

∂r ′s(0, 0)
∂w

= −kλ, (B.9)

(iv)

∂r ′s(0, 0)
∂rs

= 1 − k. (B.10)
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So that the Jacobian matrix at point (0, 0) has the following form:

J(0, 0) =

[
Yχ1 0

−kλ 1 − k

]
. (B.11)

Observe that Jacobianmatrices of the extreme cases, in which all agents are speculators
or rational, can be easily obtained by the previous calculations simply setting Y = 1 and Y = 0
respectively.

C. Contagion Effect: Price in the Case of Contrarian Speculation

In a market only composed by speculators and in the case of χ1 < −1 (strongly contrarian
attitude of investors) a two-period cycle appears in the phase plane (w, rs). From an economic
point of view in this case, the positive excess demand in period t (w∗

3 = −χ1 − 1 ) turns into
negative excess demand in period t + 1 (w∗

4 = χ1 + 1), and correspondingly market prices
oscillate between two values P3 < P < P4.

We can determine the two-period orbit and the exact values of P3 and P4. After two
periods the system (4.5) becomes

wt+1 = χ2
1

wt−1
(1 + |wt−1|)

(
1 +

∣∣χ1(wt−1/(1 + |wt−1|))
∣∣)

rs,t+1 = ln

( (
exp rs,t−1 + k − 1

)
/ exp(rs,t−1 + λwt−1)((

exp rs,t−1 + k − 1
)
/
(
exp(rs,t−1 + λwt−1)

) − (k − 1)
)
expλχ1(wt−1/(1 + |wt−1|))

−(k − 1)

)

(C.1)

recalling that Pt = [Pt−1 + k(P − Pt)] expλwt−1, the corresponding price equation is

Pt+1 =
{
(1 − k)

[
kP + (1 − k)Pt−1

]
expλwt−1 + kP

}
expλχ1

(
wt−1

(1 + |wt−1|)
)
, (C.2)

where the expression of Pt+1 has been obtained by a double iteration.
The first equation of the system does not depends on rs so, solving in a fixed point we

have two solutions w∗
3 = −χ1 − 1 and w∗

4 = χ2 + 1. The corresponding price equation is

P =
{
(1 − k)

[
kP + (1 − k)P

]
expλw + kP

}
expλχ1

w

(1 + |w|) , (C.3)

giving two different solutions for P depending on w∗
3 and w∗

4.
When w = w∗

3 = −χ1 − 1

P =
{
(1 − k)

[
kP + (1 − k)P

]
expλ

(−χ1 − 1
)
+ kP

}
expλχ1

−χ1 − 1
1 +

∣∣−χ1 − 1
∣∣ , (C.4)
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which simplifies as

P
(
1 − (1 − k)2

)
= kP(1 − k) + kP expλ

(
χ1 + 1

)
, (C.5)

giving the final price P = ((eλ(χ1+1) + 1 − k)/(2 − k))P ≡ P3, corresponding to the expected
return (see (2.1)):

r∗s = ln

(
1 + (1 − k)

(
eλ(χ1+1)

)

eλ(χ1+1) + 1 − k

)
. (C.6)

P3 is always smaller than P . Indeed P3 < P if (eλ(χ1+1) + (1 − k))/(2 − k) < 1, which simplifies
to λ(χ1 + 1) < 0. This condition is always true under the hypothesis at hand χ1 < −1.

When w = w∗
4 = χ1 + 1

P =
{
(1 − k)

[
kP + (1 − k)P

]
expλ

(
χ1 + 1

)
+ kP

}
expλχ1

χ1 + 1
1 +

∣∣χ1 + 1
∣∣ , (C.7)

which simplifies to

P
(
1 − (1 − k)2

)
= (1 − k)kP + kP exp−λ(χ1 + 1

)
. (C.8)

We obtain the solution P = ((e−λ(χ1+1) + (1 − k))/(2 − k))P ≡ P4, corresponding to an expected
return:

r∗s = ln

(
1 + (1 − k)e−λ(χ1+1)

e−λ(χ1+1) + (1 − k)

)
. (C.9)

We can observe that P4 is always greater than P . Indeed P4 > P if (e−λ(χ1+1) +1−k)/(2−k) > 1;
this inequality is equivalent to λ(χ1 + 1) < 0 which is always satisfied under the hypothesis
χ1 < −1.

Acknowledgments

The authors thank the anonymous referees for their suggestions and comments that
improved the quality of this paper. Thanks are due to Roberto Dieci, Laura Gardini, Anna
Agliari, and Giovanni Zambruno for their careful reading and helpful comments and
suggestions. Any errors are the authors responsibility.

References

[1] C. Chiarella, R. Dieci, and L. Gardini, “The dynamic interaction of speculation and diversification,”
Applied Mathematical Finance, vol. 12, no. 1, pp. 17–52, 2005.

[2] E. Bertero and C. Mayer, “Structure and performance: Global interdependence of stock markets
around the crash of October 1987,” European Economic Review, vol. 34, no. 6, pp. 1150–1180, 1990.



Discrete Dynamics in Nature and Society 33

[3] M. A. King and S. Wadhwani, “Transmission of volatility between stock markets,” The Review of
Financial Studies, vol. 3, pp. 5–33, 1990.

[4] S. Calvo and C. Reinhart, Capital Flows to Latin America: Is There Evidence of Contagion Effects?MPRA
Paper 7124, University Library of Munich, Munich, Germany, 1996.

[5] T. Baig, “Financial market contagion in the Asian crisis,” IMF Staff Papers, vol. 46, no. 2, pp. 167–195,
1999.

[6] M. Loretan and W. B. English, “Evaluating correlation breakdowns during periods of market
volatility,” Board of Governors of the Federal Reserve System International Finance Working Paper
658, 2000, http://mpra.ub.uni-muenchen.de/7124/.

[7] G. A. Karolyi and R. M. Stulz, “Why do markets move together? An investigation of U.S.-Japan stock
return comovements,” Journal of Finance, American Finance Association, vol. 51, no. 3, pp. 951–86, 1996.

[8] F. Longin, “The asymptotic distribution of extreme stock market returns,” Journal of Business, vol. 69,
no. 3, pp. 383–408, 1996.

[9] P. Hartmann, S. Straetmans, and C. G. de Vries, “Asset market linkages in crisis periods,” Review of
Economics and Statistics, vol. 86, no. 1, pp. 313–326, 2004.

[10] K. H. Bae, G. A. Karolyi, and R. M. Stulz, “A new approach to measuring financial contagion,” Review
of Financial Studies, vol. 16, no. 3, pp. 717–763, 2003.

[11] L. Ramchand and R. Susmel, “Volatility and cross correlation across major stock markets,” Journal of
Empirical Finance, vol. 5, no. 4, pp. 397–416, 1998.

[12] A. Ang and G. Bekaert, “Regime switches in interest rates,” Journal of Business & Economic Statistics,
vol. 20, no. 2, pp. 163–182, 2002.

[13] F. Chesnay and E. Jondeau, “Does correlation between stock returns really increase during turbulent
periods?” Economic Notes, vol. 30, no. 1, pp. 53–80, 2001.

[14] A. Zeevi and R. Mashal, “Beyond correlation: extreme co-movements between financial assets,” 2002,
http://ssrn.com/abstract=317122.

[15] R. Rigobon, “Contagion: how to measure It?” NBER Working Papers 8118, National Bureau of
Economic Research, 2001.

[16] A. Corcos, J. P. Eckmann, A. Malaspinas, Y. Malevergne, and D. Sornette, “Imitation and contrarian
behaviour: hyperbolic bubbles, crashes and chaos,” Quantitative Finance, vol. 2, no. 4, pp. 264–281,
2002.

[17] T. Lux, “Herd behavior, bubbles and crashes,” Economic Journal, vol. 105, pp. 881–896, 1995.
[18] G. I. Bischi, M. Gallegati, L. Gardini, R. Leombruni, and A. Palestrini, “Herd behavior and

nonfundamental asset price fluctuations in financial markets,” Macroeconomic Dynamics, vol. 10, no.
4, pp. 502–528, 2006.

[19] T. Kaizoji, “A synergetic approach to speculative price volatility,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E82-A, no. 9, pp. 1874–1882, 1999.

[20] A. Tversky and D. Kahneman, “Loss aversion in riskless choice: a reference-dependent model,”
Quarterly Journal of Economics, vol. 106, pp. 1039–1061, 1991.

[21] A. Tversky and D. Kahneman, “Advances in prospect theory: cumulative representation of
uncertainty,” Journal of Risk and Uncertainty, vol. 5, no. 4, pp. 297–323, 1992.

[22] J. Cunado, L. A. Gil-Alana, and F. P. de Gracia, “Stock market volatility in US bull and bear markets,”
Journal of Money, Investment and Banking, vol. 1, pp. 25–32, 2008.

[23] C. P. Jones, M. D. Walker, and J. W. Wilson, “Analyzing stock market volatility using extreme-day
measures,” Journal of Financial Research, vol. 27, no. 4, pp. 585–601, 2004.

[24] J. M. Maheu and T. H. McCurdy, “Identifying bull and bear markets in stock returns,” Journal of
Business & Economic Statistics, vol. 18, no. 1, pp. 100–112, 2000.

[25] W. F. Sharpe, “Mutual fund performance,” Journal of Business, pp. 119–138, 1966.
[26] G. M. Constantinides, M. Harris, and R .M. Stulz, Handbook of the Economics of Finance, vol. 1, Elsevier,

2003.
[27] A. Medio and M. Lines, Nonlinear Dynamics, Cambridge University Press, Cambridge, 2001, A prime.


