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SUMMARY. We focus on the multislip behaviour of a long cryitee metal strip sheared between
two bodies impenetrable to dislocations. On the basis afltenchmark, we identify the material
parameters of a strain gradient crystal plasticity modetdiymparison with the pseudo-experimental
results obtained from discrete Dislocation Dynamics (DiBsations. The strain gradient plasticity
model consists of a flow theory version of the deformatiomtiienodel developed in [1]; the model
is of the higher-order type (see, e.g., Kuroda and Tverg@jrand references therein) and, in the
limit of vanishing material length scales, particulariseshe crystal plasticity model of Pierce et
al. [3], within the small strain range. The strain gradiemid®al is implemented into a user element
subroutinegel ) for the finite element code ABAQUS [4]. The employed DD casithat developed
as reported in [5] and references therein. We shall intetheeDD results at the light of the strain
gradient model, with particular reference to the role ofrtregerial length scales involved. We shall
show that the latent hardening effect is very large, andiakuat the microscale. Also, we shall
address some numerical issues emerged both in the implatioentf the strain gradient model and
in the comparison.

1 INTRODUCTION

We focus on the boundary value problem consisting of the leimpear of a crystalline strip
constrained between two bodies in which dislocations capanetrate, unbounded along and
x3, of heightH along thex,-direction (see Figure 1).

The crystal is characterised by incompressible isotrdpialr elasticity, with shear modulys
and byB couples of slip systems (the total number of systems is 2tineach couple consisting
of two possible glides symmetrically oriented with respecany plane of constant, by an angle
0. The strip is sheared by applying to the plane= H a uniform displacement equal ItH in
thex;-direction (so that” is the applied shear).

The standard boundary conditions read

ui(xze2 =0)=0; w(za=H)=TH 1)
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Figure 1: Simple shear of a constrained crystalline strip wiultiple symmetric double slip systems.

’U,Q(I'QZO):O; ’U,Q(,TQZH):O (2)
For this boundary value problem we aim at comparing the tesidildiscrete Dislocation Dynamics
(DD) simulations and strain gradient crystal plasticity.
We will first consider four strips of different heiglf = ( 0.75um, 1.5um, 3. um, 6. um)
endowed with one sole couple of systems inclinedby= 7 /8. Then, we will analyse the effect of
adding a second couple of systems inclined by an afygle 7 /5.

2 DISLOCATION DYNAMICS SIMULATIONS

DD simulations are run with the code developed as descrfbethstance, in Segurado et al. [5]
(see also [6]). The model basically describes plasticityhasrreversible motion of dislocations into
a linear elastic crystal. Dislocation glide, in our plan@ast benchmark, is governed by:

Ué _ b [(5722 ; 011 + Z oy ; 0{1) sin(265) + (&12 + 20{2) cos(29g)} (3)

Birae
drag #i i#i

in which v[i, is the velocity of the dislocation on thes slip systemp is the Burgers vector length,
Brag is the drag coefficientg? is the stress field exerted by thedislocation in an unbounded
medium, ands is the stress due to both the applied load and the imagednsctipplied at the

boundary to make up for the use of the dislocation fields ofuthieounded medium. At each time
step along the loading histor§, is obtained by means of a finite element analysis.

A random distribution of sources is set in the strip such thany source a dislocation dipole
nucleates when the resolved shear stress reaches thetimrciteess for a certain minimum lapse
of time, called the nucleation time. Dislocations of opp®sign gliding on the same slip system
are annihilated when they are closer than the so-callechdation length. Dislocation pinning by
obstacles is accounted for by a random distribution of alissavhere dislocations get blocked if
their driving shear stress is lower than the obstacle stheng



The parameters involved in the simulation are set as folléws0.25 nm,Bg,,, = 1.E-4 Ns/m,
source density = 42m~2, obstacle density = 12@m~2, nucleation stress = 25 MPa (with a standard
deviation of 5 MPa), nucleation time = 0.Qis, obstacle strength = 300 MPa, annihilation length
= 6b, slip system spacing 100b.

2.1 The results of DD simulations

The results of the analyses in which one sole couple of slgtesys is considered show that,
within the range of abouF € [0,0.01], decreasing the heighf leads to an increase in strain
hardening, while no strengthening (i.e., an increase intwgh@cognised as the initial yield stress)
is observed.

The addition of a second couple of systems provides an egtyehigh latent hardening, as
the stress-strain curve results higher than that with ofeecmuple for about the whole range bf
considered. This means that the compliance introducedepdhsibility of slip given by the second
couple of systems is much less important than the obstruttigylide provided on the first (less
inclined) couple of systems by dislocations nucleatingrangecond couple.

3 THE STRAIN GRADIENT CRYSTAL PLASTICITY MODEL

In order to describe the behaviour observed in the DD sinaulaf we exploit and extend the
strain gradient crystal plasticity model developed in @8« also [7], [8], [9]). In fact, that model
includes a higher-order coupling among different systemsugh the defect energy, defined as a
guadratic function of Nye’s dislocation density tensor éN¢0], Gurtin [7]). However, prelimi-
nary simulations have shown that such a coupling is not eémougrder to describe the DD results.
Hence, we extend that strain gradient crystal plasticitalsp including the standard latent harden-
ing proposed by Pierce et al. [3].

In the boundary value problem described in section 1, withéncontext of crystal plasticity and
contrariwise to the DD analyses, all the fields are indepetatebothx; andzs and for each couple
3 of slip systems the two slips are equal and we call both of théth The sole non-vanishing
components of the plastic strain and Nye’s tensor are, otispéy:

B B
ely = Zv(ﬁ) cos (26;3) Qo3 = 22(7(5))’sin %05 4)
B=1 B=1

where the symbdl denotes a partial derivative computed with respeatt@andass expresses the
Burgers vector component in thg-direction due to edge dislocations lying along

The standard balance equation states that dgttandos, must be spatially uniform. Then, the
boundary conditions (2) imply that, (andos2) must be zero everywhere, so that the problem is es-
sentially uni-dimensional and henceforth, when possilewill simplify the notation by dropping
some indexes, as follows:

T = To eP = &b, o= o 0 =012 U= up (5)

and so on, as specified in the text when needed.
The displacement can be expressed as

B
u — 227(@ cos (203) = g (6)
=1 a



The higher-order balance equations written in terms ofrkiaiéc variables read
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dissipative hardening

B B
—2p?sin? 05 7" sin 6. = p1 cos (20) [u —2> " 4" cos (29,&} V3, @)

k=1 k=1

energetic backstress

wherey(?) is the slip rate of the systefand the standard part of the dissipative hardening involves
the latent hardening of Pierce et al. [3]:

B
H® =N Hg5 . HP0) =10, Hpe=gH\) + (1 - q/H(N)dpx (8)
k=1
hoX SNV
0 .
H(N) = ho sech e A= 2;/00%3 dt (9)

with g, the Dirac delta, andy, 4o, N, 75, ho, ¢ Standard material parameters. For what concerns
the higher-order termd, is an energetic length scale entering the defect energyifoemsional
consistency, while two dissipative length scalks,and L y, are collected into

Lﬁ = \/(LL sin95)2 + (LN CcOos 95)2 (10)

entering the definition of effective slip rate:

5 = /(392 + [La(3®)2 (11)

The higher-order boundary conditions, essential to impleaedislocations are blocked when they
reach the strip edges, in the case in which> 0 or Ly > 0, are

Y@y =0)=0; A P(zy=H)=0 VYB=1,....B (12)

For more details see [1].
Let us note that also Borg (see, e.g., [11]) extended theicklscrystal model including latent
hardening of Pierce et al. [3], but without including the y&tic higher-order terms.

3.1 Finite Element implementation

The crystal model is implemented intaal user subroutine for the commercial code ABAQUS
[4]. We employ 2-noded isoparametric linear elements, ottthe displacement and the slips
v, 3=1,...,B; hence, at each node there &e- 1 independent variables. The time integration
is based on the implicit Backward Euler scheme.

Many numerical issues have emerged from the implementakoninstance, the element size
should decrease with the distance from the boundary, whslacdtions pile-up and slip gradients



are maximum. For most analyses we have discretised thebgtripeans of 8000 elements (along its
thickness).

The consistent jacobian turns out to be unsymmetric andniitming the time increment is not
necessarily beneficial, because the are terms of the jatobiaponents which go to infinity as the
time step goes to zero. This unfavourable behaviour is esipigias the exponet governing the
dissipation approaches to zero.

4 DISCUSSION AND CONCLUDING REMARKS

The DD results for the strips endowed with one sole coupldipfsystems can be described
by the strain gradient crystal plasticity model by apprafaiy setting the energetic length scale,
which turns out to bé ~ 0.6um. Dissipative higher-order terms seem to be unimportaotder to
describe the DD results.

The parametey; governing the latent hardening is required to be set to galoach higher
than those established in conventional crystal plastieitysizes where dislocation pile-ups play a
negligible role. Moreover, in order to have a latent hardgreffect quantitatively similar to that
observed in DD simulations by appropriately settipgthere is the need of choosing quite high
values ofN (e.g.,N = 0.5), while for values ofNV lower than about 0.1 the effect of apypecomes
unimportant for the description capability of the crystalael. In fact, at a given strain rate, in order
to reproduce quite similar stress-strain curves, it is jpbs$o changéV if 7y, 75, andh, are changed
appropriately. However, values of larger than 0.1 provide a relevant rate-dependence, whish h
been instead observed to be negligible in DD simulations.

Hence, our impression is that the strain gradient crysgadtjdity model requires a further source
of higher-order coupling between slips, as that providethbydefect energy set as quadratic function
of Nye’s dislocation density tensor seems to be too weak.
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