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SUMMARY. We focus on the multislip behaviour of a long crystalline metal strip sheared between
two bodies impenetrable to dislocations. On the basis of this benchmark, we identify the material
parameters of a strain gradient crystal plasticity model bycomparison with the pseudo-experimental
results obtained from discrete Dislocation Dynamics (DD) simulations. The strain gradient plasticity
model consists of a flow theory version of the deformation theory model developed in [1]; the model
is of the higher-order type (see, e.g., Kuroda and Tvergaard[2] and references therein) and, in the
limit of vanishing material length scales, particularisesto the crystal plasticity model of Pierce et
al. [3], within the small strain range. The strain gradient model is implemented into a user element
subroutine (uel) for the finite element code ABAQUS [4]. The employed DD code is that developed
as reported in [5] and references therein. We shall interpret the DD results at the light of the strain
gradient model, with particular reference to the role of thematerial length scales involved. We shall
show that the latent hardening effect is very large, and crucial, at the microscale. Also, we shall
address some numerical issues emerged both in the implementation of the strain gradient model and
in the comparison.

1 INTRODUCTION
We focus on the boundary value problem consisting of the simple shear of a crystalline strip

constrained between two bodies in which dislocations cannot penetrate, unbounded alongx1 and
x3, of heightH along thex2-direction (see Figure 1).

The crystal is characterised by incompressible isotropic linear elasticity, with shear modulusµ,
and byB couples of slip systems (the total number of systems is then2B), each coupleβ consisting
of two possible glides symmetrically oriented with respectto any plane of constantx2 by an angle
θβ. The strip is sheared by applying to the planex2 = H a uniform displacement equal toΓH in
thex1-direction (so thatΓ is the applied shear).

The standard boundary conditions read

u1(x2 = 0) = 0; u1(x2 = H) = ΓH (1)
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Figure 1: Simple shear of a constrained crystalline strip with multiple symmetric double slip systems.

u2(x2 = 0) = 0; u2(x2 = H) = 0 (2)

For this boundary value problem we aim at comparing the results of discrete Dislocation Dynamics
(DD) simulations and strain gradient crystal plasticity.

We will first consider four strips of different heightH = ( 0.75µm, 1.5µm, 3. µm, 6. µm)
endowed with one sole couple of systems inclined byθ1 = π/8. Then, we will analyse the effect of
adding a second couple of systems inclined by an angleθ2 = π/5.

2 DISLOCATION DYNAMICS SIMULATIONS
DD simulations are run with the code developed as described,for instance, in Segurado et al. [5]

(see also [6]). The model basically describes plasticity asthe irreversible motion of dislocations into
a linear elastic crystal. Dislocation glide, in our plane strain benchmark, is governed by:
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in which vi
β is the velocity of thei dislocation on theβ slip system,b is the Burgers vector length,

Bdrag is the drag coefficient,σi is the stress field exerted by thei dislocation in an unbounded
medium, and̂σ is the stress due to both the applied load and the image tractions applied at the
boundary to make up for the use of the dislocation fields of theunbounded medium. At each time
step along the loading history,̂σ is obtained by means of a finite element analysis.

A random distribution of sources is set in the strip such thatin any source a dislocation dipole
nucleates when the resolved shear stress reaches the nucleation stress for a certain minimum lapse
of time, called the nucleation time. Dislocations of opposite sign gliding on the same slip system
are annihilated when they are closer than the so-called annihilation length. Dislocation pinning by
obstacles is accounted for by a random distribution of obstacles where dislocations get blocked if
their driving shear stress is lower than the obstacle strength.
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The parameters involved in the simulation are set as follows: b = 0.25 nm,Bdrag = 1.E-4 Ns/m2,
source density = 42µm−2, obstacle density = 126µm−2, nucleation stress = 25 MPa (with a standard
deviation of 5 MPa), nucleation time = 0.01µs, obstacle strength = 300 MPa, annihilation length
= 6b, slip system spacing= 100b.

2.1 The results of DD simulations
The results of the analyses in which one sole couple of slip systems is considered show that,

within the range of aboutΓ ∈ [0, 0.01], decreasing the heightH leads to an increase in strain
hardening, while no strengthening (i.e., an increase in what is recognised as the initial yield stress)
is observed.

The addition of a second couple of systems provides an extremely high latent hardening, as
the stress-strain curve results higher than that with one sole couple for about the whole range ofΓ
considered. This means that the compliance introduced by the possibility of slip given by the second
couple of systems is much less important than the obstruction to glide provided on the first (less
inclined) couple of systems by dislocations nucleating on the second couple.

3 THE STRAIN GRADIENT CRYSTAL PLASTICITY MODEL
In order to describe the behaviour observed in the DD simulations, we exploit and extend the

strain gradient crystal plasticity model developed in [1] (see also [7], [8], [9]). In fact, that model
includes a higher-order coupling among different systems through the defect energy, defined as a
quadratic function of Nye’s dislocation density tensor (Nye [10], Gurtin [7]). However, prelimi-
nary simulations have shown that such a coupling is not enough in order to describe the DD results.
Hence, we extend that strain gradient crystal plasticity byalso including the standard latent harden-
ing proposed by Pierce et al. [3].

In the boundary value problem described in section 1, withinthe context of crystal plasticity and
contrariwise to the DD analyses, all the fields are independent on bothx1 andx3 and for each couple
β of slip systems the two slips are equal and we call both of themγ(β). The sole non-vanishing
components of the plastic strain and Nye’s tensor are, respectively:

εp
12 =

B∑

β=1

γ(β) cos (2θβ) α23 = 2

B∑

β=1

(γ(β))′ sin 2θβ (4)

where the symbol′ denotes a partial derivative computed with respect tox2 andα23 expresses the
Burgers vector component in thex2-direction due to edge dislocations lying alongx3.

The standard balance equation states that bothσ12 andσ22 must be spatially uniform. Then, the
boundary conditions (2) imply thatu2 (andσ22) must be zero everywhere, so that the problem is es-
sentially uni-dimensional and henceforth, when possible,we will simplify the notation by dropping
some indexes, as follows:

x ≡ x2 εp
≡ εp

12 α ≡ α23 σ ≡ σ12 u ≡ u1 (5)

and so on, as specified in the text when needed.
The displacementu can be expressed as
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The higher-order balance equations written in terms of kinematic variables read
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whereγ̇(β) is the slip rate of the systemβ and the standard part of the dissipative hardening involves
the latent hardening of Pierce et al. [3]:
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with δβκ the Dirac delta, andτ0, γ̇0, N , τs, h0, q standard material parameters. For what concerns
the higher-order terms,ℓ is an energetic length scale entering the defect energy for dimensional
consistency, while two dissipative length scales,L⊥ andLN , are collected into

Lβ =
√

(L⊥ sin θβ)2 + (LN cos θβ)2 (10)

entering the definition of effective slip rate:

γ̇
(β)

eff =
√

(γ̇(β))2 + [Lβ(γ̇(β))′]2 (11)

The higher-order boundary conditions, essential to imposethat dislocations are blocked when they
reach the strip edges, in the case in whichL⊥ > 0 or LN > 0, are

γ(β)(x2 = 0) = 0; γ(β)(x2 = H) = 0 ∀β = 1, . . . , B (12)

For more details see [1].
Let us note that also Borg (see, e.g., [11]) extended the classical crystal model including latent

hardening of Pierce et al. [3], but without including the energetic higher-order terms.

3.1 Finite Element implementation
The crystal model is implemented into auel user subroutine for the commercial code ABAQUS

[4]. We employ 2-noded isoparametric linear elements, bothfor the displacementu and the slips
γ(β), β = 1, . . . , B; hence, at each node there areB +1 independent variables. The time integration
is based on the implicit Backward Euler scheme.

Many numerical issues have emerged from the implementation. For instance, the element size
should decrease with the distance from the boundary, where dislocations pile-up and slip gradients
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are maximum. For most analyses we have discretised the stripby means of 8000 elements (along its
thickness).

The consistent jacobian turns out to be unsymmetric and diminishing the time increment is not
necessarily beneficial, because the are terms of the jacobian components which go to infinity as the
time step goes to zero. This unfavourable behaviour is emphasised as the exponentN governing the
dissipation approaches to zero.

4 DISCUSSION AND CONCLUDING REMARKS
The DD results for the strips endowed with one sole couple of slip systems can be described

by the strain gradient crystal plasticity model by appropriately setting the energetic length scale,
which turns out to beℓ ≈ 0.6µm. Dissipative higher-order terms seem to be unimportant inorder to
describe the DD results.

The parameterq governing the latent hardening is required to be set to values much higher
than those established in conventional crystal plasticity, at sizes where dislocation pile-ups play a
negligible role. Moreover, in order to have a latent hardening effect quantitatively similar to that
observed in DD simulations by appropriately settingq, there is the need of choosing quite high
values ofN (e.g.,N = 0.5), while for values ofN lower than about 0.1 the effect of anyq becomes
unimportant for the description capability of the crystal model. In fact, at a given strain rate, in order
to reproduce quite similar stress-strain curves, it is possible to changeN if τ0, τs, andh0 are changed
appropriately. However, values ofN larger than 0.1 provide a relevant rate-dependence, which has
been instead observed to be negligible in DD simulations.

Hence, our impression is that the strain gradient crystal plasticity model requires a further source
of higher-order coupling between slips, as that provided bythe defect energy set as quadratic function
of Nye’s dislocation density tensor seems to be too weak.
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