
Altered mRNA Editing and Expression of Ionotropic
Glutamate Receptors after Kainic Acid Exposure in
Cyclooxygenase-2 Deficient Mice
Luca Caracciolo1,2, Alessandro Barbon2, Sara Palumbo1, Cristina Mora2, Christopher D. Toscano1,

Francesca Bosetti1*¤, Sergio Barlati2

1 Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of

America, 2 Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia,

Italy

Abstract

Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and
neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-22/2) mice are more vulnerable to KA-induced
excitotoxicity. Here, we investigated whether the increased susceptibility of COX-22/2 mice to KA is associated with altered
mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in
vehicle-injected COX-22/2 mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of
NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the
hippocampus, with a significant effect in COX-22/2 mice. Furthermore, we analyzed RNA editing levels and found that the
level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-22/2

compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-22/2 mice.
Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR
subunits after KA, as observed in COX-22/2 mice. After KA exposure, COX-22/2 mice showed increased mRNA expression of
markers of inflammation and oxidative stress, such as cytokines (TNF-a, IL-1b and IL-6), inducible nitric oxide synthase
(iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to
KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and
mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may
contribute to the increased vulnerability of COX-22/2 mice to KA. The overstimulation of glutamate receptors as a
consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the glutamatergic system.
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Introduction

Cyclooxygenases (COX-1 and COX-2) convert arachidonic

acid to bioactive prostaglandins (PG) and tromboxanes (TX),

which have been implicated in important physiological functions

[1,2], as well as in the pathophysiology of several neurological and

neurodegenerative diseases, such as stroke, epilepsy, and Alzhei-

mer’s disease [3]. Although COX-2 is typically inducible, in the

central nervous system (CNS) both COX-1 and COX-2 are

constitutively expressed and COX-2 is mainly detected in the

perinuclear, dendritic and axonal domains of neurons, particularly

in cortex, hippocampus, amygdala and dorsal horn of the spinal

cord [4,5].

We have previously demonstrated that COX-2 deficient (COX-

22/2), but not COX-12/2 mice, are more susceptible to kainic-

acid (KA)-induced seizure intensity and neuronal damage [6]. KA,

the prototypic excitoxin, binds to the alpha-amino-propionic-acid/

kainate (AMPA/KA) and N-methyl-D-aspartic acid (NMDA)

receptors (AMPAR, KAR and NMDAR), which are subtypes of

the ionotropic glutamate receptors (iGluRs) in the brain [7],

inducing seizures that result in inflammation, oxidative damage

and neuronal death. These processes have been implicated in

neurological, neurodegenerative, and psychiatric diseases [6,8,9,

10,11,12,13,14,15].

Activation of AMPA/KA and NMDA receptors elicits a

number of cellular events, including the increase in intracellular

Ca2+, production of ROS, and other biochemical events leading to

neuronal cell death [16,17,18,19,20]. In recent years, neurode-

generation caused by systemic injection of KA has been widely

used to investigate mechanisms of excitotoxicity mediated by

excitatory neurotransmitter agonists and possible pharmacological

neuroprotective interventions [6,21].

AMPA/KA and NMDA glutamate receptors play a major role

in excitatory synaptic transmission and plasticity. Their channel
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properties are largely determined by subunit composition of the

tetrameric receptor, assembled from GluR1–4 AMPA, GluR5–6

KA1 and KA2, NR1 with NR2a–d or NR3a–b, receptor subunits.

Molecular diversity of AMPA/KA and NMDA receptors under

physiological or pathological conditions is generated by differential

spatial-temporal patterns of GluR expression, by alternative RNA

splicing and editing and by targeting and trafficking of receptor

subunits at dendritic spines [22]. In particular, RNA editing is an

important post-transcriptional event in gene modification that

alters one or more translation codons, thereby giving rise to

functionally distinct proteins from a single gene [23]. The editing

positions have been named on the basis of amino acid substitution,

such as the Q/R site in AMPA GluR2 and KA GluR5 and GluR6

[23], the R/G site in GluR2, GluR3 and GluR4 [24] and the I/V

and Y/C site in GluR6 [25]. These amino acid changes lead to

modification of the channel properties: Q/R site profoundly

influences the ionic properties of AMPA and KA receptor [26,27]

and it may determine the maturation and cellular trafficking of

GluR2 [28,29], whereas the R/G site influences the kinetic aspect

of channel gating [24,30]. The GluR6 I/V and Y/C editing sites

may be involved, together with the Q/R site, in a finer regulation

of ion permeability [25]. Unlike GluR2 Q/R site, which is always

fully edited, the editing levels of the other sites are developmentally

[31] and regionally regulated [32,33].

It is well known that excess release of excitatory neurotransmit-

ters, such as glutamate and KA, is an important underlying cause of

neuronal damage in cerebral ischemia, epilepsy, Parkinson’s

disease, and Alzheimer’s disease [34,35,36]. This type of excita-

tion-induced neuronal damage is frequently accompanied by excess

calcium influx and followed by generation of reactive oxygen and

nitrogen species, which cause damage to intracellular membranes

and trigger apoptotic pathways leading to delayed cell death [21].

The aim of this study was to investigate mRNA editing

regulation of AMPA/KA receptor subunits and mRNA expression

of all ionotropic glutamate receptor subunits (AMPA/KA and

NMDA) in the cortex and hippocampus of COX-22/2 and wild

type (WT, COX-2+/+) mice after KA exposure, and to determine

whether altered editing or expression of these receptors underlies

the increased susceptibility of COX-22/2 mice to KA-induced

seizure intensity and neuronal damage. Furthermore, we showed

that pretreatment with celecoxib for 2 weeks recapitulated the

effects on gene expression of some AMPA, KA and most of the

NMDA receptor subunits observed in COX-22/2 mice, after KA

treatment.

We also investigated the neuroinflammatory response of

COX-22/2 and WT mice to systemic KA injection by measuring

the expression of inflammatory markers in the brain. We

demonstrate that COX-22/2 mice show an increase in the gene

expression of microglia (CD11b) and astrocyte (GFAP) markers,

pro-inflammatory cytokines (TNF-a, IL-1b and IL-6), and

inducible nitric oxide syntase (iNOS).

Materials and Methods

Ethics Statement
All animal experiments were performed under an animal

protocol (NICHD #08-026) approved by the National Institutes of

Health (NIH), National Institute of Child Health and Disease

(NICHD) Animal Care and Use Committee, in accordance with

the NIH guidelines on the care and use of laboratory animals.

Animal housing
Six week-old male COX-22/2 and WT mice on a C57Bl/6-

129/Ola background were received from a private NIEHS colony

maintained by Taconic Farms (Germantown, NY) separately from

their commercially available colony [37,38]. All mice used in this

study were progeny derived from heterozygous by heterozygous

matings and therefore all contained the same strain and genetic

background. Mice were maintained on a 12 h light/dark cycle

with free access to food and water intake. For celecoxib

pretreatment, WT mice were given free access for two weeks to

a diet containing 6000 ppm celecoxib. Celecoxib (CelebrexTM)

capsules (400 mg; Pfizer Inc., New York, NY) were obtained from

the NIH Division of Veterinary Medicine and were incorporated

into feed by Research Diets, Inc. (New Brunswick, NJ) [6].

Kainate injection
KA injection was performed as previously described [6]. Briefly,

12–14-week-old male mice were injected intraperitoneally (i.p.)

with 10 mg/kg KA (Biomol International, Plymouth Meeting, PA;

2 mg/ml in 0.9% saline) or vehicle (0.9% saline). This dose of KA

caused seizures but did not result in fatalities in WT mice [6]. Mice

were euthanized after 24 h after KA injection and brains used for

molecular analysis were rapidly dissected, frozen in 2-methylbu-

tane at 250uC, and stored at 280uC until use.

Gene expression
Fresh frozen mouse hippocampus and cerebral cortex were

processed for RNA extraction using the Qiagen RNeasy Lipid

Tissue Mini kit (Qiagen, Valencia, CA), as directed by the

manufacturer. RNA quantification and quality control were done

using both spectrophotometric analysis and the AGILENT

Bioanalyzer 2100 lab-on-a-chip technologies. Retro-Transcription

(RT) was done using the Moloney murine leukemia virus-reverse

transcriptase (MMLV-RT) (Invitrogen). 2.5 mg of total RNA were

mixed with 2.2 ml of 0.2 ng/ml random hexamer (Invitrogen),

10 ml of 56 buffer (Invitrogen), 10 ml of 2 mM dNTPs, 1 ml of

1 mM DTT (Invitrogen), 0.4 ml of 33 U/ml RNasin (Promega),

2 ml MMLV-RT (200 U/ml), in a final volume of 50 ml. The

reaction mix was incubated at 37uC for 2 h and then the enzyme

heat inactivated at 95u for 10 min. To perform the PCR reactions

different amount of the RT product were mixed with 2.5 ml 106
buffer (Polymed), 0.7 ml of 1.5 mM MgCl2, 2.5 ml of 2 mM dNTP,

0.7 ml of each forward and reverse primer, 1.25 U of Taq

polymerase in a final volume of 25 ml [39].

Quantitative real-time polymerase chain reaction (RT-PCR) was

performed on selected genes AMPA GluR1–4 (Applied Biosystems

TaqMan Gene Expression Assay id probes: GluR1 Mm00433-

753_m1; GluR2 Mm00442822_m1; GluR3 Mm00497506_m1;

GluR4 Mm00444754_m1); KA GluR5–7, KA1 and KA2 (GluR5

Mm00446882_m1; GluR6 Mm00599860_m1; GluR7 Mm01179-

716_m1; KA1 Mm00615472_m1; KA2 Mm00433774_m1);

NMDA NR1, NR2a–d and NR3a–b (NR1 Mm00433800_m1;

NR2a Mm00433802_m1; NR2b Mm00433820_m1; NR2c Mm0-

0439180_m1; NR2d Mm00433822_m1; NR3a Mm01341723_m1;

NR3b Mm00504568_m1); cytokine (TNFa: Mm00443258_m1;

IL-1b: Mm00434228_m1; IL-6: Mm01210733_m1); glial fibrillary

acid protein (GFAP: Mm01253033_m1); microglial marker

(CD11b: Mm00434455_m1); transcription factor (NF-kB: Mm-

00501346_m1); microtubule associate protein 2 (Mtap2: Mm00-

485230_m1); Nitric oxide species (iNOS: Mm00440485_m1) and

phosphoglicerate kinase 1 (pgk1: Mm01225301_m1) as reference

genes. PCR reactions were performed using the Applied Biosystems

7500 system. Data were analyzed using the comparative threshold

cycle (DD Ct) method [40]. Results were normalized with Pgk1 as

the endogenous control, and expressed as fold difference from the

vehicle-injected WT mice, as previously reported [41,42].

Glutamate Receptors Editing
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Quantification of editing levels
The editing level quantification for AMPA GluR2, GluR3 and

GluR4 and KA GluR5 and GluR6 transcripts was done by RT-

PCR and sequence analysis [33]. Briefly, following amplification of

the region containing the editing site, a pool of GluR cDNA was

obtained in which both the edited and unedited mRNA forms

were co-expressed. The PCR products were sequenced and the

edited nucleotide appeared as overlapping A/G peaks: A from

unedited transcripts and G from the edited ones [33]. The

percentage of edited mRNA molecules in a pool of specific GluR

mRNAs can be determined by calculating the peak area of the

edited nucleotide (G) versus the sum of G and A peak areas using

the software DS gene that permit to analyze the area of the peak.

We previously determined that the editing level can be reliably

calculated as a function of the ratio between the G peak area and

A plus G peaks areas [33]. The nucleotide areas were quantified

by the Discovery Studio Gene 1.5 program (Accelrys Inc., San

Diego, CA, USA) [43]. The mean values and standard errors from

each group of animals were used for statistical analysis.

Statistical analysis
Editing and expression data were obtained by amplifying the

mRNA from each animal. The mean values and standard errors

obtained from each group were reported. Editing data were

analyzed with Student’s t-test. For RT- PCR results, a two-way

ANOVA was performed on the log-transformed DD Ct.

Bonferroni’s post-hoc test was used for further comparisons. p

values,0.05 were considered statistically significant. Data ob-

tained in celecoxib-treated animals were analyzed using a one-way

ANOVA, followed by a Bonferroni’s post-hoc test.

Results

mRNA expression of AMPA and KA glutamate receptor
subunits is decreased in COX-22/2 mice after KA
injection

Using qRT-PCR, we examined the relative changes in the

mRNA expression pattern of the AMPA (GluR1–4) and KA

(GluR5–7, KA1 and KA2) glutamate receptors subunits in the

hippocampus and cortex of vehicle-injected COX-22/2 mice

(n = 9) compared with vehicle-injected WT mice (n = 9). Further-

more, we analyzed the expression levels of the receptor subunits of

KA-injected WT (n = 9) and COX-22/2 mice (n = 9) compared

with their respective controls. Also we analyzed the mRNA

expression of KA-injected COX-22/2 mice compared with KA-

injected WT mice.

In the hippocampus (Fig. 1A–I) of vehicle-injected COX-22/2

mice the mRNA expression of GluR2, GluR3 and GluR6 was

significantly increased (GluR2: 1.2260.06, p,0.001; GluR3:

1.2660.04, p,0.001; GluR6: 1.3960.05, p,0.001), as compared

with vehicle-injected WT mice (Fig. 1B, C; Fig. 1F). These data

indicate that COX-2 deletion alters the transcription rate of

glutamate receptor genes.

KA injection affected the expression pattern of several AMPA

and KA receptor subunits both in WT and COX-22/2 mice.

Specifically, the mRNA expression of all GluR subunits (except

GluR6) from KA-injected WT mice showed a decrease of about

20–50% when compared with vehicle-injected WT mice (Mean 6

SEM; GluR1: 0.7560.04, p,0.001; GluR2: 0.7660.04, p,0.001;

GluR3: 0.7960.04, p,0.001; GluR4: 0.7860.05, p,0.01;

GluR5: 0.8060.02, p,0.001; GluR7: 0.6860.04, p,0.001;

KA1: 0.5060.02, p,0.001; KA2: 0.7360.03, p,0.001)

(Fig. 1A–I).

Furthermore, KA-injected COX-22/2 mice showed a signifi-

cant decrease in the mRNA expression of all AMPA and KA

subunits (except GluR7 and KA1) (GluR1: 0.6260.04, p,0.001:

GluR2: 0.5660.02, p,0.001; GluR3: 0.5760.02, p,0.001;

GluR4: 0.6660.03, p,0.01; GluR5: 0.6760.07, p,0.05; GluR6:

0.7560.02, p,0.001; KA2: 0.860.06, p,0.01), as compared with

vehicle-injected COX-22/2 mice (Fig. 1A–I). Small but significant

changes of about 20–30% were observed for the GluR1, GluR5

and KA2 subunits (GluR1: 0.8260.06, p,0.01: GluR5:

0.7260.05, p,0.001; KA2: 0.8060.04, p,0.05) between KA-

injected COX-22/2 mice and KA-injected WT mice (Fig. 1A,

1E–1I).

In the cortex, similarly to the changes observed in the

hippocampus, we found an increase in the expression of GluR2,

GluR3, GluR6 and GluR7 (GluR2: 1.4260.09, p,0.001; GluR3:

1.2860.02, p,0.001; GluR6: 1.4460.10, p,0.001; GluR7:

1.4060.06, p,0.001) in vehicle-injected COX-22/2 mice com-

pared with WT mice (Fig. 2B–C, 2F–G).

Furthermore, the mRNA expression of GluR3 and KA1

subunits was decreased in KA-injected WT mice compared to

vehicle-injected WT mice (GluR3: 0.7860.05, p,0.001; KA1:

0.7260.03, p,0.01) (Fig. 2C, 2I). Moreover, a down-regulation in

the mRNA expression of AMPA GluR2–3 and KA GluR6–7 was

observed in KA-injected COX-22/2 mice compared with vehicle-

injected COX-22/2 mice (GluR2: 0.7860.02, p,0.001; GluR3:

0.8960.04, p,0.05; GluR6: 0.7460.02, p,0.05; GluR7:

0.8760.02, p,0.05) (Fig. 2B–C, 2F, 2H).

mRNA expression of NMDA glutamate receptor subunits
is decreased in COX-22/2 mice after KA injection

Next, we examined the relative changes in the mRNA

expression pattern of the NMDA (NR1, NR2a–d and NR3a–b)

glutamate receptors subunits in the hippocampus and cortex of

vehicle-injected COX-22/2 mice (n = 9) compared with vehicle-

injected WT mice (n = 9). Then, we analyzed the expression levels

of the same receptor subunits of KA-injected WT (n = 9) and COX-

22/2 mice (n = 9) compared with their respectively controls. Also

we analyzed the mRNA expression of KA-injected COX-22/2

mice compared with KA-injected WT mice.

In the hippocampus of vehicle-injected COX-22/2 mice the

mRNA expression of all NMDA receptor subunits, except for

NR2b, was significantly decreased as compared with vehicle-

injected WT mice (NR1: 0.6260.02, p,0.001; NR2a: 0.4860.01,

p,0.001; NR2c: 0.5760.02, p,0.001; NR2d: 0.6060.02,

p,0.001; NR3a: 0.6760.01, p,0.001; NR3b: 0.4660.12,

p,0.05) (Fig. 3A–G). Furthermore, the mRNA expression of all

NMDA subunits (except NR2b) from KA-injected WT mice were

decreased when compared with vehicle-injected WT mice (NR1:

0.5960.04, p,0.001; NR2a: 0.5560.05, p,0.001; NR2c:

0.5560.04, p,0.001; NR2d: 0.5660.04, p,0.001; NR3a:

0.6860.03, p,0.001; NR3b: 0.5060.09, p,0.05) (Fig. 3A–G).

Also, KA-injected COX-22/2 mice showed a significant decrease

in the mRNA expression of all NR subunits, except NR1, NR2a

and NR3a, as compared with vehicle-injected COX-22/2 mice

(NR2b: 0.7160.02, p,0.001: NR2c: 0.4860.1, p,0.001; NR2d:

0.5960.07, p,0.01; NR3a: 0.6160.05, p,0.001) (Fig. 3A–G). A

decrease of about 30–50% was observed in the expression of all

NR subunits, except NR1 and NR3b, between KA-injected COX-

22/2 and KA-injected WT mice (NR2a: 0.6360.03, p,0.01;

NR2b: 0.7060.02, p,0.001; NR2c: 0.4960.14, p,0.001; NR2d:

0.6060.07, p,0.01; NR3a: 0.6060.05, p,0.001) (Fig. 3A–G).

In the cortex, the expression of NR1, NR2a, NR2c and NR2d

subunits was decreased when we compared vehicle-injected

COX-22/2 (NR1: 0.7260.06, p,0.001; NR2a: 0.6760.02,

Glutamate Receptors Editing
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Figure 1. KA-induced mRNA expression of AMPA/KA receptor subunits in the hippocampus of COX-2+/+ and COX-22/2 mice.
Quantitative real time-PCR analysis of GluR1 (A), GluR2 (B), GluR3 (C), GluR4 (D) GluR5 (E), GluR6 (F), GluR7 (G), KA1 (H), KA2 (I) for COX-2+/+ and COX-22/2

mice 24 h after i.p. injection of KA or vehicle. Data are means 6 SEM (n = 9). Statistical analysis was performed using a two-way ANOVA and Bonferroni’s
post-hoc test to compare replicate means. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected COX-2+/+ mice; #P,0.05, ##P,0.01,
###P,0.001, compared to vehicle-injected COX-22/2 mice; fiP,0.05, fifiP,0.01, fififiP,0.001 between KA-injected COX-22/2 and KA-injected
WT mice.
doi:10.1371/journal.pone.0019398.g001
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Figure 2. KA-induced expression of AMPA/KA receptor subunits in the cortex of COX-2+/+ and COX-22/2 mice. Quantitative real time-
PCR analysis of GluR1 (A), GluR2 (B), GluR3 (C), GluR4 (D), GluR5 (E), GluR6 (F), GluR7 (G), KA1 (H), KA2 (I) for COX-2+/+ and COX-22/2 mice 24 h after i.p.
injection of KA or vehicle. Data are means 6 SEM (n = 9). Statistical analysis was performed using a two-way ANOVA and Bonferroni’s post-hoc test to
compare replicate means. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected COX-2+/+ mice; #P,0.05, ##P,0.01, ###P,0.001,
compared to vehicle-injected COX-22/2 mice; fiP,0.05, fifiP,0.01, fififiP,0.001 between KA-injected COX-22/2 and KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g002
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Figure 3. KA-induced expression of NMDA receptor subunits in the hippocampus of COX-2+/+ and COX-22/2 mice. Quantitative real
time-PCR analysis of NR1 (A), NR2a (B), NR2b (C), NR2c (D), NR2d (E) NR3a (F), NR3b (G) for COX-2+/+ and COX-22/2 mice 24 h after i.p. injection of KA or
vehicle. Data are means 6 SEM (n = 9). Statistical analysis was performed using a two-way ANOVA and Bonferroni’s post-hoc test to compare replicate
means. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected COX-2+/+ mice; #P,0.05, ##P,0.01, ###P,0.001, compared to vehicle-
injected COX-22/2 mice; fiP,0.05, fifiP,0.01, fififiP,0.001 between KA-injected COX-22/2 and KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g003
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p,0.001; NR2c: 0.7360.02, p,0.001; NR2d: 0.7960.03,

p,0.05) with vehicle-injected WT mice (Fig. 4A–G). An increase

of about 40% was observed in the expression of the NR2b subunit

in vehicle-injected COX-22/2 compared with vehicle-injected

WT mice (NR2b: 1.4260.09, p,0.001). Also, the expression of

NR1, NR2a, NR2c and NR2d subunits was decreased when we

compared KA-injected WT with vehicle-injected WT mice (NR1:

0.7360.04, p,0.01; NR2a: 0.7160.02, p,0.001; NR2c:

0.8060.06, p,0.01) (Fig. 4A–G).

A down-regulation in the expression of several NR subunits

(NR2b: 0.7460.05, p,0.05; NR2c: 0.7060.05, p,0.01; NR2d:

0.7360.04, p,0.05; NR3b: 0. 5060.10, p,0.05) was observed in

KA-injected COX-22/2 mice compared with vehicle-injected

COX-22/2 mice (Fig. 4A–G). A significant decrease of about 30–

50% was observed in the expression of NR2a, NR2c and NR2d

subunits between KA-injected COX-22/2 mice and KA-injected

WT mice (NR2a: 0.6360.03, p,0.01; NR2c: 0.7060.02,

p,0.001; NR2d: 0.4960.14, p,0.001) (Fig. 4A–G).

Pretreatment with celecoxib altered mRNA expression of
AMPA/KA and NMDA glutamate receptor subunits in WT
mice after KA injection

We examined the relative changes in the mRNA expression of

the AMPA (GluR1–4), KA (GluR5–7, KA1 and KA2) and

NMDA (NR1, NR2a–d, NR3a–b) glutamate receptor subunits in

the hippocampus and cortex of mice treated for two weeks with

celecoxib, a COX-2 selective inhibitor, prior to KA injection, in

vehicle-injected and KA-injected WT mice (n = 9).

In the hippocampus, no changes were observed when we

compared vehicle-injected and celecoxib treated mice (data not

shown). KA injection affected the expression of all AMPAR, KAR

(except GluR6) and NMDAR subunits in both celecoxib untreated

controls (GluR1: 0.7860.02, p,0.001; GluR2: 0.7660.03,

p,0.001; GluR3: 0.7960.04, p,0.01; GluR4: 0.7860.05,

p,0.001; GluR5: 0.8060.02, p,0.001; GluR7: 0.6860.04,

p,0.05; KA1: 0.5060.02, p,0.001; KA2: 0.7360.03, p,0.001;

NR1: 0.5960.05, p,0.001; NR2a: 0.5560.02, p,0.001; NR2c:

0.5560.05, p,0.001; NR2d: 0.5660.04, p,0.001; NR3a:

0.6860.03, p,0.001; NR3b: 0.5060.09, p,0.001) and cele-

coxib-treated WT mice (GluR1: 0.3860.02, p,0.001; GluR2:

0.3260.01, p,0.001; GluR3: 0.2760.01, p,0.001; GluR4:

0.5760.02, p,0.001; GluR5: 0.6060.02, p,0.001; GluR7:

0.5060.02, p,0.001; KA1: 0.5060.01, p,0.001; KA2:

0.3560.01, p,0.001; NR1: 0.3760.01, p,0.001; NR2a:

0.2460.003, p,0.001; NR2b: 0.2760.01, p,0.001; NR2c:

0.3860.02, p,0.001; NR2d: 0.3960.02, p,0.001; NR3a:

0.1860.01, p,0.001; NR3b: 0.2060.03, p,0.001) when com-

pared with vehicle-injected WT mice (Fig. 5A–I and Fig. 6A–G).

Celecoxib pretreatment significantly decreased the mRNA

expression of most iGluRs in KA-injected mice (GluR1:

0.5060.02, p,0.001; GluR2: 0.4160.01, p,0.001; GluR3:

0.3460.01, p,0.001; GluR4: 0.7360.02, p,0.01; GluR5:

0.7660.02, p,0.001; GluR6: 0.8860.02, p,0.01; KA2:

0.4860.01, p,0.001; NR1: 0.6260.02, p,0.05; NR2a:

0.4360.01, p,0.001; NR2b: 0.3060.01, p,0.001; NR3a:

0.2760.02, p,0.001; NR3b: 0.4160.05, p,0.01) (Fig. 5A–I

and Fig. 6A–G).

In the cortex, no changes were observed when we compared

vehicle-injected and celecoxib treated mice (data not shown). KA

injection affected the expression of several AMPAR, KAR and

NMDAR subunits in both celecoxib-untreated (GluR3:

0.7860.05, p,0.001; KA1: 0.7060.03, p,0.001; KA2:

0.8060.03, p,0.001; NR1: 0.7060.03, p,0.001; NR2a:

0.7460.01, p,0.001; NR2b: 0.8460.04, p,0.05; NR2c:

0.7560.06, p,0.01; NR2d: 0.8360.05, p,0.05) and celecoxib-

pretreated mice (GluR4: 0.6160.02, p,0.001; GluR5:

0.8660.03, p,0.05; GluR7: 0.7260.06, p,0.05; KA1:

0.6660.01, p,0.001; KA2: 0.6560.03, p,0.001; NR1:

0.4560.03, p,0.001; NR2a: 0.4760.06, p,0.001; NR2b:

0.6160.03, p,0.001; NR2c: 0.2960.01, p,0.001; NR2d:

0.3760.01, p,0.001; NR3b: 0.4960.12, p,0.05) when com-

pared with vehicle-injected WT mice (Fig. 7A–I and Fig.

8A–G).

Although the effect was less robust than the one observed in the

hippocampus, after KA injection celecoxib-pretreated mice

showed reduced cortical mRNA expression of several iGluRs

compared with celecoxib-untreated mice (GluR4: 0.6760.03,

p,0.001; GluR7: 0.6960.06, p,0.05; KA2: 0.8160.03, p,0.01;

NR1: 0.6460.04, p,0.001; NR2a: 0.6360.08, p,0.01; NR2b:

0.7360.04, p,0.01; NR2c: 0.3860.001, p,0.001; NR2d:

0.4260.02, p,0.001). Celecoxib pretreatement increased the

expression of GluR3 (1.260.03, p,0.05) in response to KA

injection (Fig. 7A–I and Fig. 8A–G).

Pattern of in vivo mRNA editing levels of GluRs after KA
treatment

Since the function of AMPA glutamatergic receptors is

modulated by the mRNA editing of the different subunits, we

analyzed editing levels of GluR2 Q/R and R/G sites, GluR3 and

GluR4 R/G sites, GluR5 Q/R site and GluR6 I/V, Y/C and Q/

R sites in the hippocampus and cortex. The AMPA R/G sites

were analyzed in combination with the AMPA splicing variants

called flip and flop [24].

In all mice tested the editing level of GluR2 Q/R site was

virtually 100%, with no variations due to either KA injection or

genotype (data not shown). In hippocampus and cortex, no

changes were detected in the R/G site, flip- and flop-isoforms, of

GluR2 in either KA- injected WT mice or in vehicle-injected

COX-22/2 mice when compared with vehicle-injected WT mice

(Table S1, Supplementary data).

In the hippocampus, the GluR3 R/G site for the flip isoform

showed a small but significant increase after KA injection in WT

mice (8.4%, p,0.001) and vehicle-injected COX-22/2 mice

(8.4%, p,0.001) when compared to vehicle-injected WT mice

(Fig. 9A). In the cortex, we found a decrease (216.4%, p,0.001)

in the GluR3 R/G site for the flip variant in vehicle-injected

COX-22/2 mice when compared with vehicle-injected WT mice

(Fig. 10A).

Similarly, in the hippocampus, GluR4 R/G site, flip variant,

showed an increase after KA injection in both WT (8%, p,0.05)

and COX-22/2 mice (8%, p,0.05) when compared with vehicle-

injected WT mice (Fig. 9B). No changes were observed in the

editing levels of GluR3 (Fig. 9A and Fig. 10A) and GluR4 R/G

site (Fig. 9B and Table S1), flop-isoform, after KA injection or

between genotypes in the hippocampus or cortex.

No changes by genotype or KA-treatment were found in the

editing level of kainate GluR5 Q/R site in the hippocampus or in

the cortex (Table S1). GluR6 Y/C and Q/R sites were not altered

by KA treatment either in the hippocampus (Table S1) or cerebral

cortex (Fig. 10B). However, there was a small but statistically

significant increase in the I/V site in the cortex of KA-injected

WT mice (p,0.001) and vehicle-injected COX-22/2 mice

(p,0.001) when compared with vehicle-injected WT mice

(Fig. 10B). Furthermore, we analyzed editing levels of the different

subunits in mice pretreated for two weeks with celecoxib. No

changes due to KA-treatment or celecoxib were detected either in

the hippocampus or cortex (Table S2, Supplementary data).
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Figure 4. KA-induced mRNA expression of NMDA receptor subunits in the cortex of COX-2+/+ and COX-22/2 mice. Quantitative real
time-PCR analysis of NR1 (A), NR2a (B), NR2b (C), NR2c (D), NR2d (E) NR3a (F), NR3b (G) for COX-2+/+ and COX-22/2 mice 24 h after i.p. injection of KA or
vehicle. Data are means 6 SEM (n = 9). Statistical analysis was performed using a two-way ANOVA and Bonferroni’s post-hoc test to compare replicate
means. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected COX-2+/+ mice; #P,0.05, ##P,0.01, ###P,0.001, compared to vehicle-
injected COX-22/2 mice; fiP,0.05, fifiP,0.01, fififiP,0.001 between KA-injected COX-22/2 and KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g004
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Figure 5. Effects of pretreatment with celecoxib on KA-induced expression of AMPA/KA receptor subunits in the hippocampus of
wild type mice. Quantitative real time-PCR analysis of GluR1 (A), GluR2 (B), GluR3 (C), GluR4 (D), GluR5 (E), GluR6 (F), GluR7 (G), KA1 (H), KA2 (I) in WT
mice, after two weeks treatment with celecoxib, followed by an i.p. injection of KA or vehicle 24 hours later. Data are means 6 SEM (n = 9). Statistical
analysis was performed using a one-way ANOVA and Bonferroni’s post-hoc test. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected WT mice;
#P,0.05, ##P,0.01, ###P,0.001 compared to KA-injected WT mice fiP,0.05, fifiP,0.01, fififiP,0.001 between KA-injected COX-22/2

and KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g005
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Figure 6. Effects of pretreatment with celecoxib on KA-induced expression of AMPA/KA receptor subunits in the cortex of wild type
mice. Quantitative real time-PCR analysis of GluR1 (A), GluR2 (B), GluR3 (C), GluR4 (D) in WT mice, after two weeks treatment with celecoxib, followed
by an i.p. injection of KA or vehicle 24 hours later. Data are means 6 SEM (n = 9). Statistical analysis was performed using a one-way ANOVA and
Bonferroni’s post-hoc test. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected WT mice; #P,0.05, ##P,0.01, ###P,0.001 compared to
KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g006

Glutamate Receptors Editing

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e19398



Figure 7. Effects of pretreatment with celecoxib on KA-induced mRNA expression of NMDA receptor subunits in the hippocampus
of wild type mice. Quantitative real time-PCR analysis of NR1 (A), NR2a (B), NR2b (C), NR2c (D), NR2d (E) NR3a (F), NR3b (G) in WT mice, after two
weeks treatment with celecoxib, followed by an i.p. injection of KA or vehicle 24 hours later. Data are means 6 SEM (n = 9). Statistical analysis was
performed using a one-way ANOVA and Bonferroni’s post-hoc test. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected WT mice; #P,0.05,
##P,0.01, ###P,0.001 compared to KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g007
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Figure 8. Effects of pretreatment with celecoxib on KA-induced mRNA expression of NMDA receptor subunits in the hippocampus
of wild type mice. Quantitative real time-PCR analysis of NR1 (A), NR2a (B), NR2b (C), NR2c (D), NR2d (E) NR3a (F), NR3b (G) in WT mice, after two
weeks treatment with celecoxib, followed by an i.p. injection of KA or vehicle 24 hours later. Data are means 6 SEM (n = 9). Statistical analysis was
performed using a one-way ANOVA and Bonferroni’s post-hoc test. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected WT mice; #P,0.05,
##P,0.01, ###P,0.001 compared to KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g008
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mRNA expression of genes involved in the
neuroinflammatory response is increased in COX-22/2

mice after KA
Gene expression of cytokines was determined using real time

PCR in hippocampus and cortex. In the hippocampus, no changes

were observed in the mRNA expression of all inflammatory

markers analyzed when we compared vehicle-injected COX-22/2

with vehicle-injected WT mice (Fig. 11A–C). These data indicate

that COX-2 deletion per se does not alter the transcription rate of

inflammatory markers. KA-injection significantly increased the

expression of TNF-a, IL-1b and IL-6 in both COX-22/2 and WT

mice, however, the increase was significantly higher in the COX-

22/2 mice (P,0.001; Fig. 11A–C).

In the cortex, no changes was observed in the mRNA

expression of TNF-a, IL-1b and IL-6 genes when we compared

vehicle-injected COX-22/2 with vehicle-injected WT mice

(Fig. 12A–C). KA-injection increased the expression of TNF-a
(3.0560.41, p,0.001), IL-1b (1.4860.09, p,0.01) and IL-6 genes

(1.8360.39, p,0.01) in COX-22/2 mice and the expression of

TNF-a (1.8960.17, p,0.05) in WT mice (Fig. 12A–C). The

increase in the gene expression of TNF-a was significantly higher

in KA-injected COX-22/2 than in KA-injected WT mice

(1.6160.29, p,0.05; Fig. 12A).

To determine glial cell response, we examined the gene

expression of GFAP, a specific marker for astrocytes, and CD11b,

a specific marker for microglia. No changes were observed in either

brain areas analyzed in the mRNA expression of GFAP and CD11b

when we compared vehicle-injected COX-22/2 with vehicle-

injected WT mice (Fig. 11E–F, Fig. 12E–F).

In the hippocampus, KA increased the expression of GFAP and

CD11b, with a more significant effect in COX-22/2 (GFAP:

3.8360.16, p,0.001; CD11b: 2.4660.20, p,0.01) than in WT

mice (GFAP: 2.1460.24, p,0.001; CD11b: 1.9160.19, p,0.01)

(Fig. 11E–F). Moreover, KA-injected COX-22/2 mice showed a

higher increase in the expression of GFAP (1.8860.13, p,0.01)

and CD11b (1.2660.11, p,0.05) when compared with KA-

injected WT mice (Fig. 11E–F). In the cortex, KA-injected COX-

22/2 showed an increase in the expression of GFAP (1.8960.17,

Figure 9. KA-induced editing of AMPA editing site glutamate receptor subunits in the hippocampus of COX-2+/+ and COX-22/2

mice. Evaluation of RNA editing levels of the AMPA glutamate receptors in the hippocampus of mice injected with KA. (A) GluR3 R/G site flip- flop-
variant and (B) GluR4 R/G flip- flop-variant, editing site. Data are presented as mean 6 SEM (n = 6). Statistical analysis was performed with Student’s t
test (*P,0.05, **P,0.01, ***P,0.001).
doi:10.1371/journal.pone.0019398.g009
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p,0.05) when compared to vehicle-injected COX-22/2 mice. No

changes were observed in the mRNA expression of CD11b

(Fig. 12E–F).

No change was observed in the mRNA expression of iNOS, a

major source or oxidative stress, when we compared vehicle-

injected COX-22/2 with vehicle-injected WT mice in the

hippocampus or cortex (Fig. 11G, Fig. 12G). In the hippocampus,

COX-22/2 mice (2.1960.22, p,0.001) showed a higher increase

in iNOS mRNA levels in response to KA compared to WT mice

(1.6160.14, p,0.01). Also, KA-injected COX-22/2 mice showed

an increase in the expression of iNOS (1.3660.15, p,0.05) when

compared with KA-injected WT mice (Fig. 11G). In the cortex, no

changes were observed in the expression of iNOS in any of the

groups (Fig. 12G).

Furthermore, we analyzed the mRNA expression of the pro-

inflammatory transcription factor NF-kB. In the hippocampus, an

increase in the mRNA levels of NF-kB was observed in KA-

injected compared to vehicle-injected COX-22/2 mice

(1.2060.05, p,0.001) (Fig. 11D). KA-injected COX-22/2 mice

showed an increase in the expression of NF-kB (1.1960.06,

p,0.01) when compared with KA-injected WT mice (Fig. 11D).

In the cortex, no changes were observed in the expression of NF-

kB in any of the groups analyzed (Fig. 12G).

Next, we examined mRNA gene expression of MAP-2 that

belongs to the microtubule-associated protein family, which is

enriched in neuronal cell bodies and dendrites. In the hippocam-

pus, KA-injection significantly increased the expression of MAP-2

(1.4360.09, p,0.01) in COX-22/2 mice (Fig. 11H). In the

cortex, no change was observed in MAP-2 gene expression

(Fig. 12H). The mRNA expression of COX-1 was not significantly

changed in either COX-22/2 and WT mice after KA exposure in

either brain areas (data not shown), indicating that the increased

neuroinflammatory response was not due to an increased

compensatory expression of COX-1 in response to KA as a

consequence of COX-2 gene deletion.

Discussion

In this study, we report for the first time a complete analysis of

mRNA expression for all subunits of AMPA (GluR1–4), KA

(GluR5–7, KA1 and KA2) and NMDA (NR1, NR2a–b and

NR3a–b) receptors in the hippocampus and cortex from COX-

22/2 and WT mice after KA injection. We used KA as a model of

excitotoxicity because of its strong and well-characterized time and

regional effects in inducing seizures and subsequent neuronal

damage. Administration of KA has been shown to increase

Figure 10. KA-induced editing of AMPA and KA glutamate receptor subunits in the cortex of COX-2+/+ and COX-22/2 mice. RNA
editing levels of AMPA and KA glutamate receptors in the cerebral cortex of mice exposed to acute KA-injection. (A) GluR3 R/G site flip- flop-variant
and (B) GluR6 I/V, Y/C and Q/R editing site. Data are presented as mean 6 SEM (n = 6). Statistical analysis was performed with Student’s t test
(*P,0.05, **P,0.01, ***P,0.001).
doi:10.1371/journal.pone.0019398.g010
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Figure 11. KA-induced expression of genes involved in the neuroinflammatory response in the hippocampus of COX-2+/+ and COX-
22/2 mice. Quantitative real time-PCR analysis of TNF-a (A), IL-1b (B), IL-6 (C), NF-kB (D), GFAP (E), CD11b (F), iNOS (G), MAP-2 (H) for COX-2+/+ and
COX-22/2 mice 24 h after i.p. injection of KA or vehicle. Data are means 6 SEM (n = 9). Statistical analysis was performed using a two-way ANOVA and
Bonferroni’s post-hoc test to compare replicate means. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected COX-2+/+ mice; #P,0.05,
##P,0.01, ###P,0.001, compared to vehicle-injected COX-22/2 mice; fiP,0.05, fifiP,0.01, fififiP,0.001 between KA-injected COX-22/2

and KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g011
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Figure 12. KA-induced expression of genes involved in the neuroinflammatory response in the cortex of COX-2+/+ and COX-22/2

mice. Quantitative real time-PCR analysis of TNF-a (A), IL-1b (B), IL-6 (C), NF-kB (D), GFAP (E), CD11b (F), iNOS (G), MAP-2 (H) for COX-2+/+ and COX-22/2

mice 24 h after i.p. injection of KA or vehicle. Data are means 6 SEM (n = 9). Statistical analysis was performed using a two-way ANOVA and
Bonferroni’s post-hoc test to compare replicate means. *P,0.05, **P,0.01, ***P,0.001 compared to vehicle-injected COX-2+/+ mice; #P,0.05,
##P,0.01, ###P,0.001, compared to vehicle-injected COX-22/2 mice; fiP,0.05, fifiP,0.01, fififiP,0.001 between KA-injected COX-22/2

and KA-injected WT mice.
doi:10.1371/journal.pone.0019398.g012
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production of reactive oxygen species, mitochondrial dysfunction,

and apoptosis in neurons in many regions of the brain, particularly

in the hippocampal CA1 and CA3 subfields, and hilus of dentate

gyrus. KA also produces inflammatory responses typically found in

neurodegenerative diseases. Several studies suggest that KA-

induced excitotoxicity can be used as a model for elucidating

mechanisms underlying oxidative stress and inflammation in

neurodegenerative diseases [14,16,44].

Our data show that AMPA GluR2–3 and KA GluR6 mRNA

levels are up-regulated in the hippocampus of COX-22/2 mice

while the mRNA expression of all NMDA receptor subunits is

down-regulated. KA injection caused a general decrease in the

mRNA of AMPARs (GluR1–4), KARs (GluR5, GluR7, KA1–

KA2) and NMDARs (NR1, NR2a–d, NR3a) in the hippocampus

of both COX-2+/+ mice and COX-22/2 mice, whereas in the

cortex only KA1, NR1, NR2a and NR2c mRNA levels were

decreased.

These data indicate that COX-22/2 mice might suffer of an

imbalance of glutamate receptor expression. We observed an

increase in the transcription levels for AMPA (GluR2 and GluR3)

and KA (GluR6) receptor subunits in both the hippocampus and

cortex of vehicle-injected COX-22/2 mice compared to WT

mice, whereas the mRNA levels of NMDA subunits were generally

decreased. The net effect of this action might be an increased

glutamatergic throughput of AMPARs relative to NMDA

receptors. Thus, we can speculate that genetic deletion of COX-

2 alters the functional interplay between AMPA and NMDA

receptors, leading to the dampening of NMDA receptors and

potentiation of AMPA receptors. These data confirm a role of

COX-2 in modulating the expression of glutamate receptors.

Moreover, the imbalance in glutamatergic neurotransmission

could contribute, at least in part, to the increased susceptibility

of COX-22/2 mice to KA-induced seizure intensity and neuronal

damage that we previously described [6].

The NMDA receptor is formed by NR1 subunits interacting

with NR2A–D, conferring functional variability depending on the

specific subunits involved [45]. NR2A and NR2B are the major

NR2 subunits in the adult neocortex and hippocampus. NR2A is

confined to synapses of mature neurons, whereas NR2B is

distributed mainly extrasynaptically [46]. Synaptic NMDA

receptor activity is extremely important for neuronal survival,

while the extrasynaptic NMDAR is coupled to cell-death pathways

[47].

Recently, a new mechanism of autoregulation of the NMDA

receptor induced by agonists overactivaction in mature neurons

has been described by Gascon and colleagues [48]. The decrease

in the expression of NMDAR subunits that we found in celecoxib-

treated and COX-22/2 mice after KA may be explained by this

mechanism of autoregulation in response to glutamate activation.

NMDAR overactivation may downregulate the function of

synaptic receptors in neurons in response to excitotoxic neuronal

degeneration. NR1 can also be regulated by a late-onset

mechanism consisting of transcriptional suppression of NR1

obligatory subunit under excitotoxic conditions [49]. Inhibition

of NR1 synthesis might also result in a progressive decrease in the

activity of synaptic and extrasynaptic NMDARs. Calcium influx

and brief stimulation of NMDARs with excitotoxic concentrations

of agonist is sufficient to irreversibly reduce the level of this

receptor subunit. These mechanisms of autoregulation of the

NMDARs may also be involved in KA-induced changes in the

expression of NMDARs and subsequent excitoxicity and neuronal

degeneration.

The increased susceptibility to KA-induced excitotoxicity of

COX-22/2 mice raises an important issue regarding the possible

involvement of COX-2 in neuroprotection and glutamatergic

neurotransmission [6]. Specifically, COX-2 could play a role in

attenuating glutamate excitotoxicity and, consequently, Ca2+

influx, by indirectly modulating the transcription of AMPA/KA

and NMDA receptors.

After KA injection we observed a global down-regulation of

AMPA/KA and NMDA mRNA expression, in WT and to a

greater extent in COX-22/2 mice. Following its depolarizing

actions, KA may enhance intracellular accumulation of Ca2+ to

promote selective neuronal damage. Neuronal cells might protect

themselves from the damaging overstimulation, inducing the

observed decrease in the overall glutamate receptors expression, in

an attempt to maintain homeostasis.

Our data agree with a previous report by Grooms et al (2000)

showing that KA administration caused delayed death of

pyramidal neurons in the hippocampal CA1 and CA3 subfields

that was preceded by down-regulation of GluR2 mRNA and

protein expression [50]. Thus, AMPA receptor subunits may play

an important role in the neurotoxicity induced by KA, although

the mechanism underlying the involvement of this class of

receptors in excitotoxicity should be further investigated. It is

believed that the behavioral and neuropathological changes

induced by KA are initiated by the activation of KA receptors

in the CA3 region of the hippocampus [10], followed by release of

the endogenous excitatory amino acids, glutamate, and aspartate

[11], with an activation of all types of glutamate receptors.

Ohno et al (1997) [51] showed that KA-induced excitotoxicity

in embryonic rat hippocampal cultures is mediated by AMPA but

not KA receptors, and involves NMDA receptor-mediated toxicity

through the response of KA mediated by AMPA-preferring

receptors. Non-NMDA receptor-mediated excitotoxicity has been

proposed to contribute to neuronal loss in a broad range of

pathological conditions including hypoxia, hypoglycemia, ische-

mia, epilepsy, trauma [52,53], amyotrophic lateral sclerosis [54],

Huntington’s disease [55], and Alzheimer’s disease [56,57].

Regulation of glutamate receptors subunits is complex and

includes several intracellular steps, from transcriptional to post-

translational modifications, which may have functional conse-

quences on receptor subunit rearrangement and lead to functional

differences in the functioning of synaptic circuits. Specifically,

several reports clearly indicate that changes in editing of specific

glutamate receptor subunits are accompanied by corresponding

changes in the physiological properties of the channels

[23,26,27,58]. Our data indicate that KA also modulated RNA

editing, a post-transcriptional mechanism known to alter func-

tional properties of selected subunits of AMPA and KA receptors

and to induce a fine-tuning modulation of glutamate neurotrans-

mission [23]. RNA editing reaction influences the structure and,

most importantly, the function of the receptor, by acting at

different levels: RNA editing modulates RNA splicing of several

glutamate receptors [24], and Q/R RNA editing modulates

receptor transport from the endoplasmic reticulum to the plasma

membrane and mediates GluR subunit tetramerization [28,29]. At

the functional level, Q/R RNA editing modulates ionic transport

through GluR receptor channels [26,27], whereas R/G RNA

editing modulates desensitization and the recovery time of GluR

receptors [30]. Thus, the physiological action of glutamate seems

to rely greatly on a proper RNA editing reaction. Supporting this

notion, recent reports show that changes in the editing level may

have a profound impact on glutamatergic neurotransmission in

epilepsy [59,60,61], amyotrophic lateral sclerosis (ALS) [62,63],

spinal cord injury [43] and malignant gliomas [64].

In our study, the GluR2 Q/R site, the most important editing

site for modulation of AMPA receptor channel properties,
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remained fully edited after KA injection in both the brain areas

analyzed, indicating that modifications in calcium permeability of

AMPA receptors were not involved in KA action.

In the hippocampus, we observed an increase in GluR3 and

GluR4 R/G level after KA injection in both WT and COX-22/2

mice. Our data suggest that increased editing at the AMPA R/G

site, by altering resensitization kinetics, could enhance the receptor

response to glutamate, resulting in a synapse operating at an

increased gain. The potentially higher frequency of post-synaptic

receptor activation due to fast resensitization kinetics, might in this

case lead to an increased Ca2+ concentration in the post-synaptic

neuron.

On the other hand, in the cortex, we found a decrease in the

GluR3 R/G site editing, flip form, in vehicle-injected COX-22/2

compared with WT mice. Although no changes in editing levels

were observed after KA injection, the observed decrease in GluR3

R/G site editing might cause a selective reduction of conductance

for GluR3-containing receptors after KA.

Regarding the editing levels of KA receptors, KA injection

selectively affected only the GluR6 I/V site in the cortex,

indicating that KA slightly decreased cation permeability of the

GluR6-containing receptor channels. The observed increase in I/

V GluR6 levels might indicate an excitotoxin-induced decrease in

the activity of voltage-gated glutamatergic channels of the KA

subtype. It is possible that desensitization at KA-preferring

receptors plays an important role in neuroprotection.

Furthermore, we showed that pretreatment with celecoxib for 2

weeks recapitulated the effects on gene expression of some AMPA,

KA and most of the NMDA receptor subunits observed in COX-

22/2 mice after KA exposure, suggesting that the effects observed

were not due to life-time compensatory changes that may exist in

knockout mice. No alteration in the editing reaction was observed

after celecoxib treatment, indicating that editing levels are

extremely conserved and editing modifications may occur only

after a longer treatment or in a situation of life-time inhibition of

COX-2 activity as observed in COX-22/2 mice.

Furthermore, we observed that COX-2 gene deletion enhanced

the neuroinflammatory response to KA. KA increased mRNA

expression of pro-inflammatory cytokines, such as TNF-a, IL-1b
and IL-6, iNOS, a marker of oxidative stress, GFAP, a marker for

astrocytes, and CD11b, a marker for microglia. These data are

consistent with previous reports from our and other groups

showing that COX-2 gene deletion or inhibition increases the

neuroinflammatory response to endotoxins [42]. iNOS may also

contribute to microglia-mediated KA induced neurotoxicity by

increasing the production of extracellular reactive oxygen and

nitrogen species, which, in turn, stimulate microglial release of

pro-inflammatory mediators that, like radical oxygen species, are

toxic to neurons.

MAP2 gene expression was increased in the hippocampus of

COX-22/2 mice after KA. MAP2 exhibits microtubule-stabilizing

activity and regulates the microtubule networks in dendrites,

resulting in dendrite elongation [65]. Thus, as reported in

surviving neurons of medial extended amygdala after status

epilepticus [66], KA might induce a process of sprouting and

reactive synaptogenesis.

In conclusion, we have previously shown that Cox-22/2 mice

are more susceptible to KA-induced seizures and neuronal

damage [6]. Although some of the changes observed in this model

may be the consequence of adaptive modifications due to deletion

of the COX-2 gene, chronic administration of the Cox-2 selective

inhibitor celecoxib recapitulated these findings [6]. While we

cannot directly link changes in glutamate receptor editing to

susceptibility to KA, we speculate that altered mRNA editing and

expression of glutamate receptors in COX-22/2 mice could cause

an imbalance in the interplay between AMPA and NMDA

receptors and alterations in glutamatergic neurotransmission.

These alterations might contribute, at least in part, to the

increased susceptibility of COX-22/2 mice to KA-induced

excitotoxicity [6]. Overall, our findings suggest a role of COX-2

in modulating the expression of glutamate receptors and, in turn,

regulating glutamatergic neurotransmission. Future studies are

warranted to elucidate the molecular mechanisms that underline

the interplay between COX-2 gene and the glutamatergic system.
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