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Abstract Immunoglobulin A nephropathy (IgAN) is the
most common form of primary glomerulonephritis worldwide
and an important cause of kidney disease in young adults.
Highly variable clinical presentation and outcome of IgAN
suggest that this diagnosis may encompass multiple subsets of
disease that are not distinguishable by currently available
clinical tools. Marked differences in disease prevalence
between individuals of European, Asian, and African ancestry

suggest the existence of susceptibility genes that are present at
variable frequencies in these populations. Familial forms of
IgAN have also been reported throughout the world but are
probably underrecognized because associated urinary abnor-
malities are often intermittent in affected family members. Of
the many pathogenic mechanisms reported, defects in IgA1
glycosylation that lead to formation of immune complexes
have been consistently demonstrated. Recent data indicates
that these IgA1 glycosylation defects are inherited and
constitute a heritable risk factor for IgAN. Because of the
complex genetic architecture of IgAN, the efforts to map
disease susceptibility genes have been difficult, and no
causative mutations have yet been identified. Linkage-based
approaches have been hindered by disease heterogeneity and
lack of a reliable noninvasive diagnostic test for screening
family members at risk of IgAN. Many candidate-gene
association studies have been published, but most suffer from
small sample size and methodological problems, and none of
the results have been convincingly validated. New genomic
approaches, including genome-wide association studies
currently under way, offer promising tools for elucidating
the genetic basis of IgAN.
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Introduction

Primary immunoglobulin A nephropathy (IgAN) is a complex
trait [1] and a significant cause of renal insufficiency in
young adults [2–5]. Complex diseases refer to disorders with
a genetic basis that do not obey single-gene Mendelian
inheritance patterns. They are typically determined by the
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action of multiple genes and environmental factors acting
independently or through more complex gene–gene and
gene–environment interactions. The environmental risk
factors for IgAN remain poorly defined. Observational
studies associate male gender and mucosal infections with
increased risk of primary IgAN, but the causal mechanisms
underlying these observations are not clear. The arguments in
support of genetic factors include profound differences in
prevalence among different ethnicities, familial clustering of
IgAN, and interindividual variation in disease course and
prognosis. For instance, Asians (Chinese and Japanese) have
a relatively high prevalence of IgAN compared with
Caucasians, whereas the disease is infrequently diagnosed
in individuals of African ancestry [6]. High frequency of
IgAN has also been reported in biopsy series for Native
Americans and Oceanians [7–11]. Extended kindreds with
familial IgAN have been reported throughout the world,
including the USA [12], France [13], Canada [14], Italy [15],
Australia [10], and Lebanon [16]. Familial disease accounts
for 10–15% of all cases in regions such as northern Italy,
France, or eastern Kentucky in the USA, where thorough
surveys of relatives have been performed [13, 17–20].

Recognition of familial disease has many clinical impli-
cations, particularly for selecting donors for transplantation.
In most reported families, segregation of IgAN is consistent
with autosomal dominant transmission with incomplete
penetrance (not all obligate carriers develop the disease),
though more complex genetic models cannot be excluded.
The incomplete penetrance is likely explained by the
requirement of additional genetic or environmental factors
for clinical manifestation of the disease and is also consistent
with a complex disease model. Gene-mapping studies of
traits with complex determination are difficult, and thus far,
no single mutation has been conclusively demonstrated to
cause IgAN. In this review, we concentrate on the
approaches to genetic studies of IgAN; we summarize the
studies of the last 10–15 years, review the most recent work,
and attempt to project future directions in the field.

What do we know about genetics of IgAN?

Until now, two basic approaches have been used in genetic
studies of IgAN: linkage studies and candidate-gene
association studies. Linkage studies involve recruiting
families with multiple affected individuals. In a typical
whole-genome linkage scan, up to 400 microsatellites, or
equivalently ∼10,000 single nucleotide polymorphism
(SNP) markers, equally spaced across the genome, are
typed in families to interrogate marker cosegregation with a
disease phenotype. The advantage of genome-wide linkage
studies is that they do not require a priori assumptions
about disease pathogenesis. Unfortunately, these studies are

very sensitive to phenotype misspecification, and their power
is limited to detecting rare genetic variants with a relatively
large effect on the risk of disease. The LOD score (logarithm
of the ratio of odds) is used to determine whether a given
genomic locus is linked with a disease trait. An LOD score of
3 indicates 1,000:1 odds that linkage between the marker and
the disease locus exists and is generally accepted as significant
in genome-wide linkage studies.

Linkage studies of IgAN are faced with multiple
challenges. Familial forms of IgAN are frequently under-
recognized because the associated urinary abnormalities in
affected family members are often mild or intermittent.
Moreover, once familial disease is documented, systematic
screening by renal biopsy cannot be justified among
asymptomatic at-risk relatives, necessitating reliance on
less accurate phenotypes, such as microscopic hematuria, to
diagnose affection. Additionally, IgAN has been observed
to co-occur in families with thin basement membrane
disease (TBMD), an autosomal dominant disease caused
by heterozygous mutations in the collagen type IV genes
(COL4A3/COL4A4) [21]. Short of kidney biopsy or direct
sequencing of the very large collagen genes, TBMD cannot
be reliably excluded among relatives of IgAN patients.
Finally, because urinary abnormalities may manifest inter-
mittently, one also cannot unequivocally classify at-risk
relatives as unaffected, necessitating affected-only linkage
analysis. The inability to classify affected and unaffected
individuals accurately is commonly encountered in linkage
studies of complex traits, leading to decreased study power.
Increasing sample size by including additional families is also
not necessarily helpful in these situations because the
diagnosis of IgAN likely encompasses several disease subsets,
such that expansion to larger sample size can paradoxically
reduce analytic power due to increased heterogeneity [22–25].

To date, three genome-wide linkage studies of familial
IgAN have been reported [14, 26, 27]. Families in these
studies have all been ascertained via at least two cases with
biopsy-documented IgAN, with additional family members
diagnosed as affected based on clinical evidence (renal
failure or multiple documentation of hematuria/proteinuria).
In the first study, 30 families with two or more affected
members were examined [26]; multipoint linkage analysis
under the assumption of genetic heterogeneity yielded a
peak LOD score of 5.6 on chromosome 6q22-23 (locus
named IGAN1), with 60% of families linked. The remainder
of families linked to chromosome 3p24-23 with a suggestive
LOD of 2.8. This study demonstrated IgAN is genetically
heterogeneous but argued for the existence of a single locus
with a major effect in some families. Another genome-wide
linkage study involved 22 families that replicated linkage to
chromosome 6q22-23 (nominal p=0.01 at IGAN1 locus)
but also detected two suggestive signals on chromosome
4q26-31 (LOD 1.8) and 17q12-22 (LOD 2.6) [27]. The most
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recent linkage scan was based on a uniquely large pedigree
with 14 affected relatives (two individuals with biopsy-
defined diagnosis, and 12 with hematuria/proteinuria on urine
dipstick) [14]. Linkage to chromosome 2q36 was detected
with a maximal multipoint LOD of 3.47. Most linkage
intervals reported did not contain obvious candidate genes,
but the 2q36 locus encompasses the COL4A3 and COL4A4,
which are mutated in TBMD. Together with the high
penetrance of hematuria, this finding suggests that affected
individuals in the 2q36-linked family may belong to an
IgAN subtype that overlaps with TBMD. To date, none of
the genes underlying these linkage loci has been identified.
The underlying reasons are numerous, including the pheno-
typing difficulties discussed above; the presence of locus
heterogeneity, which limits the ability to precisely map the
disease interval and find additional linked families to refine
loci; or contribution from noncoding susceptibility alleles
(e.g. point mutations or structural genomic variants within
intronic or promoter regions), which usually escape detection
if mutational screening is confined to exonic regions. It is
expected that the availability of inexpensive Next-Gen
sequencing will enable comprehensive interrogation of linkage
intervals, facilitating identification of disease-risk alleles.

Genetic association studies typically involve a collection of
sporadic cases and a group of unrelated controls. Association
studies are predicated on the premise that human populations
share susceptibility alleles inherited from remote ancestors
and that these alleles were not purified out because they
individually confer a small excess risk of disease, resulting in
a relatively high frequency in human populations (common
variant/common disease hypothesis). Consistent with this
starting premise, association studies are limited to detecting
common disease-contributing genetic variants (i.e. population
frequency typically >5%). The association approach can
thus identify variants with moderate to relatively small effects
and, compared with linkage scans, may be less sensitive to
locus heterogeneity or phenotype misspecification. On the
other hand, these studies are very sensitive to population
stratification, i.e. undetected population mismatches between
cases and controls that create spurious associations. As with
linkage studies, association studies can now be carried out on
a genome-wide scale [Genome-Wide Association Studies
(GWAS)], providing an unbiased examination of the genome
and the ability to detect and correct for population stratification.
In addition, current standards necessitate replication of
findings in independent cohorts to declare true associations.

In contrast to the GWAS approach, candidate-gene
association studies examine polymorphisms in only specific
genes that are selected based on a priori assumptions about
their involvement in the disease pathogenesis, and they are
highly sensitive to population stratification, multiple testing,
and reporting bias. As a result, most candidate-gene associ-
ation studies in the literature have not been replicated [28].

Not surprisingly, candidate-gene studies for IgAN have also
been largely unrevealing. Many candidates have been
proposed, but most were studied in the context of IgAN
progression rather than causality. In addition, in part due to
our lack of knowledge about disease pathogenesis, most
candidates were predicated on sparse a priori evidence for
involvement in IgAN. Over the last 15 years, there were 123
candidate-gene association studies for IgAN published in the
English literature and indexed on PubMed (Fig. 1, listed in
the Supplemental Table 1S). Of these, 39 (31%) studies
examined genetic polymorphisms in association with sus-
ceptibility to IgAN, 40 (32%) examined an association with
disease severity, progression, or complications, and 44 (35%)
examined both susceptibility and risk of progression.
Approximately one third of all studies involved poly-
morphisms in the renin–angiotensin system (RAS). The
quality of most studies was astoundingly poor. In general,
they were severely underpowered, thus negative findings
were almost universally inconclusive. Overall, the average
size of case–control cohorts per study was 182 cases
(range 23–916) and 171 controls (range 21–816), although
a recent trend for increasing size of IgAN cohorts is
notable (Fig. 1c, d). The lower average number of controls
is a reflection of poor emphasis on the proper assembly of
control groups. Many studies used ad hoc controls derived
from unscreened blood donors who were poorly matched
to the cases in terms of ancestry and geography. The
potential impact of confounding by population stratification
was ignored by a majority of studies, including very recent
ones, despite the fact that the tools for quantification of this
problem have been developed. Additionally, many studies
tested several hypotheses (either multiple polymorphisms,
multiple phenotypes, or multiple genetic models) and did not
adequately correct for multiple testing. A very few studies
performed permutation testing to derive empiric p values in
the face of multiple, nonindependent tests. Other major
problems included inadequate or variable SNP coverage of
candidate genomic areas, with several studies examining only
a single polymorphism. Thus far, only one group attempted to
survey the entire genome, albeit in a severely underpowered
cohort and with inadequate coverage of ∼80,000 SNPs [29,
30]. The results have not been replicated, and because these
efforts do not pass current standards for genome-wide
association studies, they remain inconclusive and difficult to
interpret. Moreover, 77% of all published candidate-gene
studies reported positive findings, an observation that is likely
explained by a combination of high rate of false positives and
a strong publication bias. Another silent problem in the
literature relates to the fact that same patient cohorts are being
tested for new polymorphisms without accounting for their
use in prior publications. Most findings were not reproduced
in other populations. None of the above problems is unique to
the field of IgAN [31], and for these reasons, new general
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guidelines aimed at improving the design and execution of
genetic association studies have recently been formulated
(please refer to the STROBE [32] and STREGA [33]
statements for more detailed discussion of these issues).

New approaches and ongoing studies: genetics of IgA1
glycosylation abnormalities

The requirement for a kidney biopsy for diagnosing IgAN
is a major obstacle for family studies and a limiting step in
the assembly of large case groups for genetic association
studies. Serum IgA levels, though elevated in a significant
portion of IgAN patients, lack the sensitivity and specificity
required for a clinically useful diagnostic test. Fortunately,
recent studies of glycosylation abnormalities of IgA1 offer
prospects for a more reliable diagnostic biomarker for IgAN.
In humans, IgA1 represents one of the two structurally and
functionally distinct subclasses of IgA. Unlike IgA2, IgM, and
IgG, IgA1 has heavy chains that contain a unique hinge-
region segment between the first and second constant-region
domains, which is the site of attachment of three to five
O-linked glycan chains. O-glycans on circulatory IgA1
consist of N-acetylgalactosamine (GalNAc) with a

β1,3-linked galactose; both residues may be sialylated.
Carbohydrate composition of O-linked glycans on normal
serum IgA1 is variable. Prevailing forms include the
galactose-GalNAc disaccharide and its mono- and disialy-
lated forms. Galactose-deficient variants with terminal
GalNAc or sialylated GalNAc are more common in IgAN
patients. These aberrantly glycosylated galactose-deficient
forms predominate in glomerular immunodeposits and
circulating complexes in IgAN [34–36].

O-linked glycans on circulatory IgA1 are synthesized in
a step-wise manner, beginning with attachment of GalNAc
to serine or threonine of the hinge region catalyzed by
GalNAc transferases (Fig. 2). The O-glycan chain is then
extended by attachment of galactose followed by addition
of sialic acid residues to the GalNAc or galactose or both.
Addition of galactose is catalyzed by Core-1-beta-1,
3-galactosyltransferase (C1GalT1), and its stability is mediated
by a molecular chaperone, Cosmc. The glycan structure is
completed by the alpha-2,6-sialyltransferase II (ST6GalNAcII)
and alpha-2,3-sialyltransferasaes (ST3Gal) that attach sialic
acid to the GalNAc and galactose residues, respectively.
Alternatively, ST6GalNAcII can add sialic acid to terminal
GalNAc, a step that blocks any subsequent modifications and
thus is a terminal step of O-glycan synthesis [37, 38].

Fig. 1 An overview of trends in the published genetic association
studies of sporadic immunoglobulin A nephropathy (IgAN): a Trends
in the numbers of genetic association studies by publication year and
ethnicity (data from 1994 to mid-2009); b proportions of published

genetic associations by nationality of study cohorts; c trends in the
average size of IgAN cohorts by publication year (mean ± standard
error); and d number of cases and controls per study by ethnicity. Only
studies that use DNA-based genotyping are included
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Delineation of the IgA1 glycosylation pathway provided new
logical candidates for genetic association studies. Genetic
variations in genes encoding C1GalT1 (C1GALT1, chr.
7p13-14), Cosmc (C1GALT1C1, chr. Xq24), and ST6GalNA-
cII (ST6GALNAC2, chr. 17q25.1) were recently examined in
a large cohort of 670 Chinese IgAN cases and 494 controls
[39, 40], as well as in a smaller Italian study [41]. These
studies identified risk haplotypes in ST6GALNAC2 and
C1GALT1 and suggest a genetic interaction between these
haplotypes. Similar to all other candidate studies, these results
are preliminary and require validation.

Critically, recent studies have shown that IgA1-producing
cells are the source of elevated serum galactose-deficient IgA1
levels in patients with IgAN [42]. Aberrantly glycosylated
IgA1 can be detected within these cells, and serum levels of
galactose-deficient IgA1 correlated extremely well with
levels of this immunoglobulin in the supernatant of cultured
IgA1-producing cells isolated from peripheral blood of the
same individual. These data indicate that aberrant glycosylation
is not a secondary phenomenon attributable to modification of
IgA1 during formation of immune complexes but, rather,
reflect a specific defect originating in IgA1-producing cells.

Additional studies did not reveal any specific defects in
individual IgA1 glycosylation enzymes but found that each
enzymatic step in the glycosylation pathway is shifted toward
increased production of galactose-deficient IgA1, with elevated
content of sialic acid on GalNAc [42]. Moreover, expression
and enzymatic activity of C1GalT1 appear to be dissociated
from O-glycosylation in IgAN [43], and aberrant glycosyla-
tion affects solely IgA1 and not other glycoproteins with
O-linked glycans, such as IgD [44]. Taken together, these
observations isolate the IgA1 glycosylation defect to a specific
cell type and indicate that the primary disturbance likely
originates in an upstream regulatory pathway(s) of these cells
rather than in the specific glycosylation enzymes.

Recently, a reliable lectin-based enzyme-linked immuno-
sorbent assay (ELISA) for determining serum galactose-
deficient IgA1 has been developed. It utilizes a naturally
occurring HAA lectin isolated from theHelix aspersa snail to
detect circulating galactose-deficient O-linked glycans. In a
large cohort of Caucasians from the southeastern USA, this
test had 90% specificity and 76% sensitivity for diagnosing
sporadic IgAN [45]. Similarly, ELISA-determined serum
galactose-deficient IgA1 was elevated in 77% of pediatric

Fig. 2 Immunoglobulin A1 (IgA1) glycosylation pathway. Hinge region
of human IgA1 contains serine (Ser) and threonine (Thr) residues, and
some of them become O-glycosylated in B-cells’ Golgi apparatus. The
predominating configuration of IgA1 glycans contains galactose (Gal)
residues. Circulating IgA1 from IgA nephropathy (IgAN) patients is, to
a large degree, galactose deficient and contains terminally sialylated

N-acetylgalactosamine (GalNAc). GalNAcT2 UDP-GalNAc-transferase
2, C1GalT1 Core 1 synthase, glycoprotein-N-acetylgalactosamine
3-beta-galactosyltransferase, Cosmc C1GALT1-specific chaperone 1,
ST6GalNAc II N-acetylgalactosaminide alpha-2,6-sialyltransferase II,
NeuAc N-acetylneuraminic acid (sialic acid)

Pediatr Nephrol (2010) 25:2257–2268 2261



patients with IgAN [46]. This simple and inexpensive serum
ELISA holds much promise for providing the first noninvasive
screening test for IgAN.

Our group used this assay to investigate the inheritance
of galactose-deficient IgA1 in familial and sporadic forms
of IgAN [47]. A high serum galactose-deficient IgA1 level
was present in the majority of index cases, as well as
among their parents (39%), siblings (28%), and children
(30%), providing further support for a major dominant
effect. Levels in spouses were indistinguishable from
controls, ruling out an environmental effect. Heritability
of galactose-deficient IgA1 (the proportion of a trait’s
variation explained by inherited factors) was therefore
statistically significant and estimated at 54%. Segregation
analysis of galactose-deficient IgA1 suggested inheritance
of a major dominant gene with an additional polygenic
component. We further examined galactose-deficient IgA1
levels in relatives after stratification for galactose-deficient
IgA1 levels in the index case. Among relatives of IgAN
patients with high galactose-deficient IgA1 values, 33% of
individuals also had high values. In contrast, relatives of
IgAN patients with normal galactose-deficient IgA1 levels
had levels that were indistinguishable from controls. These
data strongly argue that galactose-deficient IgA1 values can
identify distinct subpopulations among IgAN patients,
which may differ in the underlying disease pathogenesis.
Inheritance of galactose-deficient IgA1 has been confirmed
in Chinese patients with familial and sporadic adult IgAN
[48, 49] and recently extended to pediatric IgAN and
Henoch-Schönlein purpura with nephritis (HSPN) [50].
Thus, aberrant IgA1 glycosylation is a common inherited
defect that provides a unifying link in the pathogenesis of
HSPN, and familial and sporadic IgAN among many
populations across the globe. Furthermore, these data
demonstrate that an elevated serum galactose-deficient
IgA1 level is antecedent to disease but, because most family
members with elevated levels are asymptomatic, IgA1
glycosylation abnormalities are not sufficient to produce
IgAN, and additional cofactors must trigger formation of
immune complexes.

A recent study by Suzuki et al. offered some insights
into the additional cofactors required to form immune
complexes and their deposition in glomeruli [51]. Molecular
characterization of IgG autoantibodies that recognize abnor-
mally glycosylated IgA1 molecules (specifically, galactose-
deficient GalNAc-containing epitopes in the hinge region of
IgA1) revealed a specific amino-acid substitution in the
variable region of the IgG1 heavy chain that is more frequent
in IgAN cases compared with controls. This substitution
greatly enhances IgG1 binding to the galactose-deficient
IgA1 molecules. It is likely that this substitution arises as a
somatic mutation in IgG1-producing cells, which is then
positively selected in the course of immune response to yet

unidentified antigens. The triggering antigens may include
viral or bacterial pathogens (supported by frequent synphar-
yngitic disease exacerbation) or possibly by ingested food
epitopes (supported by clinical overlap of IgAN with celiac
disease). These important observations established antiglycan
IgG1 antibodies as at least one additional risk factor, or a
“second hit”, which predisposes to disease development.

These data enable formulation of a working hypothesis
on the pathogenesis of IgAN (Fig. 3). Analogous to
elevated serum cholesterol level, which in conjunction with
additional risk factors (such as smoking or hypertension)
leads to the development of coronary heart disease, elevated
galactose-deficient IgA1 levels constitute a genetic risk
factor that, in combination with a second independent hit
(the production of antiglycan antibodies), leads to formation of
circulating immune complexes that deposit in the glomerulus,
producing inflammation and kidney damage. This simple
model can potentially explain familial or sporadic occurrence
of IgAN. Whereas in the majority of cases elevated galactose-
deficient IgA1 appears to be an inherited risk factor [47], one
can surmise that the propensity to produce antiglycan
antibodies results from an independent, stochastic process
such as a somatic mutation or an environmental insult (e.g. a
viral infection). Thus, the occurrence of this second hit in an
individual with genetically elevated galactose-deficient IgA1
levels would result in sporadic IgAN. One can also
hypothesize that in some cases, the propensity to produce
antiglycan antibodies is by itself genetically determined, such
that cosegregation of risk alleles for galactose-deficient IgA1
and antiglycan antibody production in the same family would
produce the pattern of familial IgAN. Because the two
mutations would be independently inherited, only a small
number of family members would carry both risk alleles,
resulting in the pattern of variable penetrance and small
number of affected individuals typical of familial IgAN. The
relative prevalence of such risk alleles among different
populations could also explain geographic variation in IgAN
prevalence. Most importantly, the pathogenesis model
depicted in Fig. 3 predicts that interventions that decrease
levels of galactose-deficient IgA1 or anti-glycan antibodies
would reduce formation of immune complexes and positively
impact the course of IgAN. Thus, identification of genes and
pathways that specifically affect each side of the equation
would provide targets for therapeutic intervention in IgAN.
Such interventions would be analogous to administration of
cholesterol-lowering drugs to reduce the risk of coronary
heart disease.

Future outlook: genomic approaches to IgA nephropathy

The availability of assays for circulating galactose-deficient
IgA1 and antiglycan antibody production will likely
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accelerate gene-mapping studies. For example, profiling
serum galactose-deficient IgA1 levels can now be used to
reduce heterogeneity in linkage scans for IgAN. Additionally,
galactose-deficient IgA1 can be used more directly, as an
endophenotype (i.e. a measurable intermediate component of
the causal pathway between genotype and disease) in genetic
linkage studies of IgAN. Quantitative endophenotypes are
frequently preferred in genetic studies of a complex disease,
because they may more closely reflect specific pathogenic
processes and provide more statistical power to detect
genotypic correlations. Moreover, statistical methods used in
quantitative linkage analysis are less sensitive to a trait’s
heterogeneity. In parallel to linkage approaches, quantitative
endophenotypes can also be used to enhance genetic
association studies. This is best exemplified by quantitative
studies of serum IgE levels that identified novel susceptibility
loci for asthma using both genome-wide linkage and
association approaches [52, 53]. Quantitative gene-mapping
studies of serum galactose-deficient IgA1 levels in IgAN are
underway.

The field of complex disease genetics is also evolving
rapidly, and a new generation of genetic studies is soon to
emerge for IgAN. First, rapid and cost-effective screening

of the human genome with >1 million polymorphisms is now
possible, enabling efficient execution of high-resolution
genome-wide genetic association studies. In a GWAS design,
a dense map of SNPs is surveyed for association with a trait of
interest. Typically, large and well-phenotyped case–control
groups (>1,000 individuals per group) are required to discover
genetic variants, and independent cohorts are needed to
replicate findings [54]. The main issues facing GWAS
approaches include the analytical challenge of multiple
hypotheses testing and accounting for population stratifica-
tion. Both of these issues have been addressed in the genetics
community, with rigorous standards now widely accepted
[55, 56]. GWAS is also inherently limited to detecting
susceptibility alleles that are relatively common. To date,
most GWAS-discovered variants reside in noncoding segments
of the genome and impart a small effect on disease, presumably
via a regulatory role on expression of neighboring genes (odds
ratios 1.15–1.35). Variants with even smaller effects can be
detected with larger sample sizes [57]. Small effects of
common susceptibility variants are hypothesized to be the
consequence of long-standing purifying selection against
alleles that produce major alterations in the encoded protein
and may impair reproductive fitness. There are, however,

Fig. 3 The model of immunoglobulin A nephropathy (IgAN)
pathogenesis in patients with high levels of galactose-deficient IgA1.
Inherited defect of IgA1 glycosylation is not sufficient to cause the

disease. Additional environmental or genetic factors are probably
required for renal injury, which is likely mediated by antiglycan
antibody production and immune complex formation
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exceptions to this rule in which common alleles impart
relatively large effects on disease risk. Two examples are
diseases of very late onset in which reproductive fitness is not
impaired (e.g. common allele ε4 at APOE locus with large
effect on the risk of Alzheimer’s disease [58]), and diseases in
which recent changes in the environment may have resulted in
alleles that were once neutral or favored now becoming
disease contributing. Many diseases of the immune system
may fit into the latter category, including type I diabetes
mellitus, macular degeneration, systemic lupus erythematosus
(SLE), inflammatory bowel disease, and celiac disease. In
each case, common variants had moderate to large effect
sizes, facilitating their detection by GWAS [59–64]. IgAN is
also likely to fall into this category; thus, the GWAS design
for IgAN may represent a powerful approach.

In addition to GWAS, several other genomic approaches are
likely to be integrated for the purpose of gene identification
(Table 1). These include analyses of structural rearrange-
ments, genome-wide expression, and deep-sequencing data.
Copy-number variants (CNVs) have been recognized as an
important source of genetic variation in humans [65].
Comprehensive surveys of small insertions, deletions, and
segmental duplications across the genome can be efficiently
accomplished with modern SNP genotyping platforms [66].
This is relevant to IgAN because structural variants have been
implicated in several immune-mediated traits, such as
psoriasis or SLE [67–69]. We anticipate that genome-wide
CNV analyses are likely to appear alongside the first GWAS
for IgAN. Genome-wide expression profiling is another
approach that can be helpful in dissecting the genetic basis
of IgAN. Recent data suggest that tissue-specific patterns of
gene expression are highly inherited, and expression quanti-
tative trait loci (eQTL) mapping has been used to define loci
that control transcription efficiency [70]. The combination of
gene mapping and gene-expression profiling provides a
powerful tool for understanding complex traits, as these
techniques generate independent information that allows
reciprocal prioritization of candidate genes. Such information

can be integrated with the GWAS approach to better define
functional defects responsible for disease susceptibility
[71]. Moreover, novel integrative genomic approaches
enable joint analysis of genetic, gene-expression, and
biochemical phenotypes to derive pathways and molecular
networks driving disease pathogenesis [72]. Application of
these methods in humans is challenging because most
tissues of interest cannot be readily accessed, and sampled
specimens (such as kidney) are composed of heteroge-
neous cell types with distinct gene-expression profiles.
However, this approach would be ideally suited for genetic
studies of IgAN because expression studies can be
performed in IgA1-secreting cells, enabling interrogation a
single cell type and the specific biochemical phenotype of
defective IgA1 glycosylation [42]. Lastly, high-throughput
sequencing technology is evolving rapidly, and cost-effective
whole-genome deep sequencing is now becoming feasible.
Direct sequence analysis offers hope of detecting important
rare genetic variants that contribute to the pathogenesis of
common complex diseases [73–76]. The recent feasibility of
exome sequencing (sequencing of all the exons of the
genome in one shot) now also enables detection of mutations
underlying oligogenic traits [77, 78]. This approach is quite
promising, as variants identified via GWAS collectively
account for a small fraction of the heritability of phenotypes
studied, suggesting major contributions from rare sequence
variants to disease pathogenesis. General approach and
statistical tools for this approach are still under development,
but this type of study is expected to provide a new wave of
findings in the genetic determination of complex traits.

Summary and clinical implications

Similar to other immune-mediated disorders, IgAN is a
genetically complex trait. Although there is a clear
contribution of genetic factors to IgAN susceptibility,
specific genes have not yet been identified. Gene-mapping

Family-based approaches:

1. Family aggregation studies (numerous reports)

2. Traditional whole-genome linkage scans (3 reported)

3. Quantitative whole-genome linkage scans for Gd-IgA1 and related phenotypes (in progress)

Population-based approaches:

1. Candidate gene associations for susceptibility and progression of IgAN (over 120 reported)

2. Genome-wide case–control association studies of IgAN (in progress)

3. Genome-wide quantitative association studies of Gd-IgA1 and related phenotypes (in progress)

Anticipated future approaches:

1. Studies of copy number variants (CNVs) in IgAN

2. Population-based and family-based studies of genome-wide gene expression in IgAN

3. Integrative genomics approaches to derive disturbed molecular networks in IgAN

4. Whole-genome sequencing to discover rare variants in IgAN

Table 1 Genetic approaches to
studies of immunoglobulin A
nephropathy (IgAN) in humans
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studies for complex traits are challenging, but successful
discovery of IgAN susceptibility genes will have major
impact and far-reaching implications worldwide. Such
findings may open doors to novel targeted therapeutic
approaches. Clinical applications may involve genetic
screening and diagnosis, improved risk stratification, or
selection of suitable kidney transplant donors among related
individuals based on genetic testing. Discovery of IgAN
biomarkers combined with the availability of novel genomic
technology are likely to transform the approach of genetic
studies of IgAN. However, it is now clear that much larger
cohorts of patients will be required than have been previously
studied. Referral of patients for genetic research studies and
systematic biobanking of blood, serum, and kidney tissue will
be critical for execution of such studies. International and
interdisciplinary collaborations will likely be required for
successful identification of specific genetic causes of IgAN.
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Questions

(Answers appear following the reference list)

1. Which is true about familial forms of IgAN?

a. Familial forms of IgAN have only been observed in
genetically isolated populations

b. Patients with familial IgAN should never be trans-
planted because of high risk of recurrence

c. Patients with familial IgAN can be identified based
on their characteristic presenting symptoms

d. Most familial IgAN displays autosomal dominant
inheritance

e. b and d
2. Which is true about glycosylation defects of IgA1 in

IgAN?

a. It is associated with a generalized defect in
glycosylation of most circulating immunoglobulins

b. The abnormally glycosylated IgA1 has a higher
propensity for immune complex formation and
deposition in mesangium

c. Elevated levels of galactose-deficient IgA1 corre-
late with symptoms and prognosis in IgAN

d. Elevated levels of galactose-deficient IgA1 are
observed in large proportion of family members
of IgAN patients

e. b and d
3. Which is true about genetic studies of IgAN?

a. Consistent association of IgAN with cytokine
haplotypes have been identified

b. Multiple different genes can cause familial IgAN
because different families demonstrate linkage to
different segments of the genome

c. Glycosylation defects in IgAN are caused by
mutations in the C1GALT1 (beta-1,3 galatosyla-
transferase gene)

d. Genome-wide association studies will be able to
detect rare genes with small effect that contribute to
IgAN

e. b and d
4. Which is true about serum levels of galactose-deficient

IgA1:

a. Elevated serum level of galactose-deficient IgA1 is
sufficient to make the diagnosis of IgAN

b. Normal serum level of galactose-deficient IgA1 is
sufficient to exclude the diagnosis of IgAN

c. Elevated serum level of galactose-deficient IgA1
is required for the development and progression
of IgAN

d. In the populations studied to date, inherited factors
are estimated to account for approximately 50% of
the total variation in galactose-deficient IgA1 levels

e. None of the above
5. Which is NOT true about genetic studies of IgAN:

a. Genetic heterogeneity decreases power of linkage
studies of familial IgAN

b. The results of genetic association studies may be
biased if cases and controls are derived from
heterogenous populations

c. Most candidate gene associations in sporadic IgAN
have not been replicated

d. Galactose-deficient IgA1 level represents a promising
endophenotype for genetic linkage and association
studies

e. Several common copy-number polymorphisms
have been consistently associated with IgAN
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