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We investigate synchronous first and second order pulsed Raman lasers that can achieve frequency spacing of up
to 1000 cm−1 for CARS microscopy applications. In particular, we focus on analytical and numerical analysis of
pulsed stability derived for Raman lasers by using dispersion-managed telecom fibers and pumping at near
1530nm telecom wavelengths. We show the evolution of the first and second order Stokes signals at the output
for different peak pump power and the net anomalous dispersion combinations. We determine the stability con-
dition for dispersion-managed synchronous Raman lasers up to second order. The results show that the stable
second order Raman Stokes pulses with 0:02W to 0:1W peak power and 1 ps to 2:1ps pulse width can be achieved
in proposed dispersion-managed systems. © 2011 Optical Society of America

OCIS codes: 140.3510, 140.3538, 140.3550.

1. INTRODUCTION
Wavelength tunable synchronous pulse sources are highly de-
sirable for spectroscopy and optical diagnostics due to their
diverse advantages such as broadband operation, low cost,
compactness, and adaptability with fibers [1–3]. The common
method to generate short pulses in the fiber is the use of op-
tical nonlinearities and soliton pulse shaping in the anomalous
dispersion regime that results in spectral broadening and
pulse compression [4]. However, to generate ultrashort
pulses, a broadband gain mechanism is also required. Stimu-
lated Raman scattering with a wide gain bandwidth of ∼6THz
has an ability to generate femtosecond pulses [5,6]. Addition-
ally, Raman gain can be generated at any wavelength in a
nonlinear medium, which facilitates generation of pulses at
wavelengths that are not attainable by a conventional laser
gain medium. Self-soliton frequency shift (SSFS) of optical
pulses in a highly nonlinear fiber (HNLF), such as photonic
crystal fiber, due to the self-Raman scattering effect enables
tunable femtosecond pulse generation over a range of
>100 nm [7]. Fixed-wavelength Raman lasers have been
widely studied for the past two decades. Recently, much focus
has been shifted toward multi-wavelength tunable Raman fi-
ber lasers that can generate output Stokes pulses in a broad
wavelength range by the so called cascaded stimulated Raman
scattering [8–11].

For spectroscopy and optical diagnostics, phase coherent
and wavelength tunable synchronous pulse sources are of
great demand. In particular, in chemistry and biological appli-
cations, higher-order cascaded pulsed Raman lasers with up
to 1000 cm−1 frequency spacing is highly desirable for CARS
microscopy. Previous experimental works have been dedi-
cated to address that requirement [12–14]. In this paper, we
propose and analyze the stability of a new configuration
for first and the second order pulsed Raman lasers with a

frequency tuning range up to 1000 cm−1. We carry out a de-
tailed numerical analysis in order to investigate the stability
regime of the generation of Stokes pulses up to the second
order in a dispersion-managed (DM) fiber ring cavity pumped
by a 1530nm fiber laser. We will show that stable Stokes
pulses can be generated with different pump power levels
and lengths of the single mode fiber (SMF) that is included
in the DM map that forms the cavity. A variational analysis,
more powerful and elaborate than the one used in [15] and
in our own recent related study [16], is also employed in order
to analytically investigate the steady-state dynamics of Stokes
pulses inside the cavity and to predict the output pulse param-
eters by solving ordinary differential equations with a periodic
boundary conditions that is a computationally efficient
alternative to time consuming full numerical simulations. The
analytical results are compared with simulation results to
show good agreement with the derived equations. The results
illustrate that the stable second order Raman Stokes pulses
with 0:02mW to 0:1W peak power and 1ps to 2:1 ps pulse
width can be achieved in our DM Raman laser system.

2. SIMULATION SETUP AND VARIATIONAL
EQUATIONS
In order to generate stable pulsed lasers by the Raman pro-
cess, inventing a proper dispersion management of the pump,
first order, and second order pulses is the most important is-
sue. Most of the commercial dispersion shifted fibers and
SMFs have high dispersion values and slopes; hence it is
not possible to maintain a reasonably limited walk-off (which
reduces the time overlapping of pulses) through a significant
nonlinear interaction length. In order to effectively eliminate
such walk-off, we propose the use of the special DM map in-
side the ring laser configuration, which is illustrated in Figs. 1
and 2. The setup of Fig. 1 can be readily experimentally
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implemented: in our work we perform a detailed numerical
stability analysis in order to optimize its parameters. Our laser
is synchronously pumped by a 1530 nm mode locked laser
with 10ps pulse width. The laser cavity is designed as pro-
posed in [15], which mainly consists of two cascaded sections,
the DM system as the gain mechanism, and the SMF for pulse
shaping. The overlapping of Stokes pulses at the beginning is
satisfied by inserting a stretcher (delay line) in one of the ring
cavities to match the pump repetition rate.

Dispersion management is formed by cascading HNLF
pieces, which have a nearly zero dispersion and dispersion
slope in a periodic configuration. In particular, we restrict our
analysis to commercially available fibers from different ven-
dors. The characteristics of the HNLFs and the SMF used in
the simulations are summarized in Table 1.

In order to raise the net dispersion to anomalous regime,
SMF is cascaded with the DM system to generate stable
soliton-like pulses. The Stokes pulse evolution in our ring
laser configuration of Fig. 1 is modeled by assuming that a
single (pump and Stokes) pulse recirculates in the cavity.
Therefore, each round trip in the laser involves propagation
through a single period of the DM map as in Fig. 2, which il-
lustrates the dispersion profile for each Stokes order. Stokes
pulses are generated through the propagation in the ring laser
from the noise level, which is taken as the initial condition.
When the system reaches a steady state, the Stokes pulses ex-
actly repeat themselves at each period of the map. Thus, the
spatial periodic boundary conditions imply that the initial
pulse parameters should be the same as the ones at the end
of the cavity.

The mutual interaction between the pump pulse and first
and second order Stokes pulses is governed by a set of three
nonlinear Schrödinger (NLS) equations including all pro-
cesses of group velocity dispersion (GVD), self-phase modu-
lation (SPM), cross phase modulation (XPM), walk-off
between the pulses, Raman gain, and pump depletion [17]:
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where νgp;g1;g2 is the group velocity, β2p;21;22 is the GVD param-
eter (ps2=km), α is the fiber loss (km−1), gR is the Raman gain
coefficient (W−1 km−1), γ is the nonlinearity coefficient
(W−1 km−1), and up;1;2 is the amplitude of the pump, first order
Stokes, and the second order Stokes signals, respectively.
These governing equations include all the possible interac-
tions among three optical waves. Four-wave mixing, which
cannot build up coherently due to the short length of the
HNLFs and the high net dispersion of the cavity, as well as
the self-Raman induced frequency shift, which is negligible
for pulses with >1 ps pulse width, are ignored in this analysis.
However, time-consuming numerical analysis is required to
determine the pulse evolution in the laser cavity and in optical
fibers by using these equations.

Fig. 1. Designed setup for first and second order Stokes signals.
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Table 1. Characteristics of the Fibers Used
in the Simulations [20]

HNLF (þ)
Slope

HNLF (−)
Slope SMF

α: Fiber loss (dB=km) 0.9 0.9 0.2
γ: Nonlinearity coefficient
(1=W − km)

11.5 11.5 2

Aeffðμm2Þ 11.7 11.7 50
gR: Raman coefficient
(1=W − km)

3.4 3.4 0.8

λ0: Zero dispersion (nm)/slope
(ps=nm2 km)

1530=0:01 1530= − 0:01 1310=:076

Length (m) 8 8 20–100
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Analytical modeling may substantially alleviate computa-
tional requirements. Here, we developed an analytical model
for the propagation of pump and the Stokes pulses. The pump
pulse, which is repetitive at each round trip, is used up in the
system and cannot preserve its input Gaussian envelope

(jupð0; tÞj2 ¼ Pp0 exp
h
−

ðt−tpÞ2
T2
p

i
, where Pp0 is the peak power,

Tp is the pulse width, and tp is the temporal position). The
NLS equation for the pump pulse [Eq. (1)] can be simplified
by neglecting dispersive effects (the GVD parameter at the
pump wavelength is zero and the dispersion length is much
longer than the cavity length) and by separating spectral
(for phase accumulation) and temporal terms (for the pulse
shape) so as to solve pump propagation analytically. Fiber
loss and pump depletion (as seen in Eq. (4), which provides
the pump temporal evolution) are the dominant terms that
affect the pulse shape as follows:
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The pump signal is depleted by the first Stokes signal through
Raman interaction. Since the walk-off between the pump and
the first Stokes signal is very small, saturation in the gain line
shows up locally by causing hole burning at the center of the
pulse. The evolution of the pump pulse is approximated by
solving Eq. (4) as
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The second term ½uhðz; tÞ� in Eq. (6) represents hole burning
at the center of the pulse. The hole is modeled by a Gaussian
envelope with the peak power (Ph), the pulse width (Th), and
the temporal position (th). All loss mechanisms such as fiber
loss and gain depletion lead to the growth of the hole (peak
power). Since the walk-off between the pump and the first
Stokes pulses (0:42ps) is much smaller than the pulse width,
the pump and the hole are assumed to be temporally co-
centered (th ≅ tp). In addition, due to relatively small change
in the pulse width of the pump and the first Stokes pulses in
the DM section at steady state, the pulse width of the hole is
approximated as a combination of pump and first Stokes pulse
widths. The hole burning is approximated as
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The propagation of Stokes pulses is modeled by means of
the variational analysis method, which assumes the signal
maintains its shape even though its power, pulse width,

and chirp changes in a continuous manner and remains the
same periodically after each round trip. The evolution of sin-
gle pulse parameters in the variational method [18] for the un-
perturbed NLS equations is evaluated by using the Lagrangian
density:
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The unperturbed NLS equation is derived from a Lagran-
gian that is defined as the integration of Lagrangian density
with respect to time:
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where the subscripts z and t correspond to differentiation
with respect to distance and time, respectively. The evolution
of the pulse parameters is derived by employing modified
Euler-Lagrange equations, taking into account signal to signal
interactions such as Raman amplification, XPM, and walk-off
as a perturbation to the system. In particular, the physical ef-
fects of XPM and temporal walk-off are dominant for deter-
mining the chirp evolution, the pump depletion, and the
gain reduction [19]. The Euler-Lagrange equation reads as
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where x corresponds to any one of the six pulse parameters,
such as the energy, the pulse width, the temporal position, the
chirp, the central frequency, and the phase, Im denotes the
imaginary part, and R includes all the perturbation terms anal-
yzed in the right side of the coupled NLS equations. The Gaus-
sian ansatz is assumed for both first and second order Stokes
pulses as the pulse envelope [18]:
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where E is the energy, T is the pulse width, t0 is the temporal
position, C is the chirp parameter, Ω is the center frequency,
and φ is the phase of the pulse. According to the proposed
ansatz, the Lagrangian is defined as
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By substituting the pulse envelope [Eq. (7)] and the
Lagrangian [Eq. (8)] with a Gaussian ansatz into the perturbed
Euler-Lagrange equation [Eq. (6)], we derived the modified
variational equations for the Stokes pulse parameters, pulse
energy (E), pulse width (T), chirp (C), temporal position
(t0), and center frequency (Ω) as
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Here the subscripts i ¼ p; 1; 2 correspond to pump, first
Stokes, and second Stokes signals, respectively. The relative
temporal positions of the pulse centers of the pump and the
Stokes signals (the second order Stokes signal is assumed to
be the time reference) change mainly due to pulse interac-
tions. Since the frequency shift has a negligible effect, we can
ignore the variation in center frequency. However, the tem-
poral shift due to the walk-off effect becomes highly domi-
nant. Thus, we can formulate the change of the pulse
temporal positions due to walk off in a reduced form as

dtp

dz
≈ wp1 þw12;

dt1

dz
≈ w12; and

dt2

dz
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where wp1 ¼
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λp DðλÞdλ ≈

DpþD1

2 ðλ1 − λpÞ w12 ¼
R λ2
λ1 DðλÞdλ ≈

D1þD2
2 ðλ2 − λ1Þ stand for the walk-off time between pump-first

Stokes (∼0:052ps=m) and first–second Stokes pulses
(∼0:19ps=m) per unit length and D is the dispersion value
(ps=nm − km).
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3. SIMULATION RESULTS AND STABILITY
ANALYSIS
Themain objective of our analysis is to determine if the Stokes
pulses converge to DM solitons at the steady state. The split
step Fourier method (SSFM) was used to solve the coupled
NLS Eqs. (1)–(3). We included GVD, SPM, XPM, and Raman
gain mechanisms in our simulations and neglect four-wave
mixing (because of the relatively short length of the highly
nonlinear DM module) and self-Raman induced frequency
shift (because we consider pulses in the ps range) terms.
Raman amplification is added as a support interaction. The
first and second order Stokes signals are obtained at the out-
put for different pump power and SMF length (determines the
net anomalous dispersion) combinations. Figure 3 illustrates
the steady-state Stokes pulses inside the cavity (i.e., before the
couplers) and their peak power evolution in the laser system
as an example of transient behavior toward the steady state.
The first Stokes pulse builds up in the system due to proper
pumping. If the first Stokes pulse has enough energy (i.e., it
reaches threshold for the second Stokes pulse to grow), it
starts to generate the second Stokes pulse. While the second
Stokes pulse builds up in the system, it depletes the first
Stokes. Since the system is highly dissipative, the Stokes
pulses reach their steady-state level in a damped oscillatory
manner. The magnitude of the overshoot, oscillations, and the
settling time in the transient response depend on the pump
power level. The temporal deviation of the pulse center of the
first Stokes signal results from the temporal walk-off effect.

The envelope of the Stokes pulse is also characterized by
comparing it with a Gaussian pulse with the same parameters.
The first Stokes pulse is very well represented by a Gaussian
profile; however, the tails of the second Stokes pulse are
slightly compressed in time so that the Gaussian fitting is less
appropriate in this region.

The Stokes pulses repeat themselves after each pass (round
trip) at steady state. Thus, the SSFM is employed to propagate

the steady-state Stokes pulses for a single pass, so that the
intracavity pulse dynamics can be analyzed by extracting
the evolution of the pulse parameters. Figure 4 illustrates the
evolution of the peak power and the time width, which is de-
fined as the root mean square (RMS) width of the Stokes
pulses throughout the cavity at the steady state.

The dynamics of the parameters of each Stokes pulse has a
similar behavior. Throughout the DM section of the cavity
where all the Raman interactions occur, distributed gain and
other nonlinear effects such as SPM and XPM are the
dominant terms. Thus, the Stokes pulses are amplified and po-
sitively chirped through the DM fibers. Because the dispersion
length (LD ¼ T2

0=jβ2j) in the DM-HNLF is much larger than the
amplification (LA ¼ ðgRjAj2Þ−1) and nonlinear lengths (LNL ¼
ðγjAj2Þ−1), and owing to the net zero dispersion of the entire
DM map, linear dispersive effects become negligible as seen
by the dynamics of the pulse width. However, in the second
section of the cavity (standard SMF), since the pulses become
separate due to the walk-off, there is virtually no pulse-to-
pulse interaction. Here GVD is the dominant effect throughout
the SMF. Since the pulses become highly positively chirped in
the DM section of the cavity due to the acquired nonlinear
phase, the Stokes pulses first compress and then broaden
as seen by the evolutions in Fig. 4 of its peak power and time
width.

In order to develop an analytical model to provide a rapid
understanding and to explain the pulse dynamics inside the
cavity, a detailed variational analysis was employed. The in-
tracavity dynamics of pulse parameters are analyzed in terms
of the variational model of Eqs. (13)–(22) as follows. First we
use the shooting method in order to satisfy the constraint that
the same initial and final values for each pulse parameter are
obtained upon a single cavity round trip. Next we explore the
intracavity variation of these parameters by solving the same
equations for a given steady-state input condition over the en-
tire round trip. To compare the results of the variational anal-
ysis with the numerical modeling we investigated the pulse
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dynamics for a specific SMF length and pump power
(LSMF ¼ 50m and Ppump ¼ 0:72W) as shown again in Fig. 4.
The variational equations are quite successful at explaining
the general trend of the pulse parameters at the steady state.
Since the variational analysis assumes that the pulse shape

does not change throughout the propagation, all perturbations
such as Raman gain, pump depletion, and the nonlinear chirp
(induced by XPM) affect the entire pulse by changing its total
energy and phase. However, due to temporal walk off and
the mismatches between the various pulse widths, these
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perturbations force the pulses to have local changes at differ-
ent positions. Thus the variational analysis is accompanied by
an intrinsic averaging mechanism that reduces the effect of
the gain and the chirp (arising mainly from XPM) over the cen-
tral region of each pulse, which explains the small deviation
between variational and numerical results.

In addition to the intracavity pulse dynamics, steady-state
pulse parameters such as the peak power and the time width
(RMS width) of the first and the second order Stokes inside
the cavity (i.e., before the couplers) that are obtained for
different peak pump power levels are extracted by the
variational analysis and illustrated in Fig. 5, along with the
corresponding numerical results. The overall agreement
with the numerical results obtained by the SSFM confirms
the validity of our variational analysis.

We also investigate the stable pulse generation regime,
which is defined by the boundaries of either the Stokes thresh-
old on the one hand and the nonlinear induced pulse breakup
on the other hand, for various SMF lengths (net dispersion)
ranging from 20m to 100m and for peak pump powers from
0:7W to 0:76W. Clearly the stability of our pulse solutions in
this regime is due to the attractive nature of the strongly dis-
sipative laser map under consideration. The results are re-
ported in the contour plots of Fig. 6, which show the peak
power and time width (RMS width) of first and second order
Stokes pulses inside the cavity (i.e., before the couplers) that
converge at steady state. Figure 6 shows that stable first order
Stokes pulses with up to 1W peak power and 1 ps to 2:1 ps
pulse widths are generated. Similarly, second order Stokes
pulses with 0:02W to 0:1Wpeak power and 1ps to 2:1ps pulse
widths can be obtained. At low pump powers that are very
close to threshold only, the first order Stokes can be gener-
ated. When the pump power is increased, the first order
Stokes signal starts to build up in the system and converge
to a steady state. If the final peak power of the first Stokes
signal reaches the threshold for second Stokes signal, it gen-
erates the second Stokes pulse. At high pump powers, due to

imbalance between strong nonlinearity and weak dispersion,
the first Stokes signal starts to break up and the laser system
becomes unstable. The robustness to nonlinearity increases
proportionally to the net dispersion (SMF length).

4. CONCLUSION
We investigated the stability of DM synchronous Raman
lasers up to second order both analytically and numerically.
The variational analysis was conducted in order to derive the
differential equations that explain the intracavity dynamics of
Stokes pulses in terms of their pulse parameters. The resulting
coupled differential equations with periodic boundary condi-
tions are solved to obtain the Stokes pulse parameters at the
steady state. The analytically and numerically derived pulse
parameters of the Stokes pulses are compared to illustrate the
correctness of the analytical predictions. The results show
that stable second order Raman Stokes pulses with 0:02W
to 0:1W peak power and 1 ps to 2:1ps pulse widths can
be achieved in a DM Raman laser system. Results can be
further improved by optimizing the parameters of the disper-
sion management.
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