Unitals in $\operatorname{PG}\left(2, q^{2}\right)$ with a large 2-point stabiliser

L. Giuzzi ${ }^{\text {a,* }}$, G. Korchmáros ${ }^{\text {b }}$
${ }^{a}$ Universita' degli studi di Brescia, Dipartimento di Matematica, Facolta' di Ingegneria, Via Valotti 9, 25133 Brescia, Italy
${ }^{\text {b }}$ Universita' degli Studi della Basilicata, Dipartimento di Matematica e Informatica, Campus di Macchia Romana, Via dell'Ateneo Lucano 10, I-85100 Potenza, Italy

A R T I CLE INFO

Article history:
Available online 11 April 2011

Keywords:

Unital
Point-stabiliser
Projective plane

Abstract

Let U be a unital embedded in the Desarguesian projective plane PG(2, q^{2}). Write M for the subgroup of $\operatorname{PGL}\left(3, q^{2}\right)$ which preserves U. We show that U is classical if and only if U has two distinct points P, Q for which the stabiliser $G=M_{P, Q}$ has order $q^{2}-1$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the Desarguesian projective plane $\operatorname{PG}\left(2, q^{2}\right)$, a unital is defined to be a set of $q^{3}+1$ points containing either 1 or $q+1$ points from each line of $\operatorname{PG}\left(2, q^{2}\right)$. Observe that each unital has a unique 1 -secant at each of its points. The idea of a unital arises from the combinatorial properties of the non-degenerate unitary polarity π of $\operatorname{PG}\left(2, q^{2}\right)$. The set of absolute points of π is indeed a unital, called the classical or Hermitian unital. Therefore, the projective group preserving the classical unital is isomorphic to $\operatorname{PGU}(3, q)$ and acts on its points as $\operatorname{PGU}(3, q)$ in its natural 2-transitive permutation representation. Using the classification of subgroups of $\operatorname{PGL}\left(3, q^{2}\right)$, Hoffer [14] proved that a unital is classical if and only if it is preserved by a collineation group isomorphic to $\operatorname{PSU}\left(3, q^{2}\right)$. Hoffer's characterisation has been the starting point for several investigations of unitals in terms of the structure of their automorphism group, see $[3,6,4,5,8,9,11,10,12,15,16]$; see also the survey [2, Appendix B]. In PG (2, q^{2}) with q odd, Abatangelo [1] proved that a Buekenhout-Metz unital with a cyclic 2-point stabiliser of order $q^{2}-1$ is necessarily classical. In their talk at Combinatorics 2010, G. Donati e N. Durante have conjectured that Abatangelo's characterisation holds true for any unital in $\operatorname{PG}\left(2, q^{2}\right)$. In this note, we provide a proof of this conjecture.

Our notation and terminology are standard, see $[2,13]$. We shall assume $q>2$, since all unitals in PG $(2,4)$ are classical.

2. Some technical lemmas

Let M be the subgroup of $\operatorname{PGL}\left(3, q^{2}\right)$ which preserves a unital U in $\operatorname{PG}\left(2, q^{2}\right)$. A 2-point stabiliser of U is a subgroup of M which fixes two distinct points of \mathcal{U}.

Lemma 2.1. Let U be a unital in $\operatorname{PG}\left(2, q^{2}\right)$ with a 2-point stabiliser G of order $q^{2}-1$. Then, G is cyclic, and there exists a projective frame in $\operatorname{PG}\left(2, q^{2}\right)$ such that G is generated by a projectivity with matrix representation

$$
\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where λ is a primitive element of $\mathrm{GF}\left(q^{2}\right)$ and μ is a primitive element of $\mathrm{GF}(q)$.

[^0]Proof. Let O, Y_{∞} be two distinct points of U such that the stabiliser $G=M_{0, Y_{\infty}}$ has order $q^{2}-1$. Choose a projective frame in $\operatorname{PG}\left(2, q^{2}\right)$ so that $O=(0,0,1), Y_{\infty}=(0,1,0)$ and the 1 -secants of U at those points are respectively $\ell_{X}: X_{2}=0$ and $\ell_{\infty}: X_{3}=0$. Write $X_{\infty}=(1,0,0)$ for the common point of ℓ_{X} and ℓ_{∞}. Observe that G fixes the vertices of the triangle $O X_{\infty} Y_{\infty}$. Therefore, G consists of projectivities with diagonal matrix representation. Now let $h \in G$ be a projectivity that fixes a further point $P \in \ell_{X}$ apart from O, X_{∞}. Then, h fixes ℓ_{X} point-wise; that is, h is a perspectivity with axis ℓ_{X}. Since h also fixes Y_{∞}, the centre of h must be Y_{∞}. Take any point $R \in \ell_{X}$ with $R \neq O, X_{\infty}$. Obviously, h preserves the line $r=Y_{\infty} R$; hence, it also preserves $r \cap U$. Since $r \cap U$ comprises q points other than R, the subgroup H generated by h has a permutation representation of degree q in which no non-trivial permutation fixes a point. As $q=p^{r}$ for a prime p, this implies that p divides $|H|$. On the other hand, h is taken from a group of order $q^{2}-1$. Thus, h must be the trivial element in G. Therefore, G has a faithful action on ℓ_{X} as a 2-point stabiliser of $\operatorname{PG}\left(1, q^{2}\right)$. This proves that G is cyclic. Furthermore, a generator g of G has a matrix representation

$$
\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & 1
\end{array}\right)
$$

with λ a primitive element of $\operatorname{GF}\left(q^{2}\right)$.
As G preserves the set $\Delta=U \cap O Y_{\infty}$, it also induces a permutation group \bar{G} on Δ. Since any projectivity fixing three points of $O Y_{\infty}$ must fix $O Y_{\infty}$ point-wise, \bar{G} is semiregular on Δ. Therefore, $|\bar{G}|$ divides $q-1$. Now let F be the subgroup of G fixing Δ point-wise. Then, F is a perspectivity group with centre X_{∞} and axis $\ell_{Y}: X_{1}=0$. Take any point $R \in \ell_{Y}$ such that the line $r=R X_{\infty}$ is a $(q+1)$-secant of U. Then, $r \cap U$ is disjoint from ℓ_{Y}. Hence, F has a permutation representation on $r \cap U$ in which no non-trivial permutation fixes a point. Thus, $|F|$ divides $q+1$. Since $|G|=q^{2}-1$, we have $|\bar{G}| \leq q-1$ and $|G|=|\bar{G}||F|$. This implies $|\bar{G}|=q-1$ and $|F|=q+1$. From the former condition, μ must be a primitive element of GF (q).

Lemma 2.2. In $\operatorname{PG}\left(2, q^{2}\right)$, let \mathscr{H}_{1} and \mathscr{H}_{2} be two non-degenerate Hermitian curves which have the same tangent at a common point P. Denote by $I\left(P, \mathscr{H}_{1} \cap \mathscr{H}_{2}\right)$ the intersection multiplicity of \mathscr{H}_{1} and \mathscr{H}_{2} at P. Then,

$$
\begin{equation*}
I\left(P, \mathscr{H}_{1} \cap \mathscr{H}_{2}\right)=q+1 . \tag{1}
\end{equation*}
$$

Proof. Since up to projectivities there is a unique class of Hermitian curves in $\operatorname{PG}\left(2, q^{2}\right)$, we may assume \mathscr{H}_{1} to have equation $-X_{1}^{q+1}+X_{2}^{q} X_{3}+X_{2} X_{3}^{q}=0$. Furthermore, as the projectivity group $\operatorname{PGU}(3, q)$ preserving \mathscr{H}_{1} acts transitively on the points of \mathscr{H}_{1} in $\operatorname{PG}\left(2, q^{2}\right)$, we may also suppose $P=(0,0,1)$. Within this setting, the tangent r of \mathscr{H}_{1} at P coincides with the line $X_{2}=0$. As no term X_{1}^{j} with $0<j \leq q$ occurs in the equation of \mathscr{H}_{1}, the intersection multiplicity $I\left(P, \mathscr{H}_{1} \cap r\right)$ is equal to $q+1$.

The equation of the other Hermitian curve \mathscr{H}_{2} might be written as

$$
F\left(X_{1}, X_{2}, X_{3}\right)=a_{0} X_{3}^{q} X_{2}+a_{1} X_{3}^{q-1} G_{1}\left(X_{1}, X_{2}\right)+\cdots+a_{q} G_{q}\left(X_{1}, X_{2}\right)=0
$$

where $a_{0} \neq 0$ and $\operatorname{deg} G_{i}\left(X_{1}, X_{2}\right)=i+1$. Since the tangent of \mathscr{H}_{2} at P has no other common point with \mathscr{H}_{2}, even over the algebraic closure of $\mathrm{GF}\left(q^{2}\right)$, no terms X_{1}^{j} with $0<j \leq q$ can occur in the polynomials $G_{i}\left(X_{1}, X_{2}\right)$. In other words, $I\left(P, \mathscr{H}_{2} \cap r\right)=q+1$.

A primitive representation of the unique branch of \mathscr{H}_{1} centred at P has components

$$
x(t)=t, \quad y(t)=c t^{i}+\cdots,
$$

where i is a positive integer and $y(t) \in \operatorname{GF}\left(q^{2}\right)[[t]]$, that is, $y(t)$ stands for a formal power series with coefficients in $\operatorname{GF}\left(q^{2}\right)$.
From $I\left(P, \mathscr{H}_{1} \cap r\right)=q+1$,

$$
y(t)^{q}+y(t)-t^{q+1}=0
$$

whence $y(t)=t^{q+1}+H(t)$, where $H(t)$ is a formal power series of order at least $q+2$. That is, the exponent j in the leading term $c t^{j}$ of $H(t)$ is larger than $q+1$.

It is now possible to compute the intersection multiplicity $I\left(P, \mathscr{H}_{1} \cap \mathscr{H}_{2}\right)$ using [13, Theorem 4.36]:

$$
I\left(P, \mathscr{H}_{1} \cap \mathscr{H}_{2}\right)=\operatorname{ord}_{t} F(t, y(t), 1)=\operatorname{ord}_{t}\left(a_{0} t^{q+1}+G(t)\right),
$$

with $G(t) \in \operatorname{GF}\left(q^{2}\right)[[t]]$ of order at least $q+2$. From this, the assertion follows.
Lemma 2.3. In $\operatorname{PG}\left(2, q^{2}\right)$, let \mathscr{H} be a non-degenerate Hermitian curve and let \mathcal{C} be a Hermitian cone whose centre does not lie on \mathscr{H}. Assume that there exist two points $P_{i} \in \mathscr{H} \cap \mathcal{C}$, with $i=1,2$, such that the tangent line of \mathscr{H} at P_{i} is a linear component of \mathcal{C}. Then

$$
\begin{equation*}
I\left(P_{1}, \mathscr{H} \cap \mathcal{C}\right)=q+1 \tag{2}
\end{equation*}
$$

Proof. We use the same setting as in the proof of Lemma 2.2 with $P=P_{1}$. Since the action of $\operatorname{PGU}(3, q)$ is 2-transitive on the points of \mathscr{H}, we may also suppose that $P_{2}=(0,1,0)$. Then the centre of \mathcal{C} is the point $X_{\infty}=(1,0,0)$, and \mathcal{C} has equation $c^{q} X_{2}^{q} X_{3}+c X_{2} X_{3}^{q}=0$ with $c \neq 0$. Therefore,

$$
I(P, \mathscr{H} \cap \mathcal{C})=\operatorname{ord}_{t}\left(c^{q} y(t)^{q}+c y(t)\right)=\operatorname{ord}_{t}\left(c^{q} t^{q+1}+K(t)\right)
$$

with $K(t) \in \mathrm{GF}\left(q^{2}\right)[[t]]$ of order at least $q+2$, whence the assertion follows.

3. Main result

Theorem 3.1. In $\operatorname{PG}\left(2, q^{2}\right)$, let U be a unital and write M for the group of projectivities which preserves u. If u has two distinct points P, Q such that the stabiliser $G=M_{P, Q}$ has order $q^{2}-1$, then U is classical.

The main idea of the proof is to build up a projective plane of order q using, for the definition of points, non-trivial G orbits in the affine plane $\operatorname{AG}\left(2, q^{2}\right)$ which arise from $\operatorname{PG}\left(2, q^{2}\right)$ by removing the line $\ell_{\infty}: X_{3}=0$ with all its points. For this purpose, take U and G as in Lemma 2.1, with $\mu=\lambda^{q+1}$, and define an incidence structure $\Pi=(\mathcal{P}, \mathcal{L})$ as follows.

1. Points are all non-trivial G-orbits in $\operatorname{AG}\left(2, q^{2}\right)$.
2. Lines are ℓ_{Y}, and the non-degenerate Hermitian curves of equation

$$
\begin{equation*}
\mathscr{H}_{b}:-X_{1}^{q+1}+b X_{3} X_{2}^{q}+b^{q} X_{3}^{q} X_{2}=0 \tag{3}
\end{equation*}
$$

with b ranging over $\operatorname{GF}\left(q^{2}\right)^{*}$, together with the Hermitian cones of equation

$$
\begin{equation*}
\mathcal{C}_{c}: c^{q} X_{2}^{q} X_{3}+c X_{2} X_{3}^{q}=0 \tag{4}
\end{equation*}
$$

with c ranging over a representative system of cosets of $(\operatorname{GF}(q), *)$ in $\left(\operatorname{GF}\left(q^{2}\right), *\right)$.
3. Incidence is the natural inclusion.

Lemma 3.2. The incidence structure $\Pi=(\mathcal{P}, \mathcal{L})$ is a projective plane of order q.
Proof. In $\operatorname{AG}\left(2, q^{2}\right)$, the group G has $q^{2}+q+1$ non-trivial orbits, namely its q^{2} orbits disjoint from ℓ_{Y}, each of length $q^{2}-1$, and its $q+1$ orbits on ℓ_{Y}, these of length $q-1$. Therefore, the total number of points in \mathcal{P} is equal to $q^{2}+q+1$. By construction of Π, the number of lines in \mathcal{L} is also $q^{2}+q+1$. Incidence is well defined as G preserves ℓ_{Y} and each Hermitian curve and cone representing lines of \mathcal{L}.

Now we count the points incident with a line in Π. Each G-orbit on ℓ_{Y} distinct from O and Y_{∞} has length $q-1$. Hence there are exactly $q+1$ such G-orbits; in terms of Π, the line represented by ℓ_{Y} is incident with $q+1$ points. A Hermitian curve \mathscr{H}_{b} of Eq. (3) has q^{3} points in $\operatorname{AG}\left(2, q^{2}\right)$ and meets ℓ_{Y} in a G-orbit, while it contains no points apart from 0 of line ℓ_{X}. As $q^{3}-q=q\left(q^{2}-1\right)$, the line represented by \mathscr{H}_{b} is incident with $q+1$ points in \mathcal{P}. Finally, a Hermitian cone \mathcal{C}_{c} of Eq. (4) has q^{3} points in $\operatorname{AG}\left(2, q^{2}\right)$ and contains q points from ℓ_{Y}. One of these q points is 0 , the other $q-1$ forming a nontrivial G-orbit. The remaining $q^{3}-q$ points of \mathcal{C}_{c} are partitioned into q distinct G-orbits. Hence, the line represented by \mathcal{C}_{c} is also incident with $q+1$ points. This shows that each line in Π is incident with exactly $q+1$ points.

Therefore, it is enough to show that any two distinct lines of \mathcal{L} have exactly one common point. Obviously this is true when one of these lines is represented by ℓ_{Y}. Furthermore, the point of \mathcal{P} represented by ℓ_{X} is incident with each line of \mathcal{L} represented by a Hermitian cone of Eq. (4). We are led to investigate the case where one of the lines of \mathcal{L} is represented by a Hermitian curve \mathscr{H}_{b} of Eq. (4), and the other line of \mathcal{L} is represented by a Hermitian curve \mathscr{H} which is either another Hermitian curve \mathscr{H}_{d} of the same type of Eq. (3), or a Hermitian cone \mathcal{C}_{c} of Eq. (4).

Clearly, both O and Y_{∞} are common points of \mathscr{H}_{b} and \mathscr{H}. From Kestenband's classification [17], see also [2, Theorem 6.7], $\mathscr{H}_{b} \cap \mathscr{H}$ cannot consist of exactly two points. Therefore, there exists another point, say $P \in \mathscr{H}_{b} \cap \mathscr{H}$. Since ℓ_{X} and ℓ_{∞} are 1 -secants of \mathscr{H}_{b} at the points O and Y_{∞}, respectively, either P is on ℓ_{Y} or P lies outside the fundamental triangle. In the latter case, the G-orbit Δ_{1} of P has size $q^{2}-1$ and represents a point in \mathcal{P}. Assume that $\mathscr{H}_{b} \cap \mathscr{H}$ contains a further point $Q \notin \Delta_{1}$ which does not belong to ℓ_{Y} and denote by Δ_{2} its G-orbit. Then,

$$
\left|\mathscr{H}_{b} \cap \mathscr{H}\right| \geq\left|\Delta_{1}\right|+\left|\Delta_{2}\right|=2\left(q^{2}-1\right)+2=2 q^{2}
$$

However, from Bézout's theorem, see [13, Theorem 3.14],

$$
\left|\mathscr{H}_{b} \cap \mathscr{H}\right| \leq(q+1)^{2}
$$

Therefore, $Q \in \ell_{Y}$, and its G-orbit Δ_{3} has length $q-1$. Hence, \mathscr{H}_{b} and \mathscr{H} share $q+1$ points on ℓ_{Y}. If $\mathscr{H}=\mathscr{H}_{d}$ is a Hermitian curve of Eq. (3), each of these $q+1$ points is the tangency point of a common inflection tangent with multiplicity $q+1$ of the Hermitian curves \mathscr{H}_{b} and \mathscr{H}. Write R_{1}, \ldots, R_{q+1} for these points. Then, by (1) the intersection multiplicity is $I\left(R_{i}, \mathscr{H}_{b} \cap \mathscr{H}_{d}\right)=q+1$. This holds true also when \mathscr{H} is a Hermitian cone \mathcal{C}_{c} of Eq. (4); see Lemma 2.3. Therefore, in any case,

$$
\sum_{i=1}^{q+1} I\left(R_{i}, \mathscr{H}_{b} \cap \mathscr{H}\right)=(q+1)^{2}
$$

From Bézout's theorem, $\mathscr{H}_{b} \cap \mathscr{H}=\left\{R_{1}, \ldots, R_{q+1}\right\}$. Therefore, $\mathscr{H}_{b} \cap \mathscr{H}=\Delta_{3} \cup\left\{O, Y_{\infty}\right\}$. This shows that if $Q \notin \ell_{Y}$, the lines represented by \mathscr{H}_{b} and \mathscr{H} have exactly one point in common. The above argument can also be adapted to prove this assertion in the case where $Q \in \ell_{Y}$. Therefore, any two distinct lines of \mathcal{L} have exactly one common point.
Proof of Theorem 3.1. Assume first $\mu=\lambda^{q+1}$. Construct a projective plane Π as in Lemma 3.2. Since $\mathcal{U} \backslash\left\{0, Y_{\infty}\right\}$ is the union of G-orbits, \mathcal{U} represents a set Γ of $q+1$ points in Π. From [7], $N \equiv 1(\bmod p)$ where N is the number of common points of U with any Hermitian curve \mathscr{H}_{b}. In terms of Π, Γ contains some point from every line Λ in \mathscr{L} represented by a Hermitian curve of Eq. (3). Actually, this holds true when the line Λ in \mathcal{L} is represented by a Hermitian cone \mathcal{C} of Eq. (4). To prove it, observe that \mathcal{C} contains a line r distinct from both lines ℓ_{X} and ℓ_{∞}. Then $r \cap \mathcal{U}$ is not empty and contains neither 0 nor Y_{∞}. If P is a point in $r \cap \mathcal{U}$, then the G-orbit of P represents a common point of Γ and Λ. Since the line in \mathcal{L} represented by ℓ_{Y} meets Γ, it turns out that Γ contains some point from every line in \mathcal{L}.

Therefore, Γ itself is a line in \mathcal{L}. Note that U contains no line. In terms of $\operatorname{PG}\left(2, q^{2}\right)$, this yields that u coincides with a Hermitian curve of Eq. (3). In particular, \mathcal{U} is a classical unital.

To investigate the case $\mu \neq \lambda^{q+1}$, we still work in the above plane Π. By a straightforward computation, the projectivity g given in Lemma 2.1 induces a non-trivial collineation on Π. Also, g preserves every Hermitian cone of Eq. (4) and the common line ℓ_{X} of these Hermitian cones. In terms of Π, \bar{g} is a perspectivity with centre at the point represented by ℓ_{X}. Since g also preserves the line ℓ_{Y}, the axis of \bar{g} is ℓ_{Y}, regarded as a line in Π. Therefore, every point of Π lying on ℓ_{Y} is fixed by g. Consequently, \bar{g}^{q-1} is the identity collineation. As g has order $q^{2}-1$, this yields that g^{q+1} preserves every Hermitian curve of Eq. (3). Thus, $\mu^{q+1}=\left(\lambda^{q+1}\right)^{q+1}$, whence $\mu=-\lambda^{q+1}$. In particular, $p \neq 2$.

Consider now the $q+1$ non-trivial G-orbits in \mathcal{U} with $G=\langle g\rangle$. For any point $P \in \Pi$, let n_{P} the number of the non-trivial G-orbits in U intersecting the set $\rho(P)$ representing P in $P G\left(2, q^{2}\right)$. Then $n_{P}=1$ when $\rho(P)$ is the unique G-orbit in U which lies on ℓ_{Y}. Otherwise, $0 \leq n_{P} \leq 2$, with $n_{P}=2$ if and only if $\rho(P)$ is not a G-orbit but the union of two H-orbits with $H=\left\langle g^{2}\right\rangle$.

Let Γ be the multiset in Π consisting of all points with $n_{P}>0$ and define the weight v_{P} of P to be either 1 or 2 , according as $n_{P}=2$ or $n_{P}=1$. Then, $\sum_{P \in \Gamma} v_{P}=2 q+2$. We show that Γ is a 2 -fold blocking multiset of Π. For this purpose, let \mathscr{H} be either a Hermitian curve of Eq. (3) or a Hermitian cone of Eq. (4). Write m for the number of common points of \mathscr{H}_{b} and \mathcal{U}, different from O and Y_{∞}; thus, the total number of common points is $N=m+2$. As $N \equiv 1(\bmod p)$, we have $m \geq 1$. Take $P \in \mathscr{H} \cap \mathcal{U}$. If $v_{P}=2$, then the line representing \mathscr{H} meets Γ in a point with weight 2 . If $v_{P}=1$, then the H-orbit of P has size $\left(q^{2}-1\right) / 2$ and lies on both \mathscr{H} and \mathcal{U}. Since $\left(q^{2}-1\right) / 2+2 \not \equiv 1(\bmod p)$, \mathscr{H} and U must share a further point Q other than O and Y_{∞}. Therefore, the points P^{\prime} and Q^{\prime} of Π which represent the subsets containing P and Q are distinct. This shows that Γ meets the line represented by \mathscr{H} in two distinct points. Therefore, Γ is a 2 -fold blocking multiset.

Since Γ has at least one point with weight 2 , this yields that Γ comprises all points of a line, each with weight 2 . Hence, U coincides with either a Hermitian curve or a Hermitian cone. On the other hand, \mathcal{U} is definitely not a Hermitian cone. As $\mu \neq \lambda^{q+1}, \mathcal{U}$ is neither a Hermitian curve; therefore, this case cannot actually occur.

References

[1] L.M. Abatangelo, Una caratterizzazione gruppale delle curve Hermitiane, Matematiche 39 (1984) 101-110.
[2] S.G. Barwick, G.L. Ebert, Unitals in Projective Planes, in: Springer Monographs in Mathematics, 2008.
[3] L.M. Batten, Blocking sets with flag transitive collineation groups, Arch. Math. 56 (1991) 412-416.
[4] M. Biliotti, G. Korchmáros, Collineation groups preserving a unital of a projective plane of odd order, J. Algebra 122 (1989) 130-149.
[5] M. Biliotti, G. Korchmáros, Collineation groups preserving a unital of a projective plane of even order, Geom. Dedicata 31 (1989) $333-344$.
[6] P. Biscarini, Hermitian arcs of $\operatorname{PG}\left(2, q^{2}\right)$ with a transitive collineation group on the set of $(q+1)$-secants, Rend. Sem. Mat. Brescia 7 (1982) 111-124.
[7] A. Blokhuis, A. Brouwer, H. Wilbrink, Hermitian unitals are codewords, Discrete Math. 97 (1991) 63-68.
[8] A. Cossidente, G.L. Ebert, G. Korchmáros, A group-theoritic characterization of classical unitals, Arch. Math. 74 (2000) 1-5.
[9] A. Cossidente, G.L. Ebert, G. Korchmáros, Unitals in finite Desarguesian planes, J. Algebraic Combin. 14 (2001) 119-125.
[10] J. Doyen, Designs and automorphism groups, in: Surveys in Combinatorics, in: London Math. Soc. Lecture Note Ser., vol. 141, 1989, pp. 74-83.
[11] G.L. Ebert, K. Wantz, A group-theoretic characterization of Buekenhout-Metz unitals, J. Combin. Des. 4 (1996) 143-152.
[12] L. Giuzzi, A characterisation of classical unitals, J. Geom. 74 (2002) 86-89.
[13] J.W.P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves Over a Finite Field, Princeton Univ. Press, Princeton and Oxford, 2008, xx+696 pp.
[14] A.R. Hoffer, On unitary collineation groups, J. Algebra 22 (1972) 211-218.
[15] W.M. Kantor, On unitary polarities of finite projective planes, Canad. J. Math. 23 (1971) 1060-1077.
[16] W.M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A 38 (1985) 66-74.
[17] B.C. Kestenband, Unital intersections in finite projective planes, Geom. Dedicata 11 (1) (1981) 107-117.

[^0]: * Corresponding author. Tel.: +39 030 3715739; fax: +39 0303715745.

 E-mail addresses: giuzzi@ing.unibs.it (L. Giuzzi), korchmaros@unibas.it (G. Korchmáros).

