Unitals in $PG(2, q^2)$ with a large 2-point stabiliser

L.Giuzzi and G.Korchmáros

Abstract

Let \mathcal{U} be a unital embedded in the Desarguesian projective plane $PG(2, q^2)$. Write M for the subgroup of $PGL(3, q^2)$ which preserves \mathcal{U} . We show that \mathcal{U} is classical if and only if \mathcal{U} has two distinct points P, Q for which the stabiliser $G = M_{P,Q}$ has order $q^2 - 1$.

1 Introduction

In the Desarguesian projective plane $PG(2, q^2)$, a *unital* is defined to be a set of $q^3 + 1$ points containing either 1 or q + 1 points from each line of $PG(2, q^2)$. Observe that each unital has a unique 1-secant at each of its points. The idea of a unital arises from the combinatorial properties of the non-degenerate unitary polarity π of $PG(2, q^2)$. The set of absolute points of π is indeed a unital, called the *classical* or *Hermitian* unital. Therefore, the projective group preserving the classical unital is isomorphic to PGU(3,q) and acts on its points as PGU(3,q) in its natural 2-transitive permutation representation. Using the classification of subgroups of $PGL(3,q^2)$, Hoffer [14] proved that a unital is classical if and only if is preserved by a collineation group isomorphic to $PSU(3,q^2)$. Hoffer's characterisation has been the starting point for several investigations of unitals in terms of the structure of their automorphism group, see [3, 6, 4, 5, 8, 9, 10, 11, 12, 15, 16]; see also the survey [2, Appendix B]. In $PG(2,q^2)$ with q odd, L.M. Abatangelo [1] proved that a Buekenhout–Metz unital with a cyclic 2-point stabiliser of order $q^2 - 1$ is necessarily classical. In their talk at Combinatorics 2010, G. Donati e N. Durante have conjectured that Abatangelo's characterisation holds true for any unital in $PG(2,q^2)$. In this note, we provide a proof of this conjecture.

Our notation and terminology are standard, see [2], and [13]. We shall assume q > 2, since all unitals in PG(2, 4) are classical.

2 Some technical lemmas

Let M be the subgroup of PGL(3, q^2) which preserves a unital \mathcal{U} in PG(2, q^2). A 2-point stabiliser of \mathcal{U} is a subgroup of M which fixes two distinct points of \mathcal{U} .

Lemma 2.1. Let \mathcal{U} be a unital in $PG(2, q^2)$ with a 2-point stabiliser G of order $q^2 - 1$. Then, G is cyclic, and there exists a projective frame in $PG(2, q^2)$ such that G is generated by a projectivity with matrix representation

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where λ is a primitive element of $GF(q^2)$ and μ is a primitive element of GF(q).

Proof. Let O, Y_{∞} be two distinct points of \mathcal{U} such that the stabiliser $G = M_{O,Y_{\infty}}$ has order $q^2 - 1$. Choose a projective frame in $\mathrm{PG}(2,q^2)$ so that $O = (0,0,1), Y_{\infty} = (0,1,0)$ and the 1-secants of \mathcal{U} at those points are respectively $\ell_X : X_2 = 0$ and $\ell_{\infty} : X_3 = 0$. Write $X_{\infty} = (1,0,0)$ for the common point of ℓ_X and ℓ_{∞} . Observe that G fixes the vertices of the triangle $OX_{\infty}Y_{\infty}$. Therefore, G consists of projectivities with diagonal matrix representation. Now let $h \in G$ be a projectivity that fixes a further point $P \in \ell_X$ apart from O, X_{∞} . Then, h fixes ℓ_X point-wise; that is, h is a perspectivity with axis ℓ_X . Since h also fixes Y_{∞} , the centre of h must be Y_{∞} . Take any point $R \in \ell_X$ with $R \neq O, X_{\infty}$. Obviously, h preserves the line $r = Y_{\infty}R$; hence, it also preserves $r \cap \mathcal{U}$. Since $r \cap \mathcal{U}$ comprises q points other than R, the subgroup H generated by h has a permutation representation of degree q in which no non-trivial permutation fixes a point. As $q = p^r$ for a prime p, this implies that p divides |H|. On the other hand, h is taken from a group of order $q^2 - 1$. Thus, h must be the trivial element in G. Therefore, G has a faithful action on ℓ_X as a 2-point stabiliser of $\mathrm{PG}(1,q^2)$.

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

with λ a primitive element of $GF(q^2)$.

As G preserves the set $\Delta = \mathcal{U} \cap OY_{\infty}$, it also induces a permutation group \bar{G} on Δ . Since any projectivity fixing three points of OY_{∞} must fix OY_{∞} point-wise, \bar{G} is semiregular on Δ . Therefore, $|\bar{G}|$ divides q-1. Now let F be the subgroup of G fixing Δ point-wise. Then, F is a perspectivity group with centre X_{∞} and axis $\ell_Y : X_1 = 0$. Take any point $R \in \ell_Y$ such that the line $r = RX_{\infty}$ is a (q+1)-secant of \mathcal{U} . Then, $r \cap \mathcal{U}$ is disjoint from ℓ_Y . Hence, F has a permutation representation on $r \cap \mathcal{U}$ in which no non-trivial permutation fixes a point. Thus, |F| divides q+1. Since $|G| = q^2 - 1$, we have $|\bar{G}| \leq q-1$ and $|G| = |\bar{G}||F|$. This implies $|\bar{G}| = q-1$ and |F| = q+1. From the former condition, μ must be a primitive element of $\mathrm{GF}(q)$.

Lemma 2.2. In PG(2, q^2), let \mathcal{H}_1 and \mathcal{H}_2 be two non-degenerate Hermitian curves which have the same tangent at a common point P. Denote by $I(P, \mathcal{H}_1 \cap \mathcal{H}_2)$ the intersection multiplicity of \mathcal{H}_1 and \mathcal{H}_2 at P Then,

$$I(P, \mathcal{H}_1 \cap \mathcal{H}_2) = q + 1. \tag{1}$$

Proof. Since, up to projectivities, there is a unique class of Hermitian curves in $PG(2, q^2)$, we may assume \mathcal{H}_1 to have equation $-X_1^{q+1} + X_2^q X_3 + X_2 X_3^q = 0$. Furthermore, as the projectivity group PGU(3,q) preserving \mathcal{H}_1 acts transitively on the points of \mathcal{H}_1 in $PG(2,q^2)$, we may also suppose P = (0,0,1). Within this setting, the tangent r of \mathcal{H}_1 at P coincides with the line $X_2 = 0$. As no term X_1^j with $0 < j \leq q$ occurs in the equation of \mathcal{H}_1 , the intersection multiplicity $I(P,\mathcal{H}_1 \cap r)$ is equal to q + 1.

The equation of the other Hermitian curve \mathcal{H}_2 might be written as

$$F(X_1, X_2, X_3) = a_0 X_3^q X_2 + a_1 X_3^{q-1} G_1(X_1, X_2) + \ldots + a_q G_q(X_1, X_2) = 0,$$

where $a_0 \neq 0$ and deg $G_i(X_1, X_2) = i + 1$. Since the tangent of \mathcal{H}_2 at P has no other common point with \mathcal{H}_2 , even over the algebraic closure of $GF(q^2)$, no terms X_1^j with $0 < j \leq q$ can occur in the polynomials $G_i(X_1, X_2)$. In other words, $I(P, \mathcal{H}_2 \cap r) = q + 1$.

A primitive representation of the unique branch of \mathcal{H}_1 centred at P has components

$$x(t) = t, \ y(t) = ct^i + \dots,$$

where i is a positive integer and $y(t) \in GF(q^2)[[t]]$, that is, y(t) stands for a formal power series with coefficients in $GF(q^2)$.

From $I(P, \mathcal{H}_1 \cap r) = q + 1$,

$$y(t)^q + y(t) - t^{q+1} = 0,$$

whence $y(t) = t^{q+1} + H(t)$, where H(t) is a formal power series of order at least q + 2. That is, the exponent j in the leading term ct^{j} of H(t) is larger than q + 1.

It is now possible to compute the intersection multiplicity $I(P, \mathcal{H}_1 \cap \mathcal{H}_2)$ using [13, Theorem 4.36]:

$$I(P, \mathcal{H}_1 \cap \mathcal{H}_2) = \operatorname{ord}_t F(t, y(t), 1) = \operatorname{ord}_t (a_0 t^{q+1} + G(t)),$$

with $G(t) \in GF(q^2)[[t]]$ of order at least q + 2. From this, the assertion follows.

Lemma 2.3. In $PG(2, q^2)$, let \mathcal{H} be a non-degenerate Hermitian curve and let \mathcal{C} be a Hermitian cone whose centre does not lie on \mathcal{H} . Assume that there exist two points $P_i \in \mathcal{H} \cap \mathcal{C}$, with i = 1, 2, such that the tangent line of \mathcal{H} at P_i is a linear component of \mathcal{C} . Then

$$I(P_1, \mathcal{H} \cap \mathcal{C}) = q + 1. \tag{2}$$

Proof. We use the same setting as in the proof of Lemma 2.2 with $P = P_1$. Since the action of PGU(3, q) is 2-transitive on the points of \mathcal{H} , we may also suppose that $P_2 = (0, 1, 0)$. Then the centre of \mathcal{C} is the point $X_{\infty} = (1, 0, 0)$, and \mathcal{C} has equation $c^q X_2^q X_3 + c X_2 X_3^q = 0$ with $c \neq 0$. Therefore,

$$I(P, \mathcal{H} \cap \mathcal{C}) = \operatorname{ord}_t \left(c^q y(t)^q + c y(t) \right) = \operatorname{ord}_t \left(c^q t^{q+1} + K(t) \right)$$

with $K(t) \in GF(q^2)[[t]]$ of order at least q + 2, whence the assertion follows.

3 Main result

Theorem 3.1. In $PG(2, q^2)$, let \mathcal{U} be a unital and write M for the group of projectivities which preserves \mathcal{U} . If \mathcal{U} has two distinct points P, Q such that the stabiliser $G = M_{P,Q}$ has order $q^2 - 1$, then \mathcal{U} is classical.

The main idea of the proof is to build up a projective plane of order q using, for the definition of points, non-trivial G-orbits in the affine plane $AG(2, q^2)$ which arise from $PG(2, q^2)$ by removing the line $\ell_{\infty} : X_3 = 0$ with all its points. For this purpose, take \mathcal{U} and G as in Lemma 2.1, and define an incidence structure $\Pi = (\mathcal{P}, \mathcal{L})$ as follows.

- 1. Points are all non-trivial G-orbits in $AG(2, q^2)$.
- 2. Lines are ℓ_Y , and the non-degenerate Hermitian curves of equation

$$\mathcal{H}_b: -X_1^{q+1} + bX_3X_2^q + b^q X_3^q X_2 = 0, \tag{3}$$

with b ranging over $GF(q^2)^*$, together with the Hermitian cones of equation

$$\mathcal{C}_c: \ c^q X_2^q X_3 + c X_2 X_3^q = 0, \tag{4}$$

with c ranging over a representative system of cosets of (GF(q), *) in $(GF(q^2), *)$.

3. Incidence is the natural inclusion.

Lemma 3.2. The incidence structure $\Pi = (\mathcal{P}, \mathcal{L})$ is a projective plane of order q.

Proof. In AG(2, q^2), the group G has $q^2 + q + 1$ non-trivial orbits, namely its q^2 orbits disjoint from ℓ_Y , each of length $q^2 - 1$, and its q + 1 orbits on ℓ_Y , these of length q - 1. Therefore, the total number of points in \mathcal{P} is equal to $q^2 + q + 1$. By construction of Π , the number of lines in \mathcal{L} is also $q^2 + q + 1$. Incidence is well defined as G preserves ℓ_Y and each Hermitian curve and cone representing lines of \mathcal{L} .

Now we count the points incident with a line in Π . Each *G*-orbit on ℓ_Y distinct from *O* and Y_{∞} has length q-1. Hence there are exactly q+1 such *G*-orbits; in terms of Π , the line represented by ℓ_Y is incident with q+1 points. A Hermitian curve \mathcal{H}_b of Equation (3) has q^3 points in AG(2, q^2) and meets ℓ_Y in a *G*-orbit, while it contains no point apart from *O* of line ℓ_X . As $q^3 - q = q(q^2 - 1)$, the line represented by \mathcal{H}_b is incident with q+1 points in \mathcal{P} . Finally, a Hermitian cone \mathcal{C}_c of Equation (4) has q^3 points in AG(2, q^2) and contains q points from ℓ_Y . One of these q points is *O*, the other q-1 forming a non-trivial *G*-orbit. The remaining $q^3 - q$ points of \mathcal{C}_c are partitioned into q distinct *G*-orbits. Hence, the line represented by \mathcal{C}_c is also incident with q+1 points. This shows that each line in Π is incident with exactly q+1 points.

Therefore, it is enough to show that any two distinct lines of \mathcal{L} have exactly one common point. Obviously, this is true when one of these lines is represented by ℓ_Y . Furthermore, the point of \mathcal{P} represented by ℓ_X is incident with each line of \mathcal{L} represented by a Hermitian cone of equation (4). We are led to investigate the case where one of the lines of \mathcal{L} is represented by a Hermitian curve \mathcal{H}_b of equation (4), and the other line of \mathcal{L} is represented by a Hermitian curve \mathcal{H} which is either another Hermitian curve \mathcal{H}_d of the same type of Equation (3), or a Hermitian cone \mathcal{C}_c of Equation (4).

Clearly, both O and Y_{∞} are common points of \mathcal{H}_b and \mathcal{H} . From Kestenband's classification [17], see also [2, Theorem 6.7], $\mathcal{H}_b \cap \mathcal{H}$ cannot consist of exactly two points. Therefore, there exists another point, say $P \in \mathcal{H}_b \cap \mathcal{H}$. Since ℓ_X and ℓ_{∞} are 1-secants of \mathcal{H}_b at the points O and Y_{∞} , respectively, either P is on ℓ_Y or P lies outside the fundamental triangle. In the latter case, the G-orbit Δ_1 of P has size $q^2 - 1$ and represents a point in \mathcal{P} . Assume that $\mathcal{H}_b \cap \mathcal{H}$ contains a further point $Q \notin \Delta_1$ which does not belong to ℓ_Y and denote by Δ_2 its G-orbit. Then,

$$|\mathcal{H}_b \cap \mathcal{H}| \ge |\Delta_1| + |\Delta_2| = 2(q^2 - 1) + 2 = 2q^2.$$

However, from Bézout's theorem, see [13, Theorem 3.14],

$$|\mathcal{H}_b \cap \mathcal{H}| \le (q+1)^2.$$

Therefore, $Q \in \ell_Y$, and its *G*-orbit Δ_3 has length q-1. Hence, \mathcal{H}_b and \mathcal{H} share q+1 points on ℓ_Y . If $\mathcal{H} = \mathcal{H}_d$ is a Hermitian curve of Equation (3), each of these q+1 points is the tangency point of a common inflection tangent with multiplicity q+1 of the Hermitian curves \mathcal{H}_b and \mathcal{H} . Write $R_1, \ldots R_{q+1}$ for these points. Then, by (1) the intersection multiplicity is $I(R_i, \mathcal{H}_b \cap \mathcal{H}_d) = q+1$. This holds true also when \mathcal{H} is a Hermitian cone \mathcal{C}_c of Equation (4); see Lemma 2.3. Therefore, in any case,

$$\sum_{i=1}^{q+1} I(R_i, \mathcal{H}_b \cap \mathcal{H}) = (q+1)^2.$$

From Bézout's theorem, $\mathcal{H}_b \cap \mathcal{H} = \{R_1, \ldots, R_{q+1}\}$. Therefore, $\mathcal{H}_b \cap \mathcal{H} = \Delta_3 \cup \{O, Y_\infty\}$. This shows that if $Q \notin \ell_Y$, the lines represented by \mathcal{H}_b and \mathcal{H} have exactly one point in common. The above

argument can also be adapted to prove this assertion in the case where $Q \in \ell_Y$. Therefore, any two distinct lines of \mathcal{L} have exactly one common point.

Proof of Theorem 3.1. Construct a projective plane Π as in Lemma 3.2. Since $\mathcal{U} \setminus \{O, Y_{\infty}\}$ is the union of *G*-orbits, \mathcal{U} represents a set Γ of q + 1 points in Π . From [7], $N \equiv 1 \pmod{p}$ where *N* is the number of common points of \mathcal{U} with any Hermitian curve \mathcal{H}_b . In terms of Π , Γ contains some point from every line Λ in \mathcal{L} represented by a Hermitian curve of Equation (3). Actually, this holds true when the line Λ in \mathcal{L} is represented by a Hermitian cone \mathcal{C} of Equation (4). To prove it, observe that \mathcal{C} contains a line r distinct from both lines ℓ_X and ℓ_{∞} . Then, $r \cap \mathcal{U}$ is not empty and contains neither O nor Y_{∞} . If P is point in $r \cap \mathcal{U}$, then the *G*-orbit of P represents a common point of Γ and Λ . Since the line in \mathcal{L} represented by ℓ_Y meets Γ , it turns out that Γ contains some point from every line in \mathcal{L} .

Therefore, Γ itself is a line in \mathcal{L} . Note that \mathcal{U} contains no line. In terms of $PG(2, q^2)$, this yields that \mathcal{U} coincides with a Hermitian curve of Equation (3). In particular, \mathcal{U} is a classical unital. \Box

References

- L.M. Abatangelo, Una caratterizzazione gruppale delle curve Hermitiane, Le Matematiche 39 (1984) 101–110.
- [2] S.G. Barwick, G.L. Ebert, Unitals in Projective Planes, Springer Monographs in Mathematics (2008).
- [3] L.M. Batten, Blocking sets with flag transitive collineation groups, Arch. Math., 56 (1991), 412–416
- [4] M. Biliotti, G. Korchmáros, Collineation groups preserving a unital of a projective plane of odd order J. Algebra 122 (1989), 130–149.
- [5] M. Biliotti, G. Korchmáros, Collineation groups preserving a unital of a projective plane of even order *Geom. Dedicata* **31** (1989), 333–344.
- [6] P. Biscarini, Hermitian arcs of $PG(2, q^2)$ with a transitive collineation group on the set of (q+1)-secants, *Rend. Sem. Mat. Brescia* 7 (1982), 111–124.
- [7] A. Blokhuis, A. Brouwer, H. Wilbrink, Hermitian unitals are codewords, *Discrete Math.* 97 (1991), 63–68.
- [8] A. Cossidente, G.L. Ebert, G. Korchmáros, A group-theoritic characterization of classical unitals, Arch. Math. 74 (2000), 1–5.
- [9] A. Cossidente, G.L. Ebert, G. Korchmáros, Unitals in finite Desarguesian planes, J. Algebraic Combin. 14 (2001), 119–125.
- [10] G.L. Ebert, K. Wantz, A group-theoretic characterization of Buekenhout-Metz unitals, J. Combin. Des. 4 (1996), 143–152.
- [11] J. Doyen, Designs and automorphism groups. Surveys in Combinatorics London Math. Soc. Lecture Note Ser. 141 (1989), 74–83.

- [12] L. Giuzzi, A characterisation of classical unitals, J. Geometry 74 (2002), 86-89.
- [13] J.W.P. Hirschfeld, G. Korchmáros and F. Torres Algebraic Curves Over a Finite Field, Princeton Univ. Press, Princeton and Oxford, 2008, xx+696 pp.
- [14] A.R. Hoffer, On Unitary collineation groups, J. Algebra 22 (1972), 211–218.
- [15] W.M. Kantor, On unitary polarities of finite projective planes Canad J. Math. 23 (1971) 1060–1077.
- [16] W.M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A 38 (1985) 66–74.
- [17] B.C. Kestenband, Unital intersections in finite projective planes, Geom. Dedicata 11 (1981) no. 1, 107–117.