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Abstract

Curves over finite fields not only are interesting structures in themselves, but they are
also remarkable for their application to coding theory and to the study of the geometry of
arcs in a finite plane. In this note, the basic properties of curves and the number of their
points are recounted.
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The following topics are discussed:

1. Fundamental definitions;
. When is a projective algebraic set empty?

. Plane curves;
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4. The Riemann—Roch theorem;

5. Applications to coding theory;

6. The number of rational points and the Hasse—Weil theorem;
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8. The Sbhr—\oloch theorem.
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1 Fundamental definitions

1.1 Algebraic definitions

Let R be a commutative ring.

(1) Anideal I C R is a subring ofR such that, for any' € R,
FI:={FG:Fel}ClI.

(2) Anideall of R is principal if there exists an elemeidt € I such that

[=(F)={FG:G € R).

(3) Anideall is primeif F'G € I implies
FelorGel.

(4) Anideall is maximalif there exist no ideal of R such that/ # R, J # I and
IcuJ

(5) Any maximal ideal is prime.

(6) Anideall is homogeneous it is generatedby homogeneous polynomials.

(7) Aring R is anintegral domainif, for any I, G € R,
FG=0=F=0o0rG =0.

(8) The residue class ring @t by a prime ideal is an integral domain.
(9) The residue class ring @t by a maximal ideal is a field.

(10) A ring with only one maximal ideal islacal ring.

1.2 Geometric definitions

Some books on algebraic geometry and number theory that may be consulted are Fulton [2],
Ireland and Rosen [7], Joly [8], Koblitz [9], Pretzel [12], Schmidt [13], Seidenberg [15],
Stichtenoth [17], Thomas [19], van Lint and van der Geer [20], Walker [21].

Let K be an arbitrary field. For most purposes hékejs assumed to be either the finite
field F, of ¢ elements or its algebraic closuFg.

(1) An Affinen—space overx is

AG(n, K) = A"(K) = {z = (21, 29,...,2,) : 2; € K all i}.
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(2) Givenz* = (2o, 21, -, 0), ¥ = (Yo, Y1, - - - Yn) IN APTHEON{(0,...,0)}, letz* ~ y* if

there exists\ € K\{0} with y; = Az, for all 7; write the equivalence class of asP(z*).
Then, theprojectiven—space ovelx is

PG(n,K) =P"(K) = {P(z*) : 2* € A" (K)\{(0,...,0)}}.

(3) LetR, = K[X4,...,X,]andR, = K[Xy, X1,...,X,]. ForFin R,, defineF* in R, as

(4)

(5)

(6)

F*(Xo, X1,..., Xn) = (X)) F(X, /X0, ..., X0/ X0).
We call the mapping which associateés to F' homogenisation
A subset of AG(n, K) is an @ffing algebraic seif there existsS C R,, such that
V={re€ AG(n,K): F(z) =0forall F'in S}.

Similarly, a subseV of PG(n, K) is a (projective algebraic seff there existsS C R,,,
with all elements homogeneous, such that

YV ={P(z") € PG(n,K): F(z*)=0forall F'in S}.

Given an affine algebraic sktin AG(n, K), theideal ofV is the set of polynomials
IV)={F € R, : F(z)=0forall z in V}.

An affine algebraic seV is irreducible if there do not exist proper algebraic séts V,
with V = V; U V,. Equivalently,V is irreducible if and only if its ideal (V) is prime
The pair consisting of an irreducible algebraic ¥ah AG(n, K') and its ideal/ (V) is an
affine variety Theideal (V) of a projective algebraic sétin PG(n, K), is the ideal of
R, generated by all homogeneous polynomilsuch thatF(z*) = 0 for all P(z*) in
V. Irreducibility is defined as in the affine case, that is an algebrai¥’ $etPG(n, K) is
irreducible if and only ifY is a homogeneous prime ideal &),. Analogously to the affine
case, grojective varietyconsists of an irreducible algebraic setit:(n, K') together with
its (homogeneous) ideal.

Thecoordinate ringof an affine varietyy in AG(n, K) is the residue class ring
I'V)=R,/I1(V).

Thehomogeneous coordinate rird a projective variety) in PG(n, K) is
[,(V) = R,/I(V).

Observe that all these rings are integral domains.



(7) Thefunction fieldK' (V) of an affine varietyV is the quotient field of its coordinate ring
['(V); that is,

K(V) = {f/g:f g€T(V)withg# 0}
= {F/G:F,G € R, with G(x) # 0forall z € V}.
Note thatt'/G = F'/G'in K(V) ifand only if FG' — F'G =0in ['(V).

In the projective case, an elemehin I',()) hasdegree df d is the smallest degree for
which there exists a homogeneous polynon#ieduch thatf = F + I';, (V). Thefunction
field K (V) of a projective variety is defined as

KWV) = {f/g:f, g€ 'tw(V)of the same degree with+# 0}
{F/G : F,G € R, of the same degree withi(z*) # 0 for all P(z*) € V}.

Both in the affine and in the projective case, thmensiorof V is the transcendence degree
of K(V)/K. Hence, the dimension af is r if r is the smallest integer such that())

is a finite algebraic extension of the field(¢,, .. .,t,), wheret,, ... ¢, are independent
transcendental elements ov€r If » = 1, thenV is acurve.

The dimension of may also be defined as the length minus one of the longest chain of
irreducible algebraic varietiag, C ... C V, = V contained inV. The two definitions are
equivalent.

(8) Given a point: of the affine variety, thelocal ring at xis
O.(V) ={f/g: f.g € T(V) with g(z) # 0};
the unique maximal ideal @, (V) is
Mo(V) ={f/g: f.g € T(V)with f(z) = 0,9(z) # 0}.

The local ring consists of all the elements of the function field of the variety which are
defined at the point; the maximal ideal at provides a representation of the painitself
in the function field.

By natural embeddings,
Kcr(y)co,V)cKWV).

(9) ForK =F,, write AG(n, K) = AG(n,q) andPG(n, K) = PG(n,q). GivenFy,. .., F,

in R, withz = (24, ...,z,) andz* = (zo, z1,...,x,) let
V(F,....,F.) = {z€AG(n,q): Fi(z)=...= F,(x) =0},
V*(Fy,...,F) = {P(z") € PG(n,q) : Fy(z") =...=F (") =0},

Note thatV andV* are algebraic sets.



2 When is a projective algebraic set empty?

Consider the following quadrics iRG(3, q):

Vi = V(f(Xo, X1) + A\g(Xy, X3)),
Vo = V(f(Xo, X1) + pg(Xs, X3)),

with A # p and f, g binary quadratic forms irreducible ovey,. Then,V; NV, = &, since any
common point®P (xo, z1, 9, x3) Of the two quadrics must satisfi(zo, z1) = g(x2,z3) = 0;
it makes no difference whethgrandg are distinct or not. Note that the sum of the degrees of
the quadrics is greater than the dimension of the space. The generalisation of this observation
is the Chevalley—Warning theorem for affine algebraic sets [13, Chapter 4], which was given in
its projective version by Segre [14].

The idea is that an algebraic set can be empty if and only if the degree of the polynomials
which define it is high enough, when compared with the dimension of the ambient space.

Theorem 2.1.Letd,,...,d, be positive integers witth, + ... + d, = d.
(@ (i) There existfy,..., F,. in R, of degreesly,...,d, with V(F,...  F,) = @ if and
only ifd > n.
(i) There existfy,.. ., F,. in R, of degreesl;, ..., d, with V*(F},... F) = @ if and
only ifd > n.

(b) Whend < n, then, for anyFy,..., F. in R, with N = |V(F,...,F,)| and N* =
|[V*(Fy, ..., FF)|,
(i) N=>q"
(i) N =0 (mod p); (Warning)
iy N*>1+q+¢@+...¢"°%
(iv) N* =1 (mod p).

Let f : F, — F, be any function. Then, Lagrange’s Interpolation Formula exprefssssa
polynomial, which will be written using the same notation:

X1-X

fX) = > —f)=5— (2.1)
= D - (X -t (2.2)

F(X1,. . X)) =) a0 X0 X (2.3)

In any finite fieldF,, the relation



holds. There exists a uniqué € R, of degreg; — 1 in eachX; equivalent toF":

q—1 qg—1

F(Xy, 0 X)) = ) o) ag, ., XX, (2.4)
i1=0 in=0

F(Xy,...,X,) = F(Xy,...,X,)mod(X9— X;,..., X" — X,,). (2.5)

Observe that the values @f over F, are exactly the same as the onesfbfeven if the two

polynomials cannot be identified. In particular given dfythe forms off’ overF,andF are
different. So, for allcy, ..., c,) € (F,)",

Fei,...,c0) = Fley, ... ). (2.6)
Let

n

Xetoen (X1, X0) = [0 = (X5 = )" ); (2.7)

=1
be thecharacteristic functiorof the set{c,, ..., ¢, }; thus,

1 it () = (a1, ),
Xet,. C”(Il’“"xn)_{o if (x1,...,2,) # (c1,...,Cn). (2.:8)

Hence,E' can be given explicitly as follows:
F(X1,.. X)) = ) Fler, o ) Xeren (X1, X0); (2.9)
AG(n,q)

this provides the “generalised Lagrange’s Interpolation Formula”.
Comparing the coefficients of¢~" ... X¢~! on both sides of (2.9) shows that

o0 = (1" > Fler,...,cn). (2.10)
AG(n,q)
Lemma 2.2. Let d be an integer with < d < ¢ — 1. Then,
th _ 0 ifd#q-—1,
-1 ifd=gq-1.
teF,

Proof:
If d =0,

Zxd221:q:0.

z€Fy z€F

When( < d < q — 1, let us take: to be a generator of the cyclic grody; then,z¢ # 1.
On the other hand, asruns overF,, alsozx runs over all the elements &f,; thus,

Za:”: Z(zx)“:z“Zx“

z€F, z€F, z€F,



is possible if and only if the sum is zero.

Ifd=q—1,
doat=04+> a"'=> 1=qg-1=-1

reF, z€Fy zeF}

Lemma 2.3. Let F'in R,, have degre€ < n(q — 1). Then,

Y F(x)=0.

2€AG(n,q)

Proof: By linearity, it suffices to consider the case in whighis a monomial. IfF(z) =
X xde . Xdn then

n

>, F@=]I| >

z€AG(n,q) i=1 \x;€F,

Sinced; + ...+ d, < n(q¢ — 1), there is ad; with nd; < d < n(q — 1). So, by the previous

lemma,
d.
> 2 =0,
z;€Fq

and the result follows. O

Proof of parts (ii) and (iv) of Theorem 2.1
With X = (X4,...,X,), let

T

GX)=][[-Fx)].

=1

Then,G has degreé(q — 1) < n(¢ —1). So, by Lemma 2.3y° _ 15, G(z) = 0. Onthe
other handF;(z)¢~! = 1 for anyx € AG(n,q), unlessF;(z) = 0. Hence,G(z) = 0 unlessr

iS @ common zero of1, ... ., F,, in which case>(z) = 1. Therefore,
0= > G)=N,
2€AG(n,q)

whenceN = 0 (mod p).

The projective version follows now readily. L&t' = |V (FY, ..., FF)|; thatis,N’ counts
the number of zeros IAG(n + 1,¢) of V(F}, ..., F}). Then, N* = (N' —1)/(¢ — 1). As
N’ =0 (mod p), SON* =1 (mod p). O

For a proof of the following improvement to the theorem, especially relevant wisesmall
compared to, see [1, 8].

Theorem 2.4. With the hypotheses of Theorem 2.1,dek n and lete be an integer with
e <n/d. Then,N = 0 (mod ¢°).



3 Plane curves

Our attention will be mostly restricted to plane curves. First, some precise definitions are re-
quired. LetF in F [ X, Y, Z] be homogeneous. As i1, let

V(F) ={P(x,y,2) € PG(2,q) : F(x,y,z) = 0}.
Then, thecurve defined by is
V= (q,V(F),(F)) = V(F);

sometimes this curve may simply be referred tavasThe elements oV (F') are therational
pointsof V and (F) is the ideal generated b in F,[X,Y, Z]. The polynomialF’ defines

a curve; however, in order to understand the geometry of this curve, the knowledge of zeros
of F over F, and over any extension d, is required: in fact, the zeros ové, are not
always sufficient to recover. LetF, be the algebraic closure &f,and write asPG(2, ¢') the
projective plane oveF . An F -rational pointof V is a pointP(z,y, z) in PG(2,q") such

that F'(x,y, z) = 0. Thus, anF,-rational point of) is a rational point oft’. A pointof V is

simply anF ;:-rational point for some positive integerAlso, let

V(F)={P(z,y,2) € PG(2,F,) : F(z,y,2) = 0}.

Hence, a point ol is just a point which is rational over the algebraic closur&'gfthat is a
point of V(F).
A point of degree of V is a point that i€ :-rational but nof" ;-rational forj < . A closed
point of degree of Visaset{P, P4,..., PqH}, whereP is a point of degree.
A divisor D onV is an element of the free group generated by the closed points iof
other words,D is a formal sum:
D= ) npP,

PEV(F)
wherenp € Z andnp = 0 for all but a finite number ofP. We say thatD = > npP is an
F ,-divisor if, when P € Supp() andP is of degree, thenP’ € Supp() andnp: = np, for
all P’ in the closed poin{P, P%,..., P9 "}. TheF ,-divisors form the subgroupive, (V) of
Div(V).

Thesupportof D is
Supf D) = {P : np # 0}.
Thedegreeof D isdeg D = ) np. The divisors orV form a free Abelian groupiv()V).
A divisor D is effectiveif np > 0 for all P € Supp(D). This allows the introduction of a
partial order on the divisor group: we say that

D>D

if and only if D — D' is effective.
Something has now to be said about singular points.
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A singular pointof V is a pointP = P(x, y, z) such that every line through it intersedts
twice in P. That implies thaP(z, y, z) has to satisfy

OF _OF _0F
0X oY 0Z

Note that a singular point does not have to bévifiF’), but may be inV(F). For example,
considerg to be odd and let> = —1. Then, with

=0at(z,y, 2).

F:(X2+Y2)2+(X2—Y2)Z2+Z4,

the curveV has the two singular poin®®(v, 1,0) and P(—v, 1,0), which are rational when
q = 1(mod4) but not when; = —1(modt).
Let now F' be absolutely irreducible. Also, také = P(0, 0, 1) and write

FX,)Y,1))=F;+ Fe1+ ...+ Fy,

whereF, # 0 and each¥; is homogeneous iX andY of degree;. Then,U, hasmultiplicity
s onV; itis singular ifs > 1 and anordinary singular point if ¥, has no repeated factors. The
factors of F; are thetangentgo V atUs,. To find the properties of any other singular point, it is
possible to transform it t&; by a translation. The multiplicity o onV is denoted bynp (V).

A line through P is said to be aangentto V if it meets the curve with multiplicityt >

We say that a double poirit is anodeif there are exactly two tangents passing through it;
for example, consider the origin for the curve

F=Y?’-XxX?-Xx3

defined over the reals.
A cuspis a double point at which there is only one tangent; the origin for

F=Y?-X3

provides an example.

An isolated double poinis a double point at which the tangents lie in a quadratic extension
of the field, and thus are not visible. As an example we can consider the real curve

F=Y?+X%- X3

Clearly, there are no isolated double points over algebraically closed fields.

In fact, there are two numbers that need to be distinguished for a (plane)Xutvet N}
be the number of rational points on a non-singular model, ang let|V(F)|. In the case that
g =2and

F=(X*+XY+Y)Z+ X3

R =4, N = 3. Here,V(F) = {P(0,0,1),P(1,1,1),P(1,0,1),P(0,1,0)}, butP(0,0,1) is
an isolated double point; that is, the tangents in it lie dvgrthus, the point is not visible on a
non-singular model.



-0.51

Figure 1: Node

The numberV; is generalised toV;*, which is the number oF ;:-rational points on a non-
singular model o).
The same definitions applies also to affine curves.

As an example, consider the affine Fermat cubic given by

f=XP+Y?+1:

(a) overF, there are two rational point®, 1) and(1, 0); hence N, = 2;
(b) overF, := {0,1,w,w?} there are six rational points:
0,1), (O,w), (0,07,
(1,0), (w,0), (*0),
whenceN, = 6.
Passing to the projective case, we consiffer= X3 + Y3 + 73 and we get
(@) Ny =3;
(b) N5 =09.

Once the multiplicity of a point on a curve has been defined, it is possible to introduce the
intersection multiplicity of two curves at a point. Here, such number is not shown to exist;
however, effective rules for calculating it are given.

LetV = V(F) andWW = V(G). Then, theintersection multiplicity ofy’ and W at P,
denoted byl (P, V N W), has the following properties.
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Figure 2: Cusp

. I(P,YNW)=1(P,WNY).

Il. (@) I(P,VNW)=0if PZV(F)NV(G);
(b) I(P, Y N W) = x if V andWW have a common component through
(c) I(P,Y N W) € N otherwise.

. If 7 € PGL(3,q) withVr =V', Wr =W, Pr =P/ thenl(P,VNW)=I(P,V'N
W).

V. I(P,Y NW) > mp(V)mp(W), with equality if and only ifY andWW have no common
tangent at.

V. If F=T]F", G=1T]G;,with F;, G; forms inF,[X,Y, Z] andV; = V(F;), W; =
V(G,), then
I(P,VOW) =Y ris;[(PVinW;).
i.j
VI. I(P,VNW)=I1(P,YNH), whereH = V(H), with H = G + EF andE is a form in

F,[X,Y, Z] such thatleg E = deg G — deg F' > 0.

VII. (Bézout's theorem) Over an algebraically closed field; bf degreem and)V of degree
n have no common component, then

ZI(P,VQW) = mn.
P
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Figure 3: Isolated double point

Theintersection divisoof ¥V andV is the formal sum

VW =Y "I(P,VnW)P;
P

then, we can write Property VII as
deg(V.W) = mn.

In order to calculatd (P, V N W), property Il is used withP’ = U,, and then V and VI are
applied till IV can provide a final answer.
As an example consider

F=YZ7Z-X? G=Y7*-X°
By VI, the intersection multiplicity ofr" andG at any point is the same as that®f X F =

YZ* - XYZ =YZ(Z — X)andF. There are no common components throégandG. By
V, we can consider the intersections/ofwith the three components 6f, thus

FY =2(0,0,1), F.Z=2(0,1,0), F.(Z—-X)=(0,1,0)+ (1,1,1),

whence
F.G =2(0,0,1) 4+ 3(0,1,0) + (1,1,1)

anddeg(F.G) = 6.
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Figure 4:F andG

3.1 Mappings

A regular (or polynomia) map between two curves andG is a functionf : ' — G defined
by two elements, f, of the coordinate ring of’ such that

(ZE,y) S V(F) - (fl(x7y)vf2(xay)) S V(G)

We say thaip € K(F) is definedat a point(x,y) € F if there existf,g € I'(F) with

9(z,y) # 0 and

~ flz,y)
¢(x7y) - g(x’y)

A rational map¢ : F — G is a pairg;, ¢o € K(F') such thatjf ¢, ¢, are defined at
(l‘, y) S V(F)1 then(gbl(l', y)7 ¢2(x7y)) < V(G)

An isomorphisms a regular map with an inverse regular map.

A birational isomorphisns a rational map with an inverse rational map.

The following results show the relationship between algebraic and geometric structures.

Theorem 3.1. The curveF is isomorphic ta if and only if
I(F) ~T(G).

Theorem 3.2. The curveF' is birationally isomorphic ta~ if and only if
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Example 3.3.Let F = X, G =Y — X? and definef (0, t) = (¢, ¢*). Then,
I'F)=K[X,Y]/(X) ~ K[Y]
and
NG)=K[X,Y]/(Y — X?) ~ K[X].
The inverse off is f~!(z,y) = (0, ) — clearly this is regular, as well g&is. It follows that
I'(F) ~I'(G)

and the two curves are isomorphic.

Consider now’ = X andG = Y? — X3 and letf(0,t) = (¢*,t3). The functionf is clearly
regular, but the inversé=!(z,y) = (0, y/x) is notat the point(0, 0).

On the other hand;(F) = K[Y] andl'(G) = K[X,Y]/(Y? — X?), whence

K(F)~K(Y).
We can also verify that
KG) ~K(Y/X)~K(Y)~K(F),
whence we obtain that andG are birationally isomorphic even if not isomorphic.

The Zarisky topologyin PG(2, K) is defined as the topology whosksed setsare inter-
section of curves. Using this definition it is possible state the following result.

Theorem 3.4.1f ¢ : PG(2,K) — PG(2, K) is an isomorphism on an open set, theit is a
birational isomorphism oPG(2, K).

A point P of V(F) with multiplicity m is anordinary singular pointif m > 2 and the
tangents aP are all distinct.

For example the singular poifft, 0) is ordinary forF = Y2— X2— X3 in odd characteristic,
but it is not ordinary for the curvé’ = Y2 — X3,

Nodes are ordinary singular points, cusps are not.

Theorem 3.5.LetV be a curve inPG(2, K). Then, there exists a birational isomorphignof
PG(2, K) such thatp(V) has only ordinary singular points.

In fact, there exists an algorithm for constructing this birational map: it is based on the use
of projectivities and of the standard quadratic transformation

(x,y,2) — (yz, zz, zY).
Let V be a curve with ordinary singular pointg, .. ., P, of multiplicities sy, ..., s;. The

genusof V is the number

g=9V)=3(m—1)(m—2) =3 $si(si —1).

A curveV can be transformed into a curdg not necessarily plane, with no singular points
at all. Such a curvet is anon-singular modebf V; any two such models are birationally
isomorphic.
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Example 3.6.LetV = {P(1,t,t%,13) € PG(3,K) : t € K} U{P(0,0,0,1)} be thetwisted
cubic Then there are three types of chords:

(1) tangent;
(2) bisecant;
(3) 0-secant (that is, a bisecant with two non-rational contact points).

Through every poinP € PG(3, K) \ V there is exactly one chord. We say that the pdiris
of type: if there is a chord of type through it. Then, the projection af throughP is a plane
cubic with:

() acuspifP is of type (1);
(b) anode ifP is of type (2);
(c) anisolated double point ® is of type (3).

LetV = V(F) be a curve inPG(2, K). The points of a non-singular modé&lof V are the
placesof V. We say that a plac@ is centredat P if ¢(Q)) = P, wherep : X — V.
Any function¢ € K(X') can be expanded at a simple palhts a formal power series

o(t) = Z a;t.

The integer- is called theorder of ¢ at P and it is denoted by the symbol gr(l). A formal
approach to this can be found in [15], pag. 82.
It is always possible to associate a divisoptdRoughly speaking, i = f/g then

div(g) = (¢) = X.f — X.g = vp(6)P,

and the valuatiomp(¢) coincides with org@(¢) as defined above. This divisor may be written
as the difference of two effective divisorg))o — (¢). In this expressionyp), is calleddivisor
of zerosand(¢) is thedivisor of polef ¢. A divisor D such that there exists € K (X) with
D = (¢) is principal. All principal divisors have degre@ but the converse is not true. The
guotient group between the group of all the divisors of de@raed the group of all principal
divisors is denoted by the symb6!(X’). This group plays an important role in the study of
the arithmetic and geometric properties of the cuite In fact, over an algebraically closed
field, C'(&X') is usually denoted by Ja&') and has the structure of an algebraic variety with an
Abelian group law. This variety is called tdacobian varietyof X'

Given a curve, we may ask ourselves how many effediyeivisors of a prescribed degree
1 there are. Lef\/; be this number.

As an example, consider again the Fermat cubic &yefThis curve has only = (0,1, 1),
P =(1,0,1)and P, = (1, 1,0) asF,-rational points; let also:

Qo = (0,1,w), Q2= (0,1,w?),
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Ql = (1707("))7 Q% = (1707w2)7
QQ = (Lwao)a Q% = (1,(4}2,0),
whereF, = {0, 1,w, w?}. Then, we have the following:

- Degree 1.7, P,, P, henceM; = 3;

Degree 22P,, Py + Py, etc. and)y + Q2, Q; + @3, etc. for a total ofd/; = 9;

Degree 3: With similar arguments we ge = 21;

Degreer: we can provel/, = 3(2" — 1).

In order to carry out our project more algebraic tools are needed; in fact, the geometry of

curves is governed by the properties of local rings.
Theorem 3.7.Let R be a local ring that is not a field. Then, the following are equivalent:
(i) the unique maximal ideaV/ in R is principal;

(i) there existg € R such that ifz € R\{0} thenz = wt" for a unique unitu and unique
non-negative integet.

Such aringR is adiscrete valuation rindDVR); the element is auniformising parameter
Suppose, in this situation, that is a subring ofR isomorphic toR /M.

Theorem 3.8.
() Forany:z € R, there is a uniqué\ in K such that: — \ € M.

(i) Foranyn > 0, there are uniqué\, A\, ..., A, in K andz, € R such that

2= X+ Mt .+ Mt 2zt

Theorem 3.9.
(i) The pointP on a curveV is simple if and only ifD»(V) is a DVR.

(ii) In this case, the image inT'(V) of aline L = aX + bY + c that is not a tangent t¥ at
P is a uniformising parameter fa® ().

The set of all place#® of a curveV corresponds bijectively to the set of all the maximal
idealsMp of the DVR’s of the curve.

In this more abstract setting, the valuatigfn¢) of a functiony € Op(V) at a place corre-
sponding to the ideal/, can be defined to be the integesuch thatp = uL™ whereu is an
unitin Op(V).

In order to findn = vp(¢) for Pin (¢),, we write

¢ = ul”;

16



to determiner = vp(¢) for Pin (¢), we write

1
— =ul™

¢

Example 3.10.Let us consider the Fermat cubic over the fiBlidand label the set of ith,-
rational points as follows:

o o o 1 1 1 1 1

1 1 1 0 0 0 1 w w
1 w w1 w w0 0 '
P[) P1 P2 P3 P4 P5 P6 P7 Pg

Let¢; = 2 and¢, = 2. Then,
div(¢r) = Py + P, — 2P,
div(¢y) = Ps + P, + Ps — 3R,

This shows a remarkable property of divisors of functions; in fact,
(1) degdiv(¢) = 0;
(2) there is an equivalence relation on pPj¢.t’) that is given by

D'=D <= D' =D +div(¢)

for someyp € F (X).

Example 3.11.

(Y + Z).F
3P,

Y.F = X.F
P3—|—P4+P5 = P0+P1+P2

Theorem 3.12.Let P be a point on the irreducible curvi with local ring Op and maximal
ideal Mp. Then, the multiplicitynp of P onV is

mp = dlmK (Mpn/Mpn+1)

for all sufficiently largen.
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4 The Riemann—Roch theorem

The aim of this theorem is to count the number of rational functions with poles in a given divisor
D = > npP. For any divisorD, defineL(D) as

L(D) = {6 € K(X) : vp(9) = —np};

that is,¢ € L(D) if and only if div(¢) + D is effective. ClearlyL(D) is a vector space over
the field K. We want to compute its dimensiéfD) := dim L(D). This is the same as asking
for the maximal number of linearly independent curves cutting out divisors equivalént to

Theorem 4.1 (Riemann).
(i) Given an irreducible curver, there exists a constapt> 0 such that, for any divisoD,
(D) >degD+1—g.
The smallest suchis thegenusof X'.
(i) There exists an intege¥ such that, whedeg D > N,

[(D) =degD +1—g.

(i) The genug is a birational invariant.

The Riemann—Roch theorem extends part (i) of Theorem 4.1 by giving explicitly the differ-
ence between the two sides of the inequality. See [11], chapter 2 for the details.

Example 4.2. Consider as usual the Fermat cubioverF, and letD = 3F,. Then,¢;, ¢, €
L(D) andg = 1; it follows that!(D) = I(3F) =3+ 1 — 1 = 3, whence

L<3P0) = <1> ®1, ¢2>-

Let D be a divisor and leffy, ..., f., € L(D) be linearly independent. Then the set of
effective divisors

as\, ..., \, vary inF is alinear seriesy”, of degreen anddimension-. The series isomplete
if L(D) = {(fo,..., f); this is equivalent to say that there is gipwith s > r andg] C g3.
A parameter spacéor g is a PG(r, q) given by the bijection

D)\ - (Ao,...,)\r).

Another way of viewing this is to define



for suitable polynomials, . .., F,.. Then,
Dy =X.(MoFy+ ...+ \F);

that is, the series isut outby the family of curves\oFy + ... + A, F;.

In Example 4.2, the lines of the plane are a linear combinatidn &fZ, X andY and cut
out a complete linear serig$ on F.

For ag),, we havel (D) — 1 = r, whence we can restate part (ii) of the theorem as follows:
given a complete linear serigs with n > N,

r=n-—g.

5 Applications to coding theory

It is possible to introduce the following distance function on any vector spader all x, y in
V, let

d(z,y) == iz # yi}l-
This distance is called thdamming distancen V.

An [n, k,d|,linear codeC' is a k-dimensional linear subspace @f,)" such that for all
x,y € C with z # y we have
d(z,y) > d.

The parameters are as follows:
n is thelengthof C;
k is thedimensiorof C;
d is theminimum distancef C'.
The elements of ' are calledvords Theweightof a word is defined to be the number
w(z) = d(z,0) = [{i : z; # 0}].
For a linear code, the minimum distance is

AO) =, i, Ao w) = 1o, o)

Clearly, not all the parameters are independent.

Theorem 5.1 (Singleton).For a linear [n, k, d|,, code,

d<n—k+1
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We say that a code iserror correctingif the minimum distance between its words satis-
fies
d>2e+1.

A code is anMDS code(Maximum Distance Separable code) if the Singleton bound is
attained, thatisf =n — k + 1.

Usually a code is good it is small and botlt andd are fairly large.

A generator matriXor C'is ak x n matrix whose rows form a basis for.

Example 5.2. Let
Po:={f€F,T]:deg f < k}=<1,T,...,T" 1 >;
F,={t1,...,t;};
C={(f(t),....f(t): f € P}

Then,n = g anddim C' = k. Since there are at mokt— 1 zeros in any word, there are at least
q — (k — 1) non—zeros, hence

d=qg—k+1=n—-Fk+1

and the code is MDS. The generator matkixnay be written as

1 1 1 ... 1

tt ty oty ...t

G—=| t& 3 ... t2
I T

5.1 Construction of an algebraic geometry code
These codes were found by Goppa in 1981. Let

(1) & be an algebraic curve ovél, of genusy;
(2) D= P, +...+ P, be adivisor, where all th&; are rational and distinct;

(3) £ =miQ1+...+m,Q, be aF -divisor where)); # P, forall i, j; thus,deg £ = > " m,; =

m,

(4) 9 be the map

(5) C = C(D,E) :=imd = {(f(P),.... f(P)): f € L(E)}.



Then,C is anin, k, d],-code whose parameters satisfy the following conditions.
Theorem 5.3.1f n > m > 2¢g — 2, then

(i) k=m—g+1;

(i) d>n—m.

Corollary 5.4.
n—k+1l—g<d<n-—-k+1

Proof:

(i) This is the statement of Riemann’s theorem.

(i) If f e L(E)andw(0(f)) = d, thenf is zero atn — d pointsP,,,..., P, , forming a
divisor D" wheredeg D" = n — d and D’ < D. Now divf + E is effective and nd?;
occurs inE; hence,

divf + E> D'
If we take the degrees of both sides, we obtain now
m>n—d,
as required.

By adding (i) and (ii) we get
Ek+d>n—g+1,

whence the corollary follows. O

Example 5.5.Let F = X3 + Y3 + Z3 be the Fermat cubic ovéd,, and, with the notation of
before,F = 3P, andD = P, + ... + FPs. Then, we take as generator matrix

1 1 1.1 1 1 1 1 1

X
w 0 02 1 w2 w 1 w2 w = G
Yiz w w 0 0 0 1 1 1

Hence,n = 8,k = 3,5 < d < 6. Since row 3 ofGG is a word of weight, it follows that
C(D, E)is an[8,3, 5], code withe = 2.

The relevance of algebraic geometry codes is that it is possible to determine good upper and
lower bounds on their minimum distance.
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6 Number of rational points and Hasse—Weil theorem

AssumeC to be a plane curve of genygdefined ovelF,, and lett” be its non-singular model.
Also, let

(1) N; be the number of points af that are rational oveF ;;
(2) M, be the number of effectivE,-divisors on)’ of degrees;
(3) B; be the number of closed points of degree
We define the zeta function df as
(T)= > TP =1+ iMSTS.
Divg, (X) s=1

Lemma6.1.

() Ni=22,3B;

(i) Co(T) =TI;Z, (1 = T7)"% =exp(3_72, NiT"/i).

Thus, the zeta function encodes information on the number of rational poiGtevar any
extension off,.

Theorem 6.2. (Hasse—Weil)
Cx(T) = fF(T){(1 =T)(1 = qT)},
where
(D) f(T)=1Q-aiT)...(1 —ay,T) € Z[T7;
(i) ou,...,as are complex numbers;
(i) ojage;=¢,7=1,...,9;
(V) |ojl=va, j=1,...,2g.
Corollary 6.3.
() Ni=1+¢" —(af +... +a3,);
(i) |N: — (1+¢')| < 294/4"
Proof:

(i) This follows by taking logarithms of both sides in the theorem.
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(i) From (i),
[N = (14 ¢")] a1 + ..+ g
< |a§|+...+|a;g|

29/¢'.

Example 6.4. Recall that

log = 7{)(5)_ ) (1T 4 cT? +..)
—(eT+coT?4..)/2+ ...
+HT+T?/2+ ...
+(qT + ¢*T?/2 + . ..

= (I4+q+e)T+(1+¢+2c—c)T?/2+ ...

Hence,N; =1+ q+ci, No =1+ ¢ +2c, — .
We now consider some special cases:

(1) If g =0, thenX is either a line or a conic.

1
T) = .
“O=aona =g
We getc; = 0, andN; = 1 + ¢* for all .
(2) F = X3 +Y?3 + Z3 overFy; then,
1+cT+27?
T) = .
() (1—T)(1—2T)

SinceN; =3 =1+ 2+ ¢, we gete; = 0; hence,

log (r(T) = Y (=D)VUDQT*) /j+ ) T'/i+ ) (2T)'/i.
This implies that
1+ 20 for h odd
Ny =< 14204 2140/2 for b = 2(modt)
1+ 2k — 2142 for h = 0(modk)

Corollary 6.5. (i) [N — (1+¢q)| <294
(i) Mi=1+q— (a1 +...+ ag);
(i) Ny=1+¢>—(af+...+a3,).
Corollary 6.6. For a plane non-singular curve of degree
[N = (1 +g)] < (d—1)(d-2)/q.
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7 Equality in the Hasse—Weil bound

TheHermitiancurvelt, , is defined by

F = X\/@-i-l + Y\@H + Z\/ﬁ-l-l’

wheregq is a square. This gives an example of a cuMa which the upper bound in Corollary
6.5(i) is achieved. Herg, = 1(¢ — \/q), whence

q+1+29v/g=q+1+(¢—V9)vVe=q/q+1=Ny.

Conversely, the cun&’ = (¢*, V(F), (F)), obtained taking the same equatiBroverG F(q?)
archives the lower bound on the number of its rational points.
A curveV is maximalif N1 = ¢ + 1+ 2g,/q. Thus,Us , is one example.

Theorem 7.1. LetV be a maximal curve. Then, the inverse roots satisfy

;= —/q
for all .

Proof: The result follows from Theorem 6.2 (iii) and Corollary 6.5 (ii). O
It can also be seen that the zeta function of a maximal clinge

(14 qT)*
(1-1)(1—qT)’

() =

that of the Hermitian curve is

(1+/qT)1~ V1
(1-=T)(1—qT)

CZ/{Q (T) =

In fact, the Hasse—Weil theorem provides a good bound whisnarge compared to the
genusy, but it is not so good whenis large compared tg.
Write N,(g) := max N, wherelV; is computed for non—singular curves of gegusrerF,

and define N
¢ = lim Z —q(g).
g—0o0 9

From the Hasse—-Weil theorem it follows thé} < |2,/g]. However, this can be improved.

A

Theorem 7.2 (Drinfeld-Vladut). The parameterd, satisfies

A, < Vg1

with equality forq square.
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8 The SHhr—\Voloch theorem

In this section we summarise some background material concerning Weierstrass points and
Frobenius orders from 8lr and Voloch [18].

Let us start by considering what happens in the case of the linesortlee sequencef a
non-singular curve’ with respect to the lines at a poiftis given by the three numbers

min [ (P,l; N F),
1=1,2,3, where
(1) [ is an arbitrary line ofPG(2, q);
(2) I; containsP;
(3) I3 is the tangentp.
For example, for the Hermitian curvg , the order sequence is
(i) (0,1,,/q)if Pis not rational,
(i) (0,1,,/q+ 1)if Pis rational.

In order to count the number of points of a plane cufvewe can consider a family of
curves in the plane meeting and apply some technique in order to count the intersections of
members of this family with the given curve.

For a general curvé’, a point of inflexionis a simple pointP of F' such that if7» is the
tangent at” to F', thenI(P,Tp N F) > 3.

The Hasse—Weil theorem keeps track only of the singularitiéstoft turn up in the compu-
tation of the genus; the &tr-Voloch theory considers inflexions with respect to a given family
of curves.

The essential idea is as follows: consider the action induced by the morphism

¢ (2,y,2) — (27,97, 29)

overF,and letG(X,Y) = F(X,Y,1). The curveF is fixed by¢, and so are all it¥ ,-rational
points. Thus, we have that the set of all hgrational points ofF' is contained in

(P eV(F):¢(P) = P}.

Write Gy := 9¢ andGy := 2¢; then, the tangent at a poiftt = (zo, yo) of F can be written
as
T, = Gx (0, 40)(X — 10) + Gy (20, %0) (Y — 30).

The following inclusion holds:
{(PeF:¢(P)=P}C{PeF:¢P)eTp}
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Now letH = (X?— X)Gx + (Y?—Y)Gy, in order to be able to write
¢<P) € TP <~ H<$an0> = 07

and consider how the curvés andG intersect:

HX = (qu_l — 1)GX + (Xq — .Z')GXX —|— (Yq — Y)GYX

- —GX + (Xq - X)G)(X + (Yq - Y)GYX

Hy = _GY —|— (Xq - X>GXY —|— (Yq — Y)ny.

Hence, at a simple rational poift = (xg, yo) of F,
Hyx = —Gx, Hy = —Gy;

that is, atP the curvesz and H have a common tangent. If we now let= deg F' = deg G
and NV, is the number of rational points @f, by Bezout's theorem we obtain that, whénis
not a component off,

(n+q—1)n:dengegG:ZI(Q,HHG) > 2Ny,

whenceN; < in(n+q—1).
Suppose now that dividesH; thatis,H = 0 identically, when itis considered as a function
on the points of~. Then,

(Xq—X)%Jqu—Y:O,
Y
and
d’Y 1 9 2
ax? G_Q[GXXGY — 2GxyGxGy + GyyG%] = 0.
Y

Thus, it is possible to state the following theorem.

Theorem 8.1. If % £ 0, that is, not all points off” are inflexions, and is odd, thenV; <
n(n+q—1).

The case in which all the points of a curve are inflexions can actually happen.

For example, take a fiell#, with ¢ square and let/ = XVl + YVatl 4 7vatl pe the
Hermitian curve. Let als@® = (xo,v0,20) € U and letT; be the tangent ab, to U. Take
P = (z,y,z) € Ty nU. Then, we have the following:

PyeU: x(‘)/aﬂ + ya/éﬂ + za/qH =0, (1)

T g T = 0; (2)
PeTy: e+ gy + 2"y = 0; (3)
PeU: VIl 4 VAt 4 pvatl = (4)

Hence, substituting from (3) in (4),
(yor — xoy)\/a(ygx —xgy) = 0. (5)

Then, we obtain
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() if (x,y) = (x0, y0), from (3),z = z;
(ii) if (z,y) = (23,48), thenz = z{.
This can be summed up by writing
Ty.U = /qP + Py,

that is, 7, meets once inF and,/q times inF; if Py is F-rational, then the number of times
T, meets the curve dt, is \/q + 1; otherwise it is, /g.

As a consequence, we have that every point/ofeither rational or not) is an inflexion.
Note that this case cannot happen over the complex field, where an Hermitian curve has only
inflexions (but in this case we are not counting the rational points anyhow!!).

Example 8.2. Let us consider a curve of genys= 3. Such a curve is birationally isomorphic
to a non-singular plane quartic.
We have the following table

q 3 5 7 9 11 13 17 19

g+1+3[2,/4q]| 13 18 23 28 30 35 42 44

2(¢+3) 12 16 20 24 28 32 40 44

N,(3) 10 16 20 28 28 32 40 44
*

The case marked byis the one corresponding to the Hermitian curve.

Now we want to generalise this construction.
For a plane curvé’ whose generic poinP is not an inflexion, the order sequence for lines
is (0,1, 2). Consider the family of conics in the plane and define an order sequence

(EOa €1, €2, €3, €4, 65)-

in the same way as before By considering degenerate conics, the sequence turns out necessarily
to have the form
(0,1,2,3,4, €5).

The very same construction can be seen in a slightly more abstract and general walpe let
the embedding
{ F — PG(5,q)
(67 (

x? y’ Z) - <x2’y27227y2’ ZI? ajy)

This map sends a curve 81G(2, ¢) to a curve ofPG(5, ¢) and transforms the conic of equation

Mot + My? + Ao2® + Agyz + A\gzx 4+ Aszy = 0
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into a curve that lies in the hyperplane
>\0X0 + >\1X1 —|— e + )\5X5 - 0

If F' has degree, then the lines ofPG(3, ¢) form a linear system of projective dimensi@n
and cut out a linear serig§. The conics form a linear system IG(5, ¢) of dimensiorb, thus
cutting out a linear serieg,, — the natural space where to consider the curve and the order
series is henc®G (5, q).

In general a system of dimensiencuts out &* and has order sequence

(607617 ce '7€m)7

where thee; are the intersection numbers of the families of hyperplaneBdiim, ¢) with a
suitable embedding of the curve. On the other hand) i an element of the linear serig$

and(1, %, e %) is a basis fol. (D), then the embedding of F'in PG(m, q) is simply given

by (fO?"'afm)'

In this more general setting the role of the tangent line to the curve has to be replaced by the
osculating hyperplane

In order to compute thesculating hyperplané& a curve in a projective space over a field
with finite characteristic it is necessary to use a derivative that “keeps track of the characteristic”.
This is accomplished by thdasse derivativeD;. It is defined as follows:

Dy’ = jt' =,

but |
D = (i — D,

DY = ( ! ) £

Then, the equation of the osculating hyperplahgat a pointQ) = «(P) is

and, likewise,

Xo e X
DYy .. ... DUy

: =0,
DYy . .. DIV

where(jo, - . ., jm) is the order sequence fét.

Example 8.3 (the twisted cubic).The cubic is parametrised as follows:

(for fu. fo, f3) = (L, £, 8%,8%)

and
<j07j17.j2aj3) = (07 17 27 3)
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Hence
Xo X1 Xy X3
1t t*
Hy = 0 1 2t 3t?
0O 0 1 3t

=3X, — 32X, + 3tX, — X5,

We have alwayd (Q), Ho N «(F)) = jn. The point@) is aWeierstrass poinif the order
sequence is not the trivial one, that is:

(jO;---7jm) # (0,1,...,777,).

A curve without Weierstrass points is said todd@ssical Weierstrass points play here the same
role as inflexions in the plane.

As before, we now count the cardinality of the set

{QealF):0(Q) € Ho}

which contains all the rational points.
Let us define

Xo X

DMfy ... ... DWf.
W(l/g ..... Vm—1) — .

DYmIf ... DI

where the numbersy, ..., v,—1) C (¢, .., €,) are as small as possible for the rowd/Bfto
be linearly independent. The sequelieg . . ., v,,_1) is called the~robenius order sequence

Theorem 8.4.1f X is a projective, non-singular algebraic curve of genudefined ovefF,
with N, rational points andy* is a linear series o’ with no fixed points and Frobenius order
sequencévy, ..., V,_1), then

1
N, < E{(Zg —2)(vo+ ...+ Vm-1) + (g +m)d}.
Example 8.5.

(1) If we consider the Hermitian curve, we haye= ,/q(,/q — 1) and the Frobenius order
sequence isv, v1) = (0, /q), whence

Ny < (VA0 - 2VG -2+ (a+ (VT + D} = v+ 1

(2) If g7 = g2, then X
N, < 5{(2g — 21y +n(q+2)},

with v, € {1,2,p"}. If not every point is an inflexion and > 2, theny; = 1 and

1 1
N1§§n(n—3+q+2):§n(n+q—1).
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(3) If g = g3,, then
1
N < 5{(29 —2)(1 + o+ vz + 1) +2n(g +5)}.
If X is classical fors,, theny; = i and

N < gn{B(n ~9) 4 q).

Some values oi,(g) for ¢ = p" are known:
Nq<0) =q+ 1

N1y =4 4 + [2,/4] if ~is odd,h > 3 andp | [2,/q],
N g+ 14 [24/q] otherwise

In fact, ¢ = 128 is the smalles§ for which the first possibility holds whejp = 1.
A prime powerg = p" is specialif & is odd and one of the following holds:

@ r|[2v4);

(b) ¢ =n*+1;

€ g=n*+n+1;

d) g =n>+n+2.

Let {M} := M — | M|. Then, if¢ is special,

= {1t D
! q—1+2[2,/q] otherwise

If ¢ is not special,
2 + 2 if ¢ = 4.9,
Nq(Q) - { g+ 1+ 2[2\/6] otherwise

Forg < 128 the only speciaj with {2,/g} > 1(v/5 — 1) are2,8,128.
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