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Abstract
Curves over finite fields not only are interesting structures in themselves, but they are

also remarkable for their application to coding theory and to the study of the geometry of
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1 Fundamental definitions

1.1 Algebraic definitions

Let R be a commutative ring.

(1) An ideal I ⊆ R is a subring ofR such that, for anyF ∈ R,

FI := {FG : F ∈ I} ⊆ I.

(2) An idealI of R is principal if there exists an elementF ∈ I such that

I = 〈F 〉 = {FG : G ∈ R}.

(3) An idealI is prime if FG ∈ I implies

F ∈ I or G ∈ I.

(4) An idealI is maximalif there exist no idealJ of R such thatJ 6= R, J 6= I and

I ⊂ J.

(5) Any maximal ideal is prime.

(6) An idealI is homogeneousif it is generatedby homogeneous polynomials.

(7) A ring R is anintegral domainif, for any F, G ∈ R,

FG = 0 ⇒ F = 0 or G = 0.

(8) The residue class ring ofR by a prime ideal is an integral domain.

(9) The residue class ring ofR by a maximal ideal is a field.

(10) A ring with only one maximal ideal is alocal ring.

1.2 Geometric definitions

Some books on algebraic geometry and number theory that may be consulted are Fulton [2],
Ireland and Rosen [7], Joly [8], Koblitz [9], Pretzel [12], Schmidt [13], Seidenberg [15],
Stichtenoth [17], Thomas [19], van Lint and van der Geer [20], Walker [21].

Let K be an arbitrary field. For most purposes here,K is assumed to be either the finite
field Fq of q elements or its algebraic closureFq.

(1) An Affinen−space overK is

AG(n,K) = An(K) = {x = (x1, x2, . . . , xn) : xi ∈ K all i}.
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(2) Givenx∗ = (x0, x1, . . . , xn), y∗ = (y0, y1, . . . , yn) in An+1(K)\{(0, . . . , 0)}, letx∗ ∼ y∗ if
there existsλ ∈ K\{0} with yi = λxi for all i; write the equivalence class ofx∗ asP(x∗).
Then, theprojectiven−space overK is

PG(n,K) = Pn(K) = {P(x∗) : x∗ ∈ An+1(K)\{(0, . . . , 0)}}.

(3) LetRn = K[X1, . . . , Xn] andRn = K[X0, X1, . . . , Xn]. ForF in Rn, defineF ∗ in Rn as

F ∗(X0, X1, . . . , Xn) = (X0)
deg F F (X1/X0, . . . , Xn/X0).

We call the mapping which associatesF ∗ to F homogenisation.

(4) A subsetV of AG(n, K) is an (affine) algebraic setif there existsS ⊂ Rn such that

V = {x ∈ AG(n,K) : F (x) = 0 for all F in S}.

Similarly, a subsetV of PG(n,K) is a (projective) algebraic setif there existsS ⊂ Rn,
with all elements homogeneous, such that

V = {P(x∗) ∈ PG(n,K) : F (x∗) = 0 for all F in S}.

(5) Given an affine algebraic setV in AG(n, K), theideal ofV is the set of polynomials

I(V) = {F ∈ Rn : F (x) = 0 for all x in V}.

An affine algebraic setV is irreducible if there do not exist proper algebraic setsV1,V2

with V = V1 ∪ V2. Equivalently,V is irreducible if and only if its idealI(V) is prime.
The pair consisting of an irreducible algebraic setV in AG(n,K) and its idealI(V) is an
affine variety. The ideal I(V) of a projective algebraic setV in PG(n,K), is the ideal of
Rn generated by all homogeneous polynomialsF such thatF (x∗) = 0 for all P(x∗) in
V. Irreducibility is defined as in the affine case, that is an algebraic setV in PG(n,K) is
irreducible if and only ifV is a homogeneous prime ideal inRn. Analogously to the affine
case, aprojective varietyconsists of an irreducible algebraic set inPG(n,K) together with
its (homogeneous) ideal.

(6) Thecoordinate ringof an affine varietyV in AG(n,K) is the residue class ring

Γ(V) = Rn/I(V).

Thehomogeneous coordinate ringof a projective varietyV in PG(n,K) is

Γh(V) = Rn/I(V).

Observe that all these rings are integral domains.
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(7) The function fieldK(V) of an affine varietyV is the quotient field of its coordinate ring
Γ(V); that is,

K(V) = {f/g : f, g ∈ Γ(V) with g 6= 0}
= {F/G : F,G ∈ Rn with G(x) 6= 0 for all x ∈ V}.

Note thatF/G = F ′/G′ in K(V) if and only if FG′ − F ′G = 0 in Γ(V).

In the projective case, an elementf in Γh(V) hasdegree dif d is the smallest degree for
which there exists a homogeneous polynomialF such thatf = F + Γh(V). The function
fieldK(V) of a projective varietyV is defined as

K(V) = {f/g : f, g ∈ Γh(V) of the same degree withg 6= 0}
= {F/G : F, G ∈ Rn of the same degree withG(x∗) 6= 0 for all P(x∗) ∈ V}.

Both in the affine and in the projective case, thedimensionof V is the transcendence degree
of K(V)/K. Hence, the dimension ofV is r if r is the smallest integer such thatK(V)
is a finite algebraic extension of the fieldK(t1, . . . , tr), wheret1, . . . , tr are independent
transcendental elements overK. If r = 1, thenV is acurve.

The dimension ofV may also be defined as the length minus one of the longest chain of
irreducible algebraic varietiesV0 ⊂ . . . ⊂ Vr = V contained inV. The two definitions are
equivalent.

(8) Given a pointx of the affine varietyV, thelocal ring at x is

Ox(V) = {f/g : f, g ∈ Γ(V) with g(x) 6= 0};

the unique maximal ideal ofOx(V) is

Mx(V) = {f/g : f, g ∈ Γ(V) with f(x) = 0, g(x) 6= 0}.

The local ring consists of all the elements of the function field of the variety which are
defined at the pointx; the maximal ideal atx provides a representation of the pointx itself
in the function field.

By natural embeddings,
K ⊂ Γ(V) ⊂ Ox(V) ⊂ K(V).

(9) ForK = Fq, write AG(n,K) = AG(n, q) andPG(n,K) = PG(n, q). GivenF1, . . . , Fr

in Rn, with x = (x1, . . . , xn) andx∗ = (x0, x1, . . . , xn) let

V(F1, . . . , Fr) = {x ∈ AG(n, q) : F1(x) = . . . = Fr(x) = 0},
V∗(F ∗

1 , . . . , F ∗
r ) = {P(x∗) ∈ PG(n, q) : F ∗

1 (x∗) = . . . = F ∗
r (x∗) = 0}.

Note thatV andV∗ are algebraic sets.
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2 When is a projective algebraic set empty?

Consider the following quadrics inPG(3, q):

V1 = V(f(X0, X1) + λg(X2, X3)),

V2 = V(f(X0, X1) + µg(X2, X3)),

with λ 6= µ andf, g binary quadratic forms irreducible overFq. Then,V1 ∩ V2 = ∅, since any
common pointsP(x0, x1, x2, x3) of the two quadrics must satisfyf(x0, x1) = g(x2, x3) = 0;
it makes no difference whetherf andg are distinct or not. Note that the sum of the degrees of
the quadrics is greater than the dimension of the space. The generalisation of this observation
is the Chevalley–Warning theorem for affine algebraic sets [13, Chapter 4], which was given in
its projective version by Segre [14].

The idea is that an algebraic set can be empty if and only if the degree of the polynomials
which define it is high enough, when compared with the dimension of the ambient space.

Theorem 2.1.Letd1, . . . , dr be positive integers withd1 + . . . + dr = d.

(a) (i) There existF1, . . . , Fr in Rn of degreesd1, . . . , dr with V(F1, . . . , Fr) = ∅ if and
only if d > n.

(ii) There existF1, . . . , Fr in Rn of degreesd1, . . . , dr with V∗(F ∗
1 , . . . , F ∗

r ) = ∅ if and
only if d > n.

(b) Whend ≤ n, then, for anyF1, . . . , Fr in Rn with N = |V(F1, . . . , Fr)| and N∗ =
|V∗(F ∗

1 , . . . , F ∗
r )|,

(i) N ≥ qn−d;

(ii) N ≡ 0 (mod p); (Warning)

(iii) N∗ ≥ 1 + q + q2 + . . . qn−d;

(iv) N∗ ≡ 1 (mod p).

Let f : Fq → Fq be any function. Then, Lagrange’s Interpolation Formula expressesf as a
polynomial, which will be written using the same notation:

f(X) =
∑
t∈Fq

−f(t)
Xq −X

X − t
(2.1)

=
∑
t∈Fq

f(t)[1− (X − t)q−1]. (2.2)

To prove the theorem, this formula will have to be generalised. ConsiderF ∈ Rn:

F (X1, . . . , Xn) =
∑

ai1,...,inX1
i1 . . . Xn

in . (2.3)

In any finite fieldFq, the relation
xq − x = 0
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holds. There exists a uniquêF ∈ Rn of degreeq − 1 in eachXi equivalent toF :

F̂ (X1, . . . , Xn) =

q−1∑
i1=0

. . .

q−1∑
in=0

âi1,...,inX1
q−1−i1 . . . Xn

q−1−in , (2.4)

F̂ (X1, . . . , Xn) ≡ F (X1, . . . , Xn) mod(X1
q −X1, . . . , Xn

q −Xn). (2.5)

Observe that the values of̂F overFq are exactly the same as the ones ofF , even if the two
polynomials cannot be identified. In particular given anyF , the forms ofF̂ overFq andFqi are
different. So, for all(c1, . . . , cn) ∈ (Fq)

n,

F̂ (c1, . . . , cn) = F (c1, . . . , cn). (2.6)

Let

χc1,...,cn(X1, . . . , Xn) =
n∏

i=1

[1− (Xi − ci)
q−1]; (2.7)

be thecharacteristic functionof the set{c1, . . . , cn}; thus,

χc1,...,cn(x1, . . . , xn) =

{
1 if (x1, . . . , xn) = (c1, . . . , cn),
0 if (x1, . . . , xn) 6= (c1, . . . , cn).

(2.8)

Hence,F̂ can be given explicitly as follows:

F̂ (X1, . . . , Xn) =
∑

AG(n,q)

F (c1, . . . , cn)χc1,...,cn(X1, . . . , Xn); (2.9)

this provides the “generalised Lagrange’s Interpolation Formula”.
Comparing the coefficients ofXq−1

1 . . . Xq−1
n on both sides of (2.9) shows that

â0,...,0 = (−1)n
∑

AG(n,q)

F (c1, . . . , cn). (2.10)

Lemma 2.2. Let d be an integer with0 ≤ d ≤ q − 1. Then,

∑
t∈Fq

td =

{
0 if d 6= q − 1,

−1 if d = q − 1.

Proof:
If d = 0, ∑

x∈Fq

xd =
∑
x∈Fq

1 = q = 0.

When0 < d < q − 1, let us takez to be a generator of the cyclic groupF∗q; then,zd 6= 1.
On the other hand, asx runs overFq, alsozx runs over all the elements ofFq; thus,

∑
x∈Fq

xu =
∑
x∈Fq

(zx)u = zu
∑
x∈Fq

xu
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is possible if and only if the sum is zero.
If d = q − 1, ∑

x∈Fq

xd = 0 +
∑
x∈F?

q

xq−1 =
∑
x∈F?

q

1 = q − 1 = −1.

¤

Lemma 2.3. LetF in Rn have degreed < n(q − 1). Then,
∑

x∈AG(n,q)

F (x) = 0.

Proof: By linearity, it suffices to consider the case in whichF is a monomial. IfF (x) =
Xd1

1 Xd2
2 . . . Xdn

n , then

∑

x∈AG(n,q)

F (x) =
n∏

i=1


 ∑

xi∈Fq

xui
i


 .

Sinced1 + . . . + dn < n(q − 1), there is adj with ndj ≤ d ≤ n(q − 1). So, by the previous
lemma, ∑

xj∈Fq

x
dj

j = 0,

and the result follows. ¤

Proof of parts (ii) and (iv) of Theorem 2.1
With X = (X1, . . . , Xn), let

G(X) =
r∏

i=1

[
1− Fi(X)q−1

]
.

Then,G has degreed(q − 1) < n(q − 1). So, by Lemma 2.3,
∑

x∈AG(n,q) G(x) = 0. On the
other hand,Fi(x)q−1 = 1 for anyx ∈ AG(n, q), unlessFi(x) = 0. Hence,G(x) = 0 unlessx
is a common zero ofF1, . . . , Fr, in which caseG(x) = 1. Therefore,

0 =
∑

x∈AG(n,q)

G(x) = N,

whenceN ≡ 0 (mod p).
The projective version follows now readily. LetN ′ = |V(F ∗

1 , . . . , F ∗
r )|; that is,N ′ counts

the number of zeros inAG(n + 1, q) of V(F ∗
1 , . . . , F ∗

r ). Then,N∗ = (N ′ − 1)/(q − 1). As
N ′ ≡ 0 (mod p), soN∗ ≡ 1 (mod p). ¤

For a proof of the following improvement to the theorem, especially relevant whend is small
compared ton, see [1, 8].

Theorem 2.4. With the hypotheses of Theorem 2.1, letd < n and let e be an integer with
e < n/d. Then,N ≡ 0 (mod qe).
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3 Plane curves

Our attention will be mostly restricted to plane curves. First, some precise definitions are re-
quired. LetF in Fq[X,Y, Z] be homogeneous. As in§1, let

V(F ) = {P(x, y, z) ∈ PG(2, q) : F (x, y, z) = 0}.

Then, thecurve defined byF is

V = (q,V(F ), (F )) = V(F );

sometimes this curve may simply be referred to asF . The elements ofV(F ) are therational
pointsof V and (F ) is the ideal generated byF in Fq [X,Y, Z]. The polynomialF defines
a curve; however, in order to understand the geometry of this curve, the knowledge of zeros
of F over Fq and over any extension ofFq is required: in fact, the zeros overFq are not
always sufficient to recoverF . Let Fq be the algebraic closure ofFqand write asPG(2, qi) the
projective plane overFqi. An Fqi-rational point of V is a pointP(x, y, z) in PG(2, qi) such
thatF (x, y, z) = 0. Thus, anFq-rational point ofV is a rational point ofV. A point of V is
simply anFqi-rational point for some positive integeri. Also, let

V(F ) = {P(x, y, z) ∈ PG(2,Fq) : F (x, y, z) = 0}.

Hence, a point ofV is just a point which is rational over the algebraic closure ofFq, that is a
point ofV(F ).

A point of degreei of V is a point that isFqi-rational but notFqj -rational forj < i. A closed
point of degreei of V is a set{P, P q, . . . , P qi−1}, whereP is a point of degreei.

A divisor D on V is an element of the free group generated by the closed points ofV; in
other words,D is a formal sum:

D =
∑

P∈V(F )

nP P,

wherenP ∈ Z andnP = 0 for all but a finite number ofP . We say thatD =
∑

nP P is an
Fq-divisor if, whenP ∈ Supp(D) andP is of degreei, thenP ′ ∈ Supp(D) andnP ′ = nP , for
all P ′ in the closed point{P, P q, . . . , P qi−1}. TheFq-divisors form the subgroupDivFq(V) of
Div(V).

Thesupportof D is
Supp(D) = {P : nP 6= 0}.

Thedegreeof D is deg D =
∑

nP . The divisors onV form a free Abelian groupDiv(V).
A divisor D is effectiveif nP ≥ 0 for all P ∈ Supp(D). This allows the introduction of a

partial order on the divisor group: we say that

D ≥ D′

if and only if D −D′ is effective.
Something has now to be said about singular points.
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A singular pointof V is a pointP = P(x, y, z) such that every line through it intersectsV
twice inP. That implies thatP(x, y, z) has to satisfy

∂F

∂X
=

∂F

∂Y
=

∂F

∂Z
= 0 at(x, y, z).

Note that a singular point does not have to be inV(F ), but may be inV(F ). For example,
considerq to be odd and letν2 = −1. Then, with

F = (X2 + Y 2)2 + (X2 − Y 2)Z2 + Z4,

the curveV has the two singular pointsP(ν, 1, 0) andP(−ν, 1, 0), which are rational when
q ≡ 1(mod4) but not whenq ≡ −1(mod4).

Let nowF be absolutely irreducible. Also, takeU2 = P(0, 0, 1) and write

F (X, Y, 1) = Fs + Fs+1 + . . . + Fm,

whereFs 6= 0 and eachFi is homogeneous inX andY of degreei. Then,U2 hasmultiplicity
s onV; it is singular ifs > 1 and anordinary singular point ifFs has no repeated factors. The
factors ofFs are thetangentsto V atU2. To find the properties of any other singular point, it is
possible to transform it toU2 by a translation. The multiplicity ofP onV is denoted bymP (V).

A line throughP is said to be atangentto V if it meets the curve with multiplicityk >
mP (V).

We say that a double pointP is anodeif there are exactly two tangents passing through it;
for example, consider the origin for the curve

F = Y 2 −X2 −X3

defined over the reals.

A cuspis a double point at which there is only one tangent; the origin for

F = Y 2 −X3

provides an example.

An isolated double pointis a double point at which the tangents lie in a quadratic extension
of the field, and thus are not visible. As an example we can consider the real curve

F = Y 2 + X2 −X3.

Clearly, there are no isolated double points over algebraically closed fields.
In fact, there are two numbers that need to be distinguished for a (plane) curveV. Let N∗

1

be the number of rational points on a non-singular model, and letR = |V(F )|. In the case that
q = 2 and

F = (X2 + XY + Y 2)Z + X3,

R = 4, N∗
1 = 3. Here,V(F ) = {P(0, 0, 1),P(1, 1, 1),P(1, 0, 1),P(0, 1, 0)}, butP(0, 0, 1) is

an isolated double point; that is, the tangents in it lie overF4; thus, the point is not visible on a
non-singular model.
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Figure 1: Node

The numberN∗
1 is generalised toN∗

i , which is the number ofFqi-rational points on a non-
singular model ofV.

The same definitions applies also to affine curves.

As an example, consider the affine Fermat cubic given by

f = X3 + Y 3 + 1 :

(a) overF2 there are two rational points(0, 1) and(1, 0); hence,N1 = 2;

(b) overF4 := {0, 1, ω, ω2} there are six rational points:

(0, 1), (0, ω), (0, ω2),

(1, 0), (ω, 0), (ω2, 0),

whenceN2 = 6.

Passing to the projective case, we considerf ∗ = X3 + Y 3 + Z3 and we get

(a) N∗
1 = 3;

(b) N∗
2 = 9.

Once the multiplicity of a point on a curve has been defined, it is possible to introduce the
intersection multiplicity of two curves at a point. Here, such number is not shown to exist;
however, effective rules for calculating it are given.

Let V = V(F ) andW = V(G). Then, theintersection multiplicity ofV andW at P ,
denoted byI(P,V ∩W), has the following properties.
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Figure 2: Cusp

I. I(P,V ∩W) = I(P,W ∩ V).

II. (a) I(P,V ∩W) = 0 if P 6∈ V(F ) ∩V(G);

(b) I(P,V ∩W) = ∞ if V andW have a common component throughP ;

(c) I(P,V ∩W) ∈ N otherwise.

III. If τ ∈ PGL(3, q) with Vτ = V ′, Wτ = W ′, P τ = P ′, thenI(P,V ∩W) = I(P ′,V ′ ∩
W ′).

IV. I(P,V ∩ W) ≥ mP (V)mP (W), with equality if and only ifV andW have no common
tangent atP .

V. If F =
∏

F ri
i , G =

∏
G

sj

j , with Fi, Gj forms inFq[X,Y, Z] andVi = V(Fi), Wj =
V(Gj), then

I(P,V ∩W) =
∑
i,j

risjI(P,Vi ∩Wj).

VI. I(P,V ∩W) = I(P,V ∩ H), whereH = V(H), with H = G + EF andE is a form in
Fq[X, Y, Z] such thatdeg E = deg G− deg F ≥ 0.

VII. (B ézout’s theorem) Over an algebraically closed field, ifV of degreem andW of degree
n have no common component, then

∑
P

I(P,V ∩W) = mn.

11



-3

-2

-1

0

1

2

3

y

-1 1 2 3 4
x

Figure 3: Isolated double point

The intersection divisorof V andW is the formal sum

V .W =
∑

P

I(P,V ∩W)P ;

then, we can write Property VII as

deg(V .W) = mn.

In order to calculateI(P,V ∩W), property III is used withP ′ = U2, and then V and VI are
applied till IV can provide a final answer.

As an example consider

F = Y Z −X2 G = Y Z2 −X3.

By VI, the intersection multiplicity ofF andG at any point is the same as that ofG−XF =
Y Z2 −XY Z = Y Z(Z −X) andF . There are no common components throughF andG. By
V, we can consider the intersections ofF with the three components ofG, thus

F.Y = 2(0, 0, 1), F.Z = 2(0, 1, 0), F.(Z −X) = (0, 1, 0) + (1, 1, 1),

whence
F.G = 2(0, 0, 1) + 3(0, 1, 0) + (1, 1, 1)

anddeg(F.G) = 6.
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3.1 Mappings

A regular (or polynomial) map between two curvesF andG is a functionf : F → G defined
by two elementsf1, f2 of the coordinate ring ofF such that

(x, y) ∈ V(F ) → (f1(x, y), f2(x, y)) ∈ V(G).

We say thatφ ∈ K(F ) is definedat a point(x, y) ∈ F if there existf, g ∈ Γ(F ) with
g(x, y) 6= 0 and

φ(x, y) =
f(x, y)

g(x, y)
.

A rational mapφ : F → G is a pairφ1, φ2 ∈ K(F ) such that,if φ1, φ2 are defined at
(x, y) ∈ V(F ), then(φ1(x, y), φ2(x, y)) ∈ V(G).

An isomorphismis a regular map with an inverse regular map.
A birational isomorphismis a rational map with an inverse rational map.
The following results show the relationship between algebraic and geometric structures.

Theorem 3.1.The curveF is isomorphic toG if and only if

Γ(F ) ' Γ(G).

Theorem 3.2.The curveF is birationally isomorphic toG if and only if

K(F ) ' K(G).
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Example 3.3.Let F = X, G = Y −X3 and definef(0, t) = (t, t3). Then,

Γ(F ) = K[X, Y ]/(X) ' K[Y ]

and
Γ(G) = K[X, Y ]/(Y −X3) ' K[X].

The inverse off is f−1(x, y) = (0, x) — clearly this is regular, as well asf is. It follows that

Γ(F ) ' Γ(G)

and the two curves are isomorphic.

Consider nowF = X andG = Y 2−X3 and letf(0, t) = (t2, t3). The functionf is clearly
regular, but the inversef−1(x, y) = (0, y/x) is notat the point(0, 0).

On the other hand,Γ(F ) = K[Y ] andΓ(G) = K[X,Y ]/(Y 2 −X3), whence

K(F ) ' K(Y ).

We can also verify that
K(G) ' K(Y/X) ' K(Y ) ' K(F ),

whence we obtain thatF andG are birationally isomorphic even if not isomorphic.

TheZarisky topologyin PG(2, K) is defined as the topology whoseclosed setsare inter-
section of curves. Using this definition it is possible state the following result.

Theorem 3.4. If φ : PG(2, K) → PG(2, K) is an isomorphism on an open set, thenφ it is a
birational isomorphism ofPG(2, K).

A point P of V(F ) with multiplicity m is anordinary singular pointif m ≥ 2 and the
tangents atP are all distinct.

For example the singular point(0, 0) is ordinary forF = Y 2−X2−X3 in odd characteristic,
but it is not ordinary for the curveF = Y 2 −X3.

Nodes are ordinary singular points, cusps are not.

Theorem 3.5.LetV be a curve inPG(2, K). Then, there exists a birational isomorphismφ of
PG(2, K) such thatφ(V) has only ordinary singular points.

In fact, there exists an algorithm for constructing this birational map: it is based on the use
of projectivities and of the standard quadratic transformation

(x, y, z) → (yz, zx, xy).

Let V be a curve with ordinary singular pointsP1, . . . , Pt of multiplicities s1, . . . , st. The
genusof V is the number

g = g(V) = 1
2
(m− 1)(m− 2)−∑t

i=1
1
2
si(si − 1).

A curveV can be transformed into a curveX , not necessarily plane, with no singular points
at all. Such a curveX is a non-singular modelof V; any two such models are birationally
isomorphic.
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Example 3.6. Let V = {P(1, t, t2, t3) ∈ PG(3, K) : t ∈ K} ∪ {P(0, 0, 0, 1)} be thetwisted
cubic. Then there are three types of chords:

(1) tangent;

(2) bisecant;

(3) 0-secant (that is, a bisecant with two non-rational contact points).

Through every pointP ∈ PG(3, K) \ V there is exactly one chord. We say that the pointP is
of typei if there is a chord of typei through it. Then, the projection ofV throughP is a plane
cubic with:

(a) a cusp ifP is of type (1);

(b) a node ifP is of type (2);

(c) an isolated double point ifP is of type (3).

LetV = V(F ) be a curve inPG(2, K). The points of a non–singular modelX of V are the
placesof V. We say that a placeQ is centredatP if φ(Q) = P , whereφ : X → V .

Any functionφ ∈ K(X ) can be expanded at a simple pointP as a formal power series

φ(t) =
∞∑
i=r

ait
i.

The integerr is called theorder of φ at P and it is denoted by the symbol ordP (φ). A formal
approach to this can be found in [15], pag. 82.

It is always possible to associate a divisor toφ. Roughly speaking, ifφ = f/g then

div(φ) = (φ) = X .f −X .g =
∑

vP (φ)P,

and the valuationvP (φ) coincides with ordP (φ) as defined above. This divisor may be written
as the difference of two effective divisors:(φ)0−(φ)∞. In this expression,(φ)0 is calleddivisor
of zerosand(φ)∞ is thedivisor of polesof φ. A divisorD such that there existsφ ∈ K(X ) with
D = (φ) is principal. All principal divisors have degree0, but the converse is not true. The
quotient group between the group of all the divisors of degree0 and the group of all principal
divisors is denoted by the symbolC(X ). This group plays an important role in the study of
the arithmetic and geometric properties of the curveX . In fact, over an algebraically closed
field, C(X ) is usually denoted by Jac(X ) and has the structure of an algebraic variety with an
Abelian group law. This variety is called theJacobian varietyof X .

Given a curve, we may ask ourselves how many effectiveFq-divisors of a prescribed degree
i there are. LetMi be this number.

As an example, consider again the Fermat cubic overF2. This curve has onlyP0 = (0, 1, 1),
P1 = (1, 0, 1) andP2 = (1, 1, 0) asF2-rational points; let also:

Q0 = (0, 1, ω), Q2
0 = (0, 1, ω2),

15



Q1 = (1, 0, ω), Q2
1 = (1, 0, ω2),

Q2 = (1, ω, 0), Q2
2 = (1, ω2, 0),

whereF4 = {0, 1, ω, ω2}. Then, we have the following:

- Degree 1:P0, P1, P2, henceM1 = 3;

- Degree 2:2P0, P0 + P1, etc. andQ0 + Q2
0, Q1 + Q2

1, etc. for a total ofM2 = 9;

- Degree 3: With similar arguments we getM3 = 21;

- Degreer: we can proveMr = 3(2r − 1).

In order to carry out our project more algebraic tools are needed; in fact, the geometry of
curves is governed by the properties of local rings.

Theorem 3.7.LetR be a local ring that is not a field. Then, the following are equivalent:

(i) the unique maximal idealM in R is principal;

(ii) there existst ∈ R such that ifz ∈ R\{0} thenz = utn for a unique unitu and unique
non-negative integern.

Such a ringR is adiscrete valuation ring(DVR); the elementt is auniformising parameter.
Suppose, in this situation, thatK is a subring ofR isomorphic toR/M .

Theorem 3.8.

(i) For anyz ∈ R, there is a uniqueλ in K such thatz − λ ∈ M .

(ii) For anyn ≥ 0, there are uniqueλ0, λ1, . . . , λn in K andzn ∈ R such that

z = λ0 + λ1t + . . . + λnt
n + zntn+1.

Theorem 3.9.

(i) The pointP on a curveV is simple if and only ifOP (V) is a DVR.

(ii) In this case, the imageL in Γ(V) of a lineL = aX + bY + c that is not a tangent toV at
P is a uniformising parameter forOP (V).

The set of all placesP of a curveV corresponds bijectively to the set of all the maximal
idealsMP of the DVR’s of the curve.

In this more abstract setting, the valuationvP (φ) of a functionφ ∈ OP (V) at a place corre-
sponding to the idealMP can be defined to be the integern such thatφ = uLn whereu is an
unit inOP (V).

In order to findn = vP (φ) for P in (φ)0, we write

φ = uLn;
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to determinen = vP (φ) for P in (φ)∞, we write

1

φ
= uLn.

Example 3.10.Let us consider the Fermat cubic over the fieldF2 and label the set of itsF4-
rational points as follows:

0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 ω ω2

1 ω ω2 1 ω ω2 0 0 0
P0 P1 P2 P3 P4 P5 P6 P7 P8

.

Let φ1 = X
Y +Z

andφ2 = Y
Y +Z

. Then,

div(φ1) = P1 + P2 − 2P0,

div(φ2) = P3 + P4 + P5 − 3P0.

This shows a remarkable property of divisors of functions; in fact,

(1) deg div(φ) = 0;

(2) there is an equivalence relation on DivFq(X ) that is given by

D′ ≡ D ⇐⇒ D′ = D + div(φ)

for someφ ∈ Fq(X ).

Example 3.11.

(Y + Z).F ≡ Y.F ≡ X.F
3P0 ≡ P3 + P4 + P5 ≡ P0 + P1 + P2

Theorem 3.12.Let P be a point on the irreducible curveV with local ringOP and maximal
idealMP . Then, the multiplicitymP of P onV is

mP = dimK

(
MP

n/MP
n+1

)

for all sufficiently largen.
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4 The Riemann–Roch theorem

The aim of this theorem is to count the number of rational functions with poles in a given divisor
D =

∑
nP P . For any divisorD, defineL(D) as

L(D) = {φ ∈ K(X ) : vP (φ) ≥ −nP};
that is,φ ∈ L(D) if and only if div(φ) + D is effective. Clearly,L(D) is a vector space over
the fieldK. We want to compute its dimensionl(D) := dim L(D). This is the same as asking
for the maximal number of linearly independent curves cutting out divisors equivalent toD.

Theorem 4.1 (Riemann).

(i) Given an irreducible curveX , there exists a constantg ≥ 0 such that, for any divisorD,

l(D) ≥ deg D + 1− g.

The smallest suchg is thegenusofX .

(ii) There exists an integerN such that, whendeg D > N ,

l(D) = deg D + 1− g.

(iii) The genusg is a birational invariant.

The Riemann–Roch theorem extends part (i) of Theorem 4.1 by giving explicitly the differ-
ence between the two sides of the inequality. See [11], chapter 2 for the details.

Example 4.2. Consider as usual the Fermat cubicF overF4 and letD = 3P0. Then,φ1, φ2 ∈
L(D) andg = 1; it follows thatl(D) = l(3P0) = 3 + 1− 1 = 3, whence

L(3P0) = 〈1, φ1, φ2〉.

Let D be a divisor and letf0, . . . , fr ∈ L(D) be linearly independent. Then the set of
effective divisors

Dλ = div(
∑

λifi) + D

asλ0, . . . , λr vary inFq is alinear seriesgr
n of degreen anddimensionr. The series iscomplete

if L(D) = 〈f0, . . . , fr〉; this is equivalent to say that there is nogs
n with s > r andgr

n ⊂ gs
n.

A parameter spacefor gr
n is aPG(r, q) given by the bijection

Dλ → (λ0, . . . , λr).

Another way of viewing this is to define

f0 = 1, fi =
Fi

F0

for i ≥ 1

18



for suitable polynomialsF0, . . . , Fr. Then,

Dλ = X .(λ0F0 + . . . + λrFr);

that is, the series iscut outby the family of curvesλ0F0 + . . . + λrFr.
In Example 4.2, the lines of the plane are a linear combination ofY + Z, X andY and cut

out a complete linear seriesg2
3 onF .

For agr
n, we havel(D) − 1 = r, whence we can restate part (ii) of the theorem as follows:

given a complete linear seriesgr
n with n > N ,

r = n− g.

5 Applications to coding theory

It is possible to introduce the following distance function on any vector spaceV : for all x, y in
V , let

d(x, y) := |{i : xi 6= yi}|.
This distance is called theHamming distanceonV .

An [n, k, d]q-linear codeC is a k-dimensional linear subspace of(Fq)
n such that for all

x, y ∈ C with x 6= y we have
d(x, y) ≥ d.

The parameters are as follows:

n is thelengthof C;

k is thedimensionof C;

d is theminimum distanceof C.

The elements ofC are calledwords. Theweightof a word is defined to be the number

w(x) = d(x, 0) = |{i : xi 6= 0}|.

For a linear code, the minimum distance is

d(C) = min
x,y∈Cx6=y

d(x, y) = min
x∈Cx6=0

w(x).

Clearly, not all the parameters are independent.

Theorem 5.1 (Singleton).For a linear [n, k, d]q code,

d ≤ n− k + 1
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We say that a code ise-error correctingif the minimum distanced between its words satis-
fies

d ≥ 2e + 1.

A code is anMDS code(Maximum Distance Separable code) if the Singleton bound is
attained, that is,d = n− k + 1.

Usually a code is good ifn is small and bothk andd are fairly large.
A generator matrixfor C is ak × n matrix whose rows form a basis forC.

Example 5.2.Let

Pk := {f ∈ Fq[T ] : deg f < k} =< 1, T, . . . , T k−1 >;

Fq = {t1, . . . , tq};
C = {(f(t1), . . . , f(tq)) : f ∈ Pk}

Then,n = q anddim C = k. Since there are at mostk − 1 zeros in any word, there are at least
q − (k − 1) non–zeros, hence

d = q − k + 1 = n− k + 1

and the code is MDS. The generator matrixG may be written as

G =




1 1 1 . . . 1
t1 t2 t3 . . . tq
t21 t22 . . . t2q
...

tk−1
1 . . . . . . . . . tk−1

q




.

5.1 Construction of an algebraic geometry code

These codes were found by Goppa in 1981. Let

(1) X be an algebraic curve overFq of genusg;

(2) D = P1 + . . . + Pn be a divisor, where all thePi are rational and distinct;

(3) E = m1Q1+ . . .+mrQr be aFq-divisor whereQj 6= Pi for all i, j; thus,deg E =
∑

mj =
m;

(4) θ be the map

θ :

{
L(E) → (Fq)

n

f → (f(P1), . . . , f(Pn))

(5) C = C(D, E) := imθ = {(f(P1), . . . , f(Pn)) : f ∈ L(E)}.
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Then,C is an[n, k, d]q-code whose parameters satisfy the following conditions.

Theorem 5.3. If n > m > 2g − 2, then

(i) k = m− g + 1;

(ii) d ≥ n−m.

Corollary 5.4.
n− k + 1− g ≤ d ≤ n− k + 1

Proof:

(i) This is the statement of Riemann’s theorem.

(ii) If f ∈ L(E) andw(θ(f)) = d, thenf is zero atn − d pointsPi1 , . . . , Pin−d
forming a

divisor D′ wheredeg D′ = n − d andD′ < D. Now divf + E is effective and noPij

occurs inE; hence,
divf + E > D′.

If we take the degrees of both sides, we obtain now

m > n− d,

as required.

By adding (i) and (ii) we get
k + d ≥ n− g + 1,

whence the corollary follows. ¤

Example 5.5. Let F = X3 + Y 3 + Z3 be the Fermat cubic overF4, and, with the notation of
before,E = 3P0 andD = P1 + . . . + P8. Then, we take as generator matrix

1 1 1 1 1 1 1 1 1
X

Y +Z
0 0 1 ω2 ω 1 ω2 ω

Y
Y +Z

ω ω2 0 0 0 1 1 1
= G.

Hence,n = 8, k = 3, 5 ≤ d ≤ 6. Since row 3 ofG is a word of weight5, it follows that
C(D, E) is an[8, 3, 5]4 code withe = 2.

The relevance of algebraic geometry codes is that it is possible to determine good upper and
lower bounds on their minimum distance.
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6 Number of rational points and Hasse–Weil theorem

AssumeC to be a plane curve of genusg defined overFq, and letX be its non-singular model.
Also, let

(1) Ni be the number of points ofV that are rational overFqi;

(2) Ms be the number of effectiveFq-divisors onV of degrees;

(3) Bj be the number of closed points of degreej.

We define the zeta function ofX as

ζX (T ) =
∑

DivFq
(X )

T deg D = 1 +
∞∑

s=1

MsT
s.

Lemma 6.1.

(i) Ni =
∑

j|i jBj.

(ii) ζX (T ) =
∏∞

j=1(1− T j)−Bj = exp(
∑∞

i=1 NiT
i/i).

Thus, the zeta function encodes information on the number of rational points ofC over any
extension ofFq.

Theorem 6.2. (Hasse–Weil)

ζX (T ) = f(T )/{(1− T )(1− qT )},

where

(i) f(T ) = (1− α1T ) . . . (1− α2gT ) ∈ Z[T ];

(ii) α1, . . . , α2g are complex numbers;

(iii) αjαg+j = q, j = 1, . . . , g;

(iv) |αj| = √
q, j = 1, . . . , 2g.

Corollary 6.3.

(i) Ni = 1 + qi − (αi
1 + . . . + αi

2g);

(ii) |Ni − (1 + qi)| ≤ 2g
√

qi.

Proof:

(i) This follows by taking logarithms of both sides in the theorem.
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(ii) From (i),

|Ni − (1 + qi)| = |αi
1 + . . . + αi

2g|
≤ |αi

1|+ . . . + |αi
2g|

= 2g
√

qi.

¤

Example 6.4.Recall that

log
f(T )

(1− T )(1− qT )
= (c1T + c2T

2 + . . .)

−(c1T + c2T
2 + . . .)/2 + . . .

+(T + T 2/2 + . . .

+(qT + q2T 2/2 + . . .

= (1 + q + c1)T + (1 + q2 + 2c2 − c2
1)T

2/2 + . . .

Hence,N1 = 1 + q + c1, N2 = 1 + q2 + 2c2 − c2
1.

We now consider some special cases:

(1) If g = 0, thenX is either a line or a conic.

ζX (T ) =
1

(1− T )(1− qT )
.

We getc1 = 0, andNi = 1 + qi for all i.

(2) F = X3 + Y 3 + Z3 overF2; then,

ζF (T ) =
1 + c1T + 2T 2

(1− T )(1− 2T )
.

SinceN1 = 3 = 1 + 2 + c1, we getc1 = 0; hence,

log ζF (T ) =
∑

(−1)(j−1)(2T 2)j/j +
∑

T i/i +
∑

(2T )i/i.

This implies that

Nh =





1 + 2h for h odd
1 + 2h + 21+h/2 for h ≡ 2(mod4)
1 + 2h − 21+h/2 for h ≡ 0(mod4)

Corollary 6.5. (i) |N1 − (1 + q)| ≤ 2g
√

q;

(ii) N1 = 1 + q − (α1 + . . . + α2g);

(iii) N2 = 1 + q2 − (α2
1 + . . . + α2

2g).

Corollary 6.6. For a plane non-singular curve of degreed,

|N1 − (1 + q)| ≤ (d− 1)(d− 2)
√

q.
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7 Equality in the Hasse–Weil bound

TheHermitiancurveU2,q is defined by

F = X
√

q+1 + Y
√

q+1 + Z
√

q+1,

whereq is a square. This gives an example of a curveV in which the upper bound in Corollary
6.5(i) is achieved. Here,g = 1

2
(q −√q), whence

q + 1 + 2g
√

q = q + 1 + (q −√q)
√

q = q
√

q + 1 = N1.

Conversely, the curveU ′ = (q2,V(F ), (F )), obtained taking the same equationF overGF (q2)
archives the lower bound on the number of its rational points.

A curveV is maximalif N1 = q + 1 + 2g
√

q. Thus,U2,q is one example.

Theorem 7.1.LetV be a maximal curve. Then, the inverse roots satisfy

αi = −√q

for all i.

Proof: The result follows from Theorem 6.2 (iii) and Corollary 6.5 (ii). ¤
It can also be seen that the zeta function of a maximal curveV is

ζV(T ) =
(1 +

√
qT )2g

(1− T )(1− qT )
;

that of the Hermitian curve is

ζU2(T ) =
(1 +

√
qT )q−√q

(1− T )(1− qT )
.

In fact, the Hasse–Weil theorem provides a good bound whenq is large compared to the
genusg, but it is not so good wheng is large compared toq.

Write Nq(g) := max N1, whereN1 is computed for non–singular curves of genusg overFq

and define

Aq := lim
∑
g→∞

Nq(g)

g
.

From the Hasse–Weil theorem it follows thatAq ≤ b2√qc. However, this can be improved.

Theorem 7.2 (Drinfeld-Vlǎduţ). The parameterAq satisfies

Aq ≤ √
q − 1

with equality forq square.
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8 The Sẗohr–Voloch theorem

In this section we summarise some background material concerning Weierstrass points and
Frobenius orders from Stöhr and Voloch [18].

Let us start by considering what happens in the case of the lines. Theorder sequenceof a
non-singular curveF with respect to the lines at a pointP is given by the three numbers

min I(P, li ∩ F ),

i = 1, 2, 3, where

(1) l1 is an arbitrary line ofPG(2, q);

(2) l2 containsP ;

(3) l3 is the tangentTP .

For example, for the Hermitian curveU2,q the order sequence is

(i) (0, 1,
√

q) if P is not rational;

(ii) (0, 1,
√

q + 1) if P is rational.

In order to count the number of points of a plane curveF , we can consider a family of
curves in the plane meetingF and apply some technique in order to count the intersections of
members of this family with the given curve.

For a general curveF , a point of inflexionis a simple pointP of F such that ifTP is the
tangent atP to F , thenI(P, TP ∩ F ) ≥ 3.

The Hasse–Weil theorem keeps track only of the singularities ofF that turn up in the compu-
tation of the genus; the Stöhr-Voloch theory considers inflexions with respect to a given family
of curves.

The essential idea is as follows: consider the action induced by the morphism

φ : (x, y, z) → (xq, yq, zq)

overFq and letG(X, Y ) = F (X, Y, 1). The curveF is fixed byφ, and so are all itsFq-rational
points. Thus, we have that the set of all theFq-rational points ofF is contained in

{P ∈ V(F ) : φ(P ) = P}.

Write GX := ∂G
∂X

andGY := ∂G
∂Y

; then, the tangent at a pointP = (x0, y0) of F can be written
as

Tp = GX(x0, y0)(X − x0) + GY (x0, y0)(Y − y0).

The following inclusion holds:

{P ∈ F : φ(P ) = P} ⊆ {P ∈ F : φ(P ) ∈ TP}.
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Now letH = (Xq −X)GX + (Y q − Y )GY , in order to be able to write

φ(P ) ∈ TP ⇐⇒ H(x0, y0) = 0,

and consider how the curvesH andG intersect:

HX = (qXq−1 − 1)GX + (Xq − x)GXX + (Y q − Y )GY X

= −GX + (Xq −X)GXX + (Y q − Y )GY X

HY = −GY + (Xq −X)GXY + (Y q − Y )GY Y .

Hence, at a simple rational pointP = (x0, y0) of F ,

HX = −GX , HY = −GY ;

that is, atP the curvesG andH have a common tangent. If we now letn = deg F = deg G
andN1 is the number of rational points ofF , by Bezout’s theorem we obtain that, whenG is
not a component ofH,

(n + q − 1)n = deg H deg G =
∑

I(Q,H ∩G) ≥ 2N1,

whenceN1 ≤ 1
2
n(n + q − 1).

Suppose now thatG dividesH; that is,H = 0 identically, when it is considered as a function
on the points ofG. Then,

(Xq −X)
GX

GY

+ Y q − Y = 0,

and
d2Y

dX2
=

1

G2
Y

[GXXG2
Y − 2GXY GXGY + GY Y G2

X ] = 0.

Thus, it is possible to state the following theorem.

Theorem 8.1. If d2Y
dX2 6= 0, that is, not all points ofF are inflexions, andq is odd, thenN1 ≤

1
2
n(n + q − 1).

The case in which all the points of a curve are inflexions can actually happen.
For example, take a fieldFq with q square and letU = X

√
q+1 + Y

√
q+1 + Z

√
q+1 be the

Hermitian curve. Let alsoP = (x0, y0, z0) ∈ U and letT0 be the tangent atP0 to U . Take
P = (x, y, z) ∈ T0 ∩ U . Then, we have the following:

P0 ∈ U : x
√

q+1
0 + y

√
q+1

0 + z
√

q+1
0 = 0, (1)

x
√

q+q
0 + y

√
q+q

0 + z
√

q+q
0 = 0; (2)

P ∈ T0 : x
√

q
0 x + y

√
q

0 y + z
√

q
0 y = 0; (3)

P ∈ U : x
√

q+1 + y
√

q+1 + z
√

q+1 = 0. (4)

.

Hence, substitutingz from (3) in (4),

(y0x− x0y)
√

q(yq
0x− xq

0y) = 0. (5)

Then, we obtain
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(i) if (x, y) = (x0, y0), from (3),z = z0;

(ii) if (x, y) = (xq
0, y

q
0), thenz = zq

0.

This can be summed up by writing

T0.U =
√

qP0 + P q
0 ;

that is,T0 meetsU once inP q
0 and

√
q times inP0; if P0 isFq-rational, then the number of times

T0 meets the curve atP0 is
√

q + 1; otherwise it is
√

q.
As a consequence, we have that every point ofU (either rational or not) is an inflexion.

Note that this case cannot happen over the complex field, where an Hermitian curve has only9
inflexions (but in this case we are not counting the rational points anyhow!!).

Example 8.2. Let us consider a curve of genusg = 3. Such a curve is birationally isomorphic
to a non-singular plane quartic.

We have the following table

q 3 5 7 9 11 13 17 19
q + 1 + 3[2

√
q] 13 18 23 28 30 35 42 44

2(q + 3) 12 16 20 24 28 32 40 44
Nq(3) 10 16 20 28 28 32 40 44

∗

The case marked by∗ is the one corresponding to the Hermitian curve.

Now we want to generalise this construction.
For a plane curveF whose generic pointP is not an inflexion, the order sequence for lines

is (0, 1, 2). Consider the family of conics in the plane and define an order sequence

(ε0, ε1, ε2, ε3, ε4, ε5).

in the same way as before By considering degenerate conics, the sequence turns out necessarily
to have the form

(0, 1, 2, 3, 4, ε5).

The very same construction can be seen in a slightly more abstract and general way: letα be
the embedding

α :

{
F → PG(5, q)

(x, y, z) → (x2, y2, z2, yz, zx, xy)

This map sends a curve ofPG(2, q) to a curve ofPG(5, q) and transforms the conic of equation

λ0x
2 + λ1y

2 + λ2z
2 + λ3yz + λ4zx + λ5xy = 0

27



into a curve that lies in the hyperplane

λ0X0 + λ1X1 + . . . + λ5X5 = 0.

If F has degreen, then the lines ofPG(3, q) form a linear system of projective dimension2
and cut out a linear seriesg2

n. The conics form a linear system inPG(5, q) of dimension5, thus
cutting out a linear seriesg5

2n — the natural space where to consider the curve and the order
series is hencePG(5, q).

In general a system of dimensionm cuts out agm
d and has order sequence

(ε0, ε1, . . . , εm),

where theεi are the intersection numbers of the families of hyperplanes inPG(m, q) with a
suitable embedding of the curve. On the other hand, ifD is an element of the linear seriesgm

d

and(1, f1

f0
, . . . , fm

f0
) is a basis forL(D), then the embeddingα of F in PG(m, q) is simply given

by (f0, . . . , fm).

In this more general setting the role of the tangent line to the curve has to be replaced by the
osculating hyperplane.

In order to compute theosculating hyperplaneto a curve in a projective space over a field
with finite characteristic it is necessary to use a derivative that “keeps track of the characteristic”.
This is accomplished by theHasse derivativeDt. It is defined as follows:

Dtt
j = jtj−1,

but

D
(2)
t tj =

1

2
j(j − 1)tj−2,

and, likewise,

D
(r)
t tj =

(
j
r

)
tj−r.

Then, the equation of the osculating hyperplaneHQ at a pointQ = α(P ) is
∣∣∣∣∣∣∣∣∣

X0 . . . . . . Xm

D
(j0)
t f0 . . . . . . D

(j0)
t fm

...
D

(jm−1)
t f0 . . . . . . D

(jm−1)
t fm

∣∣∣∣∣∣∣∣∣
= 0,

where(j0, . . . , jm) is the order sequence forP .

Example 8.3 (the twisted cubic).The cubic is parametrised as follows:

(f0, f1, f2, f3) = (1, t, t2, t3)

and
(j0, j1, j2, j3) = (0, 1, 2, 3).
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Hence

Hq =

∣∣∣∣∣∣∣∣

X0 X1 X2 X3

1 t t2 t3

0 1 2t 3t2

0 0 1 3t

∣∣∣∣∣∣∣∣
= t3X0 − 3t2X1 + 3tX2 −X3.

We have alwaysI(Q, HQ ∩ α(F )) = jm. The pointQ is a Weierstrass pointif the order
sequence is not the trivial one, that is:

(j0, . . . , jm) 6= (0, 1, . . . , m).

A curve without Weierstrass points is said to beclassical. Weierstrass points play here the same
role as inflexions in the plane.

As before, we now count the cardinality of the set

{Q ∈ α(F ) : φ(Q) ∈ HQ}
which contains all the rational points.

Let us define

W(ν0,...,νm−1) =

∣∣∣∣∣∣∣∣∣

X0 . . . . . . Xm

D
(ν0)
t f0 . . . . . . D

(ν0)
t fm

...
D

(νm−1)
t f0 . . . . . . D

(νm−1)
t fm

∣∣∣∣∣∣∣∣∣
,

where the numbers(ν0, . . . , νm−1) ⊆ (ε0, . . . , εm) are as small as possible for the rows ofW to
be linearly independent. The sequence(ν0, . . . , νm−1) is called theFrobenius order sequence.

Theorem 8.4. If X is a projective, non-singular algebraic curve of genusg defined overFq

with N1 rational points andgm
d is a linear series onX with no fixed points and Frobenius order

sequence(ν0, . . . , νm−1), then

N1 ≤ 1

m
{(2g − 2)(ν0 + . . . + νm−1) + (q + m)d}.

Example 8.5.

(1) If we consider the Hermitian curve, we haveg =
√

q(
√

q − 1) and the Frobenius order
sequence is(ν0, ν1) = (0,

√
q), whence

N1 ≤ 1

2
{√q(2q − 2

√
q − 2) + (q + 2)(

√
q + 1)} = q

√
q + 1.

(2) If gm
d = g2

n, then

N1 ≤ 1

2
{(2g − 2)ν1 + n(q + 2)},

with ν1 ∈ {1, 2, pv}. If not every point is an inflexion andp > 2, thenν1 = 1 and

N1 ≤ 1

2
n(n− 3 + q + 2) =

1

2
n(n + q − 1).
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(3) If gm
d = g5

2n, then

N1 ≤ 1

5
{(2g − 2)(ν1 + ν2 + ν3 + ν4) + 2n(q + 5)}.

If X is classical forg5
2n, thenνi = i and

N1 ≤ 2

5
n{5(n− 2) + q}.

Some values ofNq(g) for q = ph are known:

Nq(0) = q + 1;

Nq(1) =

{
q + [2

√
q] if h is odd,h ≥ 3 andp | [2√q],

q + 1 + [2
√

q] otherwise.

In fact,q = 128 is the smallestq for which the first possibility holds wheng = 1.
A prime powerq = ph is specialif h is odd and one of the following holds:

(a) p | [2√q];

(b) q = n2 + 1;

(c) q = n2 + n + 1;

(d) q = n2 + n + 2.

Let {M} := M − bMc. Then, ifq is special,

Nq(2) =

{
q + 2[2

√
q] if {2√q} > 1

2
(
√

5− 1),
q − 1 + 2[2

√
q] otherwise.

If q is not special,

Nq(2) =

{
2q + 2 if q = 4, 9,
q + 1 + 2[2

√
q] otherwise.

For q ≤ 128 the only specialq with {2√q} > 1
2
(
√

5− 1) are2,8,128.
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