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Università degli Studi di Brescia, Italy

giorgi@ing.unibs.it , vuk@ing.unibs.it

Abstract

In this work we consider a nonlinear model for the vibrations of a thermoelastic beam
with fixed ends resting on an elastic foundation. The behavior of the related dissipative
system accounts for both the midplane stretching of the beam and the Fourier heat
conduction. The nonlinear term enters the motion equation, only, while the dissipation
is entirely contributed by the heat equation. Under stationary axial load and uniform
external temperature the problem uncouples and the bending equilibria of the beam
satisfy a semilinear equation. For a general axial load p, the existence of a finite/infinite
set of steady states is proved and buckling occurrence is discussed. Finally, long-term
dynamics of solutions and exponential stability of the straight position are scrutinized.

Keywords: Thermoelastic system, hinged beam, steady state solutions,

nonlinear buckling, exponential stability.

1. Introduction.

Our goal is to scrutinize here the following evolution system

(1.1)







∂ttu + ∂xxxxu + ∂xxθ +
(

p − ‖∂xu‖2
L2(0,1)

)

∂xxu = f − k u,

∂tθ − ∂xxθ − ∂xxtu = g,

in the variables u = u(x, t) : [0, 1] × R
+ → R, R

+ = [0,∞), accounting
for the vertical deflection of the beam with respect to its reference config-
uration, and θ = θ(x, t) : [0, 1] × R

+ → R, accounting for the variation of
temperature with respect to its reference value. The real function f = f(x)
is the (given) lateral load distribution, −ku represents the lateral action
effected by the elastic foundation, and g = g(x) is the thermal source. The
real constant p represents the axial force acting in the reference configura-
tion: it is negative when the beam is stretched, positive when compressed.
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Letting x ∈ [0, 1], the initial condition reads

(1.2) u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), θ(x, 0) = θ0(x).

A Dirichlet boundary condition is assumed for the temperature variation,

θ(0, t) = θ(1, t) = 0 , t ∈ [0, T ] ,

and both ends of the beam are assumed to be hinged,

(1.3) u(0, t) = u(1, t) = ∂xxu(0, t) = ∂xxu(1, t) = 0 , t ∈ [0, T ] .

The solutions to problem (1.1)-(1.3) describe the mechanical and thermal
evolution (in the transversal direction) of an hinged extensible thermoelastic
beam of unitary natural length resting on an adiabatic elastic foundation.
The geometric nonlinearity which is involved accounts for midplane stretch-
ing due to the elongation of the beam (see [4] for a rigorous derivation).

The static counterpart of (1.1)-(1.3) reduces to an uncoupled system,
and stationary solutions (ũ(x), θ̃(x)) can be obtained by solving separately

{

u′′′′ +
(

p −
∫ 1
0 |u′(ξ, ·)|2dξ

)

u′′ + k u = f + g,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.4)

{

θ′′ = −g,

θ(0) = θ(1) = 0.
(1.5)

The investigation of the solutions to (1.4), in dependence on p, represents a
classical nonlinear buckling problem in the structural mechanics literature.
In the case k = 0, a careful analysis of the corresponding buckled stationary
states was performed in [2] for all values of p in the presence of a source
f + g with a general shape. When f = g = 0, see also [8,9]. For every k > 0
and vanishing sources exact solutions to (1.4) can be found in [1].

In recent years, an increasing attention was payed on the analysis of
vibrations and post-buckling dynamics of nonlinear beam models, especially
in connection with industrial applications of micromachined beams [3] and
microbridges [7]. Unfortunately, most of the paper in the literature deal
with the isothermal case, only. Unlike purely mechanical devices, in (1.1)
the critical parameter p depends on the thermal expansion, besides on the
given axial load, so that the buckling behavior is affected by the mean
axial temperature even in the static case (see [4]). Then, under suitable
heating conditions, buckling can occur in a thermoelastic beam even if the
axial displacements of the ends vanish (thermal buckling). This is a relevant
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phenomenon in a lot of beam-like metallic structures exposed to the sun
heating, such as edge rails, for instance.

The global dynamics of (1.1) with k = 0 has been addressed in [5], where
the existence of the global attractor and its optimal regularity is obtained. A
related problem, dealing with purely mechanical vibrations of an extensible
viscoelastic beam, has been studied in [6]. In all these papers the exponential
decay of the energy for the homogeneous problem is provided when the axial
load p does not exceed pc, the Euler buckling load, so that the null solution
is both unique and exponentially stable. On the contrary, as p > pc the
straight position loses stability and the beam buckles. In this case, a finite
number of buckled solutions occurs and the global (exponential) attractor
coincides with the unstable trajectories connecting them.

At a first sight, the case k > 0 looks like a slight modification of previ-
ously scrutinized models where k vanishes. This is partially true, but sim-
ilarities are confined to the static case. Indeed, the restoring elastic force
−ku opposes the buckling phenomenon and increases the critical value pc,
which turns out to be a piecewise linear function of k. In particular, when
f and g vanish, the null solution is unique provided that p ≤ pc(k) (see
Theorem 3.2). On the contrary, the (unique) null solution to (1.1) is not
exponentially stable for all values p < pc(k), as it occurs when k = 0.
Quite surprisingly, for large values of k, let say k > k0, the energy decays
with a sub-exponential rate when p̄(k) < p < pc(k) (see Theorem 4.1), and
p̄(k) = pc(k) only if 0 ≤ k ≤ λ1 (λ1 is the first eigenvalue of ∂xxxx). A
similar result has been recently obtained for purely mechanical vibrations
of an extensible elastic beam resting on a viscoelastic foundation [1].

Finally, we remark that our analysis is carried over an abstract version
(independent of the space dimension) of the original problem, so it could
be extended to scrutinize stability even in a thermoelastic plate model.

2. The abstract problem

We will consider an abstract version of problem (1.1). To this aim, let H0 be
a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and
‖·‖, respectively. Let A : D(A) ⋐ H0 → H0 be a strictly positive selfadjoint
operator. We denote by λn, with n = 1, 2, . . ., the strictly positive (possibly
finite) increasing sequence of the distinct eigenvalues of A. For ℓ ∈ R, we
introduce the scale of Hilbert spaces

Hℓ = D(Aℓ/4), 〈u, v〉ℓ = 〈Aℓ/4u,Aℓ/4v〉, ‖u‖ℓ = ‖Aℓ/4u‖.

Then, Hℓ+1 ⋐ Hℓ and the following scale of Poincaré inequalities holds

(2.1)
√

λ1 ‖u‖2
ℓ ≤ ‖u‖2

ℓ+1,
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where λ1 > 0 is the first eigenvalue of A. Finally, we define the product
Hilbert spaces

Hℓ = Hℓ+2 × Hℓ × Hℓ.

For p ∈ R, k > 0 and f, g ∈ H0, we investigate the evolution system on H0

in the unknowns u(t) : [0,∞) → H2 and ∂tu(t), θ(t) : [0,∞) → H0

(2.2)

{

∂ttu + Au − A1/2θ −
(

p − ‖u‖2
1

)

A1/2u + ku = f,

∂tθ + A1/2θ + A1/2∂tu = g,

with initial conditions

(2.3) (u(0), ∂tu(0), θ(0)) = (u0, u1, θ0) = z ∈ H0.

In the sequel z(t) = (u(t), ∂tu(t), θ(t)) will denote the solution. System (2.2)
generates a strongly continuous semigroup (or dynamical system) S(t) on
H0. For any initial data z ∈ H0, z(t) = S(t)z is the unique weak solution
to (2.2), with related energy given by

(2.4) E(t) =
1

2
‖S(t)z‖2

H0
=

1

2

(

‖u(t)‖2
2 + ‖∂tu(t)‖2 + ‖θ(t)‖2

)

.

Besides, S(t) continuously depends on the initial data. We omit the proof,
which can be demonstrated either by means of a Galerkin procedure, or
with a standard fixed point method. In both cases, it is crucial to have
uniform estimates on any finite time-interval.

Remark 2.1. Problem (1.1)–(1.3) is just a particular case of the abstract
system (2.2), obtained by setting H0 = L2(0, 1) and A = ∂xxxx with the
boundary condition (1.3). Nonetheless, the abstract result applies to more
general situations, including, for instance, thermoelastic plates.

The differential operator ∂xxxx acting on L2(0, 1) is strictly positive selfad-
joint with compact inverse. Its domain is

D(∂xxxx) = {w ∈ H4(0, 1) : w(0) = w(1) = w′′(0) = w′′(1) = 0}
and its discrete spectrum is given by λn = n4π4, n ∈ N. Thus, λ1 = π4 is
the smallest eigenvalue. Besides, the peculiar relation (∂xxxx)

1/2 = −∂xx

holds true, with D(−∂xx) = H2(0, 1) ∩ H1
0 (0, 1).

3. Stationary solutions

Assuming f, g ∈ H0, in the sequel we characterize the set S of all sta-
tionary solutions (ũ, θ̃) to the problem

(3.1)

{

Au −
(

p − ‖u‖2
1

)

A1/2u + ku = f + g,

A1/2θ = g ,
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which is the abstract version of (1.4)-(1.5).

Steady temperature distributions. First, we easily obtain the following

Theorem 3.1. For any g ∈ H0 the steady heat equation (3.1)2 has a unique

solution θ̃ ∈ D(A1/2) that vanishes when g = 0. In the particular case (1.5)

θ̃(x) =

∫ x

0

[

G −
∫ ξ

0
g(η) dη

]

dξ , G =

∫ 1

0

∫ ξ

0
g(ζ) dζdξ .

Steady deflections. Letting B = A−1/2(A + kI) we can rewrite (3.1)1 as

(3.2) Bu −
(

p − ‖u‖2
1

)

u = h,

where h ∈ D(A1/2) solves the problem A1/2h = f + g. Because of our
assumptions on A, B is a strictly positive selfadjoint operator for every
fixed k > 0. We denote by µn, with n = 1, 2, . . ., the strictly positive
sequence of the distinct eigenvalues of B, which are given by

(3.3) µn =
√

λn + k/
√

λn.

Moreover, A and B have the same eigenvectors and D(A1/2) ⊂ D(B). Let En

the eigenspace corresponding to µn (λn), with finite orthogonal dimension
dim(En) = dn. For every n, let en,i, with i ∈ {1, . . . , dn}, be an orthonormal
basis of En. In particular, the equalities

Aqen,i = λq
nen,i , Bqen,i = µq

nen,i ,

hold for every q ∈ R. We introduce the subset of the natural numbers
(depending on the given value of p in (3.2))

Sp =
{

n : p − µn > 0
}

.

and we assume that |Sp| (the cardinality of Sp) is finite for every p ∈ R.

Remark 3.1. Due to the structure of the equation (3.2), if h ∈ H0, then
ũ ∈ H2 and so it is a solution in the strong sense. Moreover, if h ∈ D(A1/2)
then ũ ∈ D(A) and solves (3.1)1 in the strong sense with f ∈ H0. Such
regular solutions represents the stationary deflection states of the beam.

Our aim is to analyze the multiplicity of solutions to (3.2). In particular,
we will show that there is always at least one solution, and at most a finite
number of solutions, whenever the eigenvalues not exceeding p are simple.
First, we scrutinize the homogeneous case. For the abstract problem, we
can parallel the proofs of Th. 4.1 and Remark 4.2 in [2].
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Theorem 3.2. Let h = 0 and n∗ = |Sp|. Given k > 0, if there exists an

eigenvalue µn of B which is not simple for some n ∈ Sp, then (3.2) has

infinitely many solutions. Otherwise, it has exactly 2n⋆ + 1 solutions:

ũ0 = 0 and ũ±
n = C±

n en,1, for every n ∈ Sp ,

where

C±
n = ±

√

(p − µn)/
√

λn .

Proof. If n ∈ Sp and dn > 1, then any u ∈ En satisfying ‖u‖2
1 = p − µn is

a solution to (3.2). Clearly, there are infinitely many such u, given by

ũ =
∑

i

uiei,n, ui ∈ R,

such that
∑

i

u2
i =

1√
λn

(p − µn).

Assume then that µn is simple whenever n ∈ Sp. Obviously, ũ = 0 is a
solution. Let us look for a nontrivial solution ũ. Setting

(3.4) ν = −p + ‖ũ‖2
1,

such ũ solves Aũ + νũ = 0. Hence, ν = −µn, ũ = Cen,1, for some C 6= 0.
In particular, ‖ũ‖2

1 = C2
√

λn. The value C is determined by (3.4), which
yields the relation

C2
√

λn = p − µn.

Therefore, we have nontrivial solutions if and only if n ∈ Sp. Namely, there
are exactly 2n⋆ nontrivial solutions, explicitly computed.

The homogeneous case of the physical model (1.4) has been scrutinized
in Th. 2.2 of [1]. There, the eigenvalues of B are proved to be

µn = n2π2 + k/n2π2, n ∈ N, k > 0,

which are all simple and increasingly ordered provided that k < 4π4. The
corresponding eigenvectors are en(x) =

√
2 sin nπx with dn = 1. On the

contrary, µn = µm, n 6= m, when k = n2m2π4 (resonant values) and

min
n∈N

µn = µnk
, nk ∈ N : (nk − 1)2n2

k ≤ k/π4 < n2
k(nk + 1)2 .

Moreover, Sp =
{

n ∈ N : n4π2 + k/π2 < pn2
}

. In the sequel we denote

pc(k) = min
n∈N

µn, R = {ρ : ρ = n2m2π4, n,m ∈ N,m < n} .
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When k ∈ R, there exists at least an eigenvalue of B which is not simple.
Let µm be the smallest one. According to Th. 3.2, if m ∈ Sp system (1.4)
with h = 0 has infinitely many solutions. Otherwise, it has at most 2n⋆ + 1
solutions: when p ≤ pc(k) there is only the null (straight) solution. If p >
pc(k), then besides the null solution there are also 2n⋆ buckled solutions,

ũ±
n (x) = ±

√
2

n π

√

p − k

n2π2
− n2π2 sin nπx , n = 1, 2, . . . , n⋆.

Remark 3.2. Assuming k = 0, we recover the results of [8,9].

0 π2 + k

π2
π2

4π2 + k

4π2 9π2 + k

9π2 p

u+
1 u+

2

u−

1

u−

2

A+
1

A+
2

A−

1

A−

2

A

Fig. 1. The static response of the beam when k < 4π4.

In the nonhomogeneous case, the picture is more complicated, and the
shape of h = f + g plays a crucial role (see for instance [2]). In essence, if
there is an eigenvalue exceeding p, whose multiplicity is greater than one,
then infinite solutions may appear, unless the projection of the external
source h = f + g on the relative eigenspace is not zero.

In order to prove this behavior, we take advantage of the following

Definition 3.1. Let h ∈ H−1. A function ũ ∈ H1 is a solution to (3.2) if

〈B1/2ũ, B1/2w〉 −
(

p − ‖ũ‖2
1

)

〈ũ, w〉 = 〈B−1/2h,B1/2w〉,
for every w ∈ H1. In fact, H1 = D(A1/4) ⊂ D(B1/2).

Let us set hn,i = 〈B−1/2h,B1/2en,i〉. Besides, hn,i 6= 0 for some n and some
i, otherwise h = 0. We define

Qj =
∑

n 6=j, i

√
λn h2

n,i

(µn − µj)2
, j ∈ N.
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Theorem 3.3. Let h 6= 0 and k > 0. Along with n⋆ = |Sp|, we define

j⋆ =
∣

∣

{

j ∈ N : p − µj > 0, Qj < p − µj , Pjh = 0
}
∣

∣,

j0
⋆ =

∣

∣

{

j ∈ N : p − µj > 0, Qj = p − µj , Pjh = 0
}∣

∣,

where Pn is the projection of H−1 onto En. Then, (3.2) has infinitely many

solutions if and only if the conditions

dj > 1 , Pjh = 0 , Qj < p − µj

simultaneously hold for some j. Otherwise, (3.2) has m⋆ solutions, with

1 ≤ m⋆ ≤ 2n⋆ + 2j⋆ + j0
⋆ + 1.

Proof. The proof is carried out by paralleling Th. 5.1 of [2]. First, we set

(3.5) ν = −p + ‖ũ‖2
1,

which, since ũ = 0 is not a solution anymore, yields the constraint

(3.6) p + ν > 0.

Writing ũ =
∑

n,i un,ien,i, with un,i = 〈ũ, en,i〉, we have

‖ũ‖2
1 =

∑

n,i

√

λnu2
n,i.

Thus, (3.5) turns into

(3.7) ν = −p +
∑

n,i

√

λnu2
n,i.

Projecting (3.2) on the orthonormal basis, we obtain, for every n, i,

(3.8) (µn + ν)un,i = hn,i.

The solution ũ is known once we determine all the coefficients un,i.

• We begin to look for solutions ũ for which ν 6= −µn, for all n. In that
case the coefficients un,i are uniquely determined by (3.8) as

(3.9) un,i =
hn,i

µn + ν
.

Setting

Φ(ν) =
∑

n,i

√
λnh2

n,i

(µn + ν)2
,
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we plug (3.9) into (3.7). Recalling (3.6), we realize at once that the admis-
sible values of ν are the solutions to the equation

(3.10) Λ(ν) = −p − ν + Φ(ν) = 0,

in D = (−p,+∞) \ {−µn}. The set D is the union (empty if n⋆ = 0) of n⋆

bounded open interval In and of the open interval I0 = (α,+∞), where

α =







inf
n∈S

−µn if n⋆ > 0,

−p if n⋆ = 0.

For every ν ∈ D, we have

Λ′′(ν) = Φ′′(ν) = 6
∑

n,i

√
λnh2

n,i

(µn + ν)4
> 0.

Thus, Λ is strictly convex on each In ⊂ D, n ∈ {1, ..., n⋆}. Hence, the
equation Λ(µ) = 0 can have at most two solutions on each In. In the
unbounded interval I0, the function Λ is strictly decreasing. Moreover, since
Φ(∞) = 0, then limν→+∞ Λ(ν) = −∞, and

lim
ν→α+

Λ(ν) =

{

+∞ if n⋆ > 0,

Φ(−p) > 0 if n⋆ = 0.

So, we conclude that there is exactly one solution in I0. Summarizing, the
equation Λ(ν) = 0, and then (3.2), has at least one solution and at most
2n⋆ + 1 solutions with the property that ν 6= −µn. Indeed, for every ν ∈ D
such that Λ(ν) = 0, the vector ũ with Fourier coefficients given by (3.9)
belongs to H1. By virtue of (3.3), this is guaranteed by the convergence
of the series Φ(ν), since ν cannot accumulate −µn and the assumption
h ∈ H−1 translates into the summability conditions

∑

n,i

√
λn

µ2
n

h2
n,i ≤

∑

n,i

1

µn
h2

n,i ≤
∑

n,i

1√
λn

h2
n,i < ∞.

• Next, we look for solutions ũ such that ν = −µj, for some given j.
We preliminarily observe that, due to (3.6), if p − µj 6∈ (0,+∞), no such
solutions exist. In the other case, for n 6= j, the values un,i are fixed by
(3.9) with ν = −µj. We are left to determine the values uj,i. But (3.7) now
reads

µj

∑

i

u2
j,i + Qj = p − µj .

9
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Therefore, we have no solutions whenever Qj > p − µj. Assume then that
Qj ≤ p − µj. From (3.8), we have no solutions unless hj,i = Pih = 0 for
all i. In which case, we have only the trivial solution (uj,i = 0 for all i) if
Qj = p − µj. On the other hand, if Qj < p − µj, we have two solutions
provided that dj = 1, corresponding to

u±
j,1 = ±

√

(p − µj − Qj)/
√

λj ,

and infinitely many solutions if dj > 1.

4. Exponential Stability

Recalling Theorems 3.1 and 3.2, when f = g = 0 the set S0 of stationary
solutions to (1.1) reduces to the singleton of the null pair provided that

(4.1) p ≤ pc(k) = min
n∈N

µn, k > 0.

In spite of this, we shall prove that the energy E(t), given by (2.4), does
not decay exponentially for all values of p and k which satisfy (4.1), but in
a smaller range. For futher purposes, we define

p̄(k) =







2
√

k, k > λ1

pc(k), 0 < k ≤ λ1.

Lemma 4.1 (see [1], Lemma 4.1). Let p ∈ R, k > 0 and denote

Lu = Au − p A1/2u + k u .

Provided that p < p̄(k), there exists a positive function ν =ν(p, k) such that

〈Lu , u〉 = ‖u‖2
2 − p ‖u‖2

1 + k ‖u‖2 ≥ ν ‖u‖2
2 .

For all p ∈ R and k > 0 the positive functional

L(t) = E(t) +
k

2
‖u(t)‖2 +

1

4

(

‖u(t)‖2
1 − p

)2

is a Lyapunov functional for S(t). It is an easy matter to show (see [5])

(4.3)
d

dt
L(t) + ‖θ(t)‖2

1 = 0

and this ensures a stability result relative to the energy norm. Indeed,

L(S(t)z) ≤ L(z) =
1

2
‖z‖2

H0
+

k

2
‖u0‖2 +

1

4

(

‖u0‖2
1 − p

)2
.
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Then, given R > 0, if we consider initial data z ∈ H0 such that ‖z‖H0
≤ R,

the previous inequality provides

(4.4) E(t) ≤ L(t) ≤ C,

where C depends (increasingly) only on R, besides on the structural quan-
tities p and k. We are now in a position to prove the following result.

Theorem 4.1. When f = g = 0, the solutions to (2.2) decay exponentially,

E(t) ≤ E(0) e−ct

for some c > 0, provided that p < p̄(k).

Proof. Let Φ be defined as

Φ(t) = L(t) − 1

4
p2 +

ε

2
〈∂tu(t) , u(t)〉 + ε〈∂tu(t), θ(t)〉−1.

In view of applying Lemma 4.1, we note that

Φ =
1

2

(

〈Lu , u〉 + ‖θ‖2 + ‖∂tu‖2
)

+
1

4
‖u‖4

1 +
ε

2
〈∂tu, u〉 + ε〈∂tu, θ〉−1.

Then, Φ is equivalent to E . Indeed, from (4.4) we have

‖u‖4
1 ≤ C‖u‖2

1 ≤ CE ,

and by virtue of Lemma 4.1 we can easily obtain

c E ≤ Φ ≤ CE ,

for some c = c(p, k), provided that ε is small enough and p < p̄(k). So, in
the sequel it is enough to prove the exponential decay of Φ. To this aim,
exploiting (2.2) with f = g = 0, we have the equality

d

dt
Φ + εΦ +

ε

4
‖u‖4

1 + ‖θ‖2
1 =

3ε

2
‖θ‖2 +

ε

2

[

2(p − ‖u‖2
1)〈u, θ〉(4.6)

− 〈u, θ〉1 − 2〈∂tu, θ〉 − 2k〈u, θ〉−1 + 2ε〈∂tu, θ〉−1 + ε〈∂tu, u〉
]

.

Exploiting the inequalities

ε〈∂tu, u〉 ≤ ν‖∂tu‖2 +
ε2

4νλ1
‖u‖2

2

2ε〈∂tu, θ〉−1 ≤ ν‖∂tu‖2 +
ε2

νλ1
‖θ‖2

2〈∂tu, θ〉 ≤
√

ν‖∂tu‖2 +
1√
ν
‖θ‖2

〈u, θ〉ℓ ≤ ‖u‖2‖θ‖2(ℓ−1) ≤
√

ν‖u‖2
2 +

λℓ−1
1

4
√

ν
‖θ‖2 , ℓ = −1, 0, 1,
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and choosing ν = ε, from (4.4) and (4.6) it follows

d

dt
Φ + εΦ + ‖θ‖2

1 ≤ 1

2

(

ε2

λ1
+ 3ε +

C1
√

ε

4λ2
1

)

‖θ‖2

+
ε

2

[

(2ε +
√

ε)‖∂tu‖2 +

(

ε

4λ1
+ C2

√
ε

)

‖u‖2
2

]

,

where C1 = 5λ2
1 + 2k + 2|p|λ1 + 4C

√
λ1 and C2 = 2|p| + 1 + 2k + 4C/

√
λ1.

Finally, applying the inequality

1

2
A(ε)‖θ‖2 − ‖θ‖2

1 ≤ −
(

1 − A(ε)

2
√

λ1

)

‖θ‖2
1

and choosing ε as small as needed, we obtain

d

dt
Φ + εΦ +

1

2
‖θ‖2

1 ≤ ε

2
c E ≤ ε

2
Φ

which in turn implies by the Gronwall Lemma

Φ(t) ≤ Φ(0) e−
ε

2
t.
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