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ABSTRACT The first well documented experiments of Near Infrared Vibrational Cir-
cular Dichroism (NIR-VCD) were performed around 1975. We review the thirty year his-
tory of NIR-VCD, encompassing both instrumental development and theoretical/computa-
tional methods that allow interpretation of experimental spectra, harvesting useful struc-
tural information therefrom. We hope to stimulate interest in this still scarcely explored
spectroscopy of chiral molecules. Chirality 21:S242–S252, 2009. VVC 2009Wiley-Liss, Inc.
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INTRODUCTION

Near Infrared (NIR) absorption spectroscopy has
emerged during the last 25 years as one of the most useful
and indeed used techniques for quality control, process
and analytical controls in various industries,1 such as phar-
maceutical and food industry. In the industrial application
of this technique, dedicated commercial analyzers are
employed and NIR spectra are not interpreted at molecular
level but are elaborated with statistical tools. In parallel
and independently, the local mode interpretation of NIR
and visible vibrational absorption spectra has provided a
first grip onto the fundamental mechanisms governing
vibrational overtone absorption of light2–5; recently, an
interesting application of the latter studies has been pro-
vided in the investigation of the earth atmosphere.6

In the same years, Circular Dichroism (CD) and in par-
ticular Vibrational Circular Dichroism (VCD), which is CD
due to vibrational transitions in the IR range, has demon-
strated quite efficacious in the study of configurational and
conformational properties of chiral molecules. CD is the
form of spectroscopy that studies the difference in the
absorption of left and right circularly polarized light as
function of wavelength (or wavenumber). VCD measure-
ments in the NIR range were also effected in this period:
we mention in particular the much cited work of Keiderl-
ing and Stephens in 1976,7 reporting data relative to the
first CH stretching overtone and to the first CH stretch-
ing/HCH bending combinations. Since then several other
experiments have been performed, not in many labs
though, and higher overtones have been investigated too.

We review here for the first time the experimental
work. We hope in this way that the industrial labs men-
tioned at the beginning of this article will find NIR-VCD an

interesting technique, and will give the needed impulse to
this form of spectroscopy. They should become convinced
that this new spectroscopy allows study of ‘‘dark’’ com-
pounds, that is to say those with no UV-Vis chromophore,
with chirality embedded. NIR-VCD may prove advanta-
geous also because of easy sample preparation. So far just
liquids and solutions have been examined in normal
quartz cuvettes, in contrast to what happens in IR-VCD,
where minimal quantities of substance have to be used
with very difficult-to-handle cells. In the future, solid sam-
ples or pellets should also be considered, as it is being
increasingly requested by the food industry and by the
pharma industry. In part III of the manuscript we consider
also the status of theory and calculations, especially those
employing ab-initio methods, that permit attainment of a
full understanding of the vibrational features and their
manifestation in NIR-VCD. Only with reliable calculations
of the predicted spectra one could use data to gain infor-
mation on Absolute Configuration and/or Molecular Con-
formations, as already practiced in mid-IR VCD.

EXPERIMENTS

The modern standard approach to CD originated with
the introduction of the circular polarization modulator,
which was patented in France in 1960.8 The materials
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used in this device, the Pockels cell modulator, KDP (5
KH2PO4) and ADP (5 NH4H2PO4), restricted the wave-
length range to the UV-Vis region, since the high voltage
necessary to obtain quarter-wave retardation in the NIR
would destroy the crystal.

NIR CD was first measured by Abu-Shumays and Cook9

and by Eaton and Lovenberg10 in 1970 with homemade
dedicated instruments and by more conventional
approaches. They made use of the rotating polarizer Fres-
nel crystal system, first applied in Norwich11 by modifying
a commercial double-beam UV-Vis-NIR spectrophotometer,
with differently oriented polarizers and Fresnel prisms or
mica retardation plates. The first three NIR-extended CD
spectrometers based on the use of photoelastic modulators
(PEM), which were able to provide quarter-wave retarda-
tion over the whole range, were announced almost simulta-
neously (1972) in Paris,12 Chicago13 and Los Angeles.14 All
these units contained a rotating chopper to further modu-
late the light beam as required by IR detectors; the first two
were targeted at CD in the standard IR (VCD), whereas the
last one was developed mainly for measuring Magnetic Cir-
cular Dichroism (MCD) of electronic transitions. The first
vibrational CH-stretching overtone CD measurements were
reported in 19767 and were obtained with a modified ver-
sion of this last instrument. The following years have seen
other units proposed in the US15 and in Japan.16 The instru-
ment assembled in Japan was a prototype; subsequently
made into a commercial unit by JASCO and named J-200D,
it was sold worldwide mainly for MCD applications. With a
spectrometer of this type the second and third vibrational
CH-stretching overtones were measured in 1989.17 We
wish to mention that for the latter instrument two detectors,
a regular photomultiplier tube and a liquid N2-cooled InSb
detector, allowed coverage of the 2000–500 nm range.

The third article dealing with CH-stretching overtone
CD appeared in 1994, using a homemade unit based on a
Ti-sapphire tunable laser.18 Several other NIR CD spec-
trometers, mainly oriented to MCD applications, were pre-
sented in those years, and we just wish to mention the syn-
chrotron based unit developed at Brookaven, New York.19

In 2002 a system was assembled in Brescia, Italy20; this
unit, still at work today, is based on a JASCO J-500 elec-
tronics coupled with a low-cost grating monochromator

from Optometrics, and uses an InGaAs diode detector
with no need to employ a chopper to modulate the light.
Figure 1 shows the schematic optical diagram, a very im-
portant feature of which is a compartment (denoted ‘‘1’’)
that provides the possibility of getting artifact-free base-
lines, by placing the sample before the PEM, as originally
suggested by Chabay.21 This feature is indeed very effec-
tive in removing experimental artifacts.

NIR-VCD spectrometers considered so far (apart from
the tunable laser-based one) were all of the dispersive
type, i.e. they employed monochromators to vary the mea-
surement wavelength. The design of all these types of
instruments is similar. Differences may arise in the use of
detectors, linear polarizers and PEMs, depending on wave-
length range, which are summarized for relevant compo-
nents are reported in Figure 2.

In the last 30 yr several VCD apparatuses have been
proposed using interferometers and Fourier Transform
techniques for the mid-IR range (800–2000 cm21) (FTIR).
Today all commercially available VCD spectrometers are
based on the FTIR approach. As a consequence, success-
ful attempts were performed to extend the range of the
FT-based VCD units toward the NIR range to collect high
quality CD spectra of overtones.22–24 Whether most of the
well known advantages of FT are really relevant in the
NIR region is an open question (the wavelength calibra-
tion assured by the automatically taken laser interfero-
gram is substantial, but not exhaustive).

We list here few pros and cons, for the two techniques,
based on the results from the two apparatuses located in
Brescia, Italy, and in Syracuse, New York (referring to
Refs. 22–24 for the latter one). The FT-NIR instrument cov-
ers continuously the 800–10,000 cm21 range (but requires
changes of the detectors and a bit of alignment as well to
achieve the full range), the resolution can be pushed
down to few wavenumbers, and the signal-to-noise ratio
looks generally better than with dispersive instruments
(except above ca. 9000 cm21), because of the possibility of
fast acquisition and of averaging over large numbers of
spectra. In contrast, since most NIR-VCD analyses are lim-
ited to small wavelength/wavenumber ranges, acquisition
times are shorter in the dispersive modality and this may
be important for the applications summarized in the Intro-

Fig. 1. Scheme of the apparatus for measuring NIR-VCD in Brescia.
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duction. In principle, the dispersive apparatuses allow for
better use of long pathlength cells, which frequently need
to be employed in the NIR. Indeed, in the FT-NIR case
one is often limited by the geometry of the output beam
being either divergent or too convergent, because of the
use of low f/# optics. The use of very long pathlength cells
is imperative for measuring NIR-VCD spectra for Dv � 4
CH-stretching modes. At Dv 5 4 (ca. 900 nm, ca. 11,000
cm21) no FT-NIR VCD spectra have been reported yet,
whereas a few examples exist from the dispersive
approach17,20 and even the Dv 5 5 CH-streching overtone
(ca. 760 nm, ca. 13,000 cm21) was successfully investi-
gated25 and recently confirmed for Limonene on the Jasco
J-815SE apparatus in Brescia, employing a 19 cm path-
length cell (data not reported). To get a practical idea for
the FT/dispersive comparison over a wavelength range
where both types of instruments are operative, we provide
in Figure 3 the NIR-VCD spectra of camphor, a compound
with not too large VCD. Here spectra were taken from Ref.
24 for the FT-NIR technique and from Ref. 26 for the dis-
persive technique.

Although all the advantages of the interferometric tech-
nique are valid in principle over all wavelength ranges,
actually there is little practical applications of this aspect of
interferometry in the UV-Vis. Besides, we observe that dis-
persive NIR spectrophotometers are still sold by many
manufacturers, even by those offering also FTIR instru-
ments. It is perhaps useful to mention that the way in

which the circularly polarized light is produced and
employed in FT-NIR instruments is the same as in disper-
sive NIR instruments.

Fig. 2. Schematic representation of the various optical elements needed for the various NIR ranges with the indication of the manufacturing materials.

Fig. 3. Comparison of FT and dispersive NIR absorption and NIR-VCD
spectra for Camphor in the CH-stretching Dv 5 3 region. In the left panel
we report data elaborated from Ref. 24 and on the right panel the data
obtained with a dispersive instrument.26 The FT-NIR data top trace is the
noise evaluated by subtraction of identical blocks of VCD data taken at
successive times (see Ref. 24). The FT-NIR VCD spectrum is just for the
(1R)-enantiomer. The dispersive VCD data are for both enantiomers and
we give also their arithmetic average as an evaluation of baseline and
noise. As for the acquisition times, see Refs. 24 and 26.
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Other possible approaches include the use of acousto-
optical tuning filters, as real alternatives to conventional
monochromators or interferometers: recent examples27,28

appeared in the literature, reporting overtone ORD spectra
of Camphor.

Let us list below the currently commercially available
NIR CD instruments, according to the two categories dis-
cussed above: dispersive type (based on monochromators)
and FTIR type (built around a Michelson interferometer).
To the first category belongs the JASCO J-730 system
(equipped with halogen source, grating monochromator,
chopper, quartz PEM, and liquid N2-cooled InSb detector:
see www.jascoinc.com) and the Olis systems (equipped
with Xenon source, multiple grating monochromators or
prism-grating monochromators, quartz PEM, dual beam
optics, and a pair of InGaAs detectors: see www.olisweb.-
com). To the FT/NIR category belong different tailor-made
variants (single or double PEM) from Bomem Bio-Tools
(see www.btools.com) and dedicated NIR-CD accessories
from Bruker (see www.brukeroptics.com). This list is far
from being exhaustive, as other mid IR VCD manufac-
turers: JASCO, Nicolet (see www.thermo.com) and Varian
(now part of the Agilent group) (see www.varianinc.com)
could easily assemble NIR extended units on demand.

Potential users may easily follow alternative and lower
cost approaches by conversion of conventional FT/NIR
units to CD experiments through adding a polarizer, a suit-
able PEM (see www.hindspem.com) and a lock-in ampli-
fier or a dedicated demodulation module as commercially
available from GWC (see www.gwctechnologies.com) and,
of course, a suitably fast detector. Following the dispersive
approach, one may recycle PEM and acquisition electron-
ics from an old CD spectrometer formerly operating in the
UV-Vis range, and integrate it with a grating monochroma-
tor, a halogen source, a polarizer, and an InGaAs detector
module, with built-in preamplifier as available for example
from EOS (see www.eosystems.com). Home-built systems
call for the availability of a local workshop and of a resi-
dent engineer willing to do the job.

The apparatus so constructed in Brescia has a maxi-
mum efficiency for the 1500–1000 nm region. This region
encompasses Dv 5 2 transitions for OH-stretchings
(� 1400 nm) and Dv 5 3 transitions for CH-stretchings
(� 1200 nm). In Figure 4 we report spectra for enantio-
meric pairs of Limonene, a-Pinene, and b-Pinene in the lat-
ter region. However Nafie et al. in the aforementioned liter-
ature22–24 have reported also very good data for Dv 5 2
CH-stretchings, as well as the (1,1) CH-stretching/HCH-
bending and (2,1) CH-stretching/HCH-bending combina-
tion regions; it is worth mentioning that the (1,1) combina-
tion region was considered also in Ref. 7 and (2,1) in Ref.
20. The measurements performed so far have regarded
mostly natural products, mainly terpenes, alcohols,
esters,29,30 and chiral cyclopentanone and cyclohexanone
related molecules,20 and even chiral cyclophanes.31 A large
series of molecules was also considered, for basic investi-
gations (calibration and calculations), in Refs. 23 and 24.
The epimerization of a dioxolane chiral derivative was
monitored by NIR-VCD.32 A lot remains to be done though,
both for fundamental investigations and applicative goals.

To complete the experimental section we illustrate the
sampling conditions to be adopted for running optimal
NIR-VCD spectra in the different overtone regions. Deal-
ing with pure liquids, for the Dv 5 2 CH/OH stretching
region (possibly containing also combination bands),
between 1900 and 1300 nm (i.e. ca. between 5500 and
8000 cm21) a 1 mm cell is generally needed; for the Dv 5
3 CH stretching region between 1300 and 1100 nm (i.e. ca.
between 8000 and 9000 cm21) a 5 mm cell is required,
whereas for the Dv 5 3 OH stretching region between
1200 and 1000 nm (i.e. ca. between 8500 and 10,000 cm21)
a 1 cm/2 cm (and even longer pathlength) may be
required, due to the fact that the OH bond-stretching
decreases in intensity with overtone order faster than the
CH bond-stretching; for the the Dv 5 4 CH stretching
region between 1000 and 850 nm (i.e. ca. between 10,000
and 12,000 cm21) a 5 cm cell at least is needed. Dealing
with solutions, one has to keep in mind the Lambert and
Beer’s law and may infer from the above reported path-
lengths the proper pathlength for a given concentration.

Fig. 4. Superimposed experimental NIR-VCD spectra at Dv 5 3 of (R)-
(2)-Limonene and (S)-(1)-Limonene (Top Panel); of (R)-(2)-b-Pinene
and of (S)-(1)-b-Pinene (Center Panel); and of (R)-(2)-a-Pinene and of
(S)-(1)-a-Pinene. Spectra taken on neat liquid samples contained in a 5-
mm pathlength quartz cuvette.
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The investigated neat liquids have concentrations ranging
from 3 M to 6 M and the product pathlength times concen-
tration has to be close to the values implied above. For
solid samples (either in the form of pellets or films) no
NIR-VCD experiment has been reported so far, to the best
of our knowledge; in any case solid state sampling calls
for a lot of attention to minimize potential artifacts.33

THEORY AND CALCULATIONS
NIR-ECD (NIR-Electronic Circular Dichroism spectra)

Before proceeding to illustrate theory and calculations
for VCD in the NIR, we wish to mention important calcula-
tions that have allowed interpretation of Electronic CD
spectra in the NIR (NIR-ECD). The first type of such cal-
culations regards electronic spectra involving f or d orbi-
tals in metal ions, in particular rare-earth ions, co-ordinated
to chiral molecules, like natural products.34,35 The second
type of compounds having NIR ECD spectra are the
recently investigated carbon nanotubes, either by them-
selves36 or co-ordinated to DNA.37 Such investigations had
been preceded by appropriate theory38 for highly conju-
gated chiral carbon systems. We mention these works
here, not simply for completeness but also since involve-
ment of low-lying electronic states has been demonstrated
to be important in intensifying VCD spectra even in the
IR.39 We expect this to be valid a fortiori in the NIR.

VCD in the NIR Region

Basics to predict NIR-VCD spectra. NIR-VCD spec-
tra contain transitions associated to overtones and combi-
nation vibrational states. Related to all these transitions,
one has to evaluate three sorts of observables. The fre-
quency or wavenumber xv, the rotational strength R0?v

(and the corresponding Dipole Strength D0?v for the con-
comitant NIR absorption spectrum) and the width Dxv of
the band associated to each vibrational transition. In what
follows we will concentrate on reporting advancements in
calculating the first two quantities. For this we recall that
to calculate the transition frequency, the mechanical vibra-
tional problem should be solved, and that the second
observable is based on the usual Rosenfeld equation40–42:

R0!v ¼ Imh0jljvi � hvjmj0i ð1Þ

where l is electric dipole moment operator and m is the
magnetic dipole moment operator, Im stands for imaginary
part, and we have used the standard braket notation of
Dirac to denote the ground state |0i and vibrational
excited state |vi, v being a vector, the components of
which are the quantum numbers of all vibrational excita-
tions. The corresponding intensity in absorption spectra is
given by the dipole strength:

D0!v ¼ jh0jljvij2 ð2Þ

We will not dwell on the evaluation of Dxv, which will
be empirically determined, as done also in the interpreta-
tion of mid-IR VCD spectra. For our considerations we

found valuable information in two papers dealing with the
bandwidth problems in NIR absorption spectra for C6H6

and C6D6 up to the Dv 5 10 transition (where v is the sum
of the v-components).43,44 Some further help on this aspect
may come from the classical/semiclassical model applica-
ble to the molecular motion presented in Ref. 45.

When calculating xv and R0?v, two sorts of difficulties
are met: (a) large number of vibrational states at increas-
ing overtone order; (b) large anharmonic effects. Both
effects are becoming manageable, especially in view of the
potentialities of modern computers. In the past though
these difficulties may have discouraged people from tack-
ling the problem; recently some successful attempts
have appeared in the literature to make use of ab-initio
techniques.

As far as point (a) is concerned, we notice that for a mol-
ecule with n XH (most often CH) bonds, even neglecting
other modes than XH-stretchings (bending deformations
or CC-stretching modes), whereas the fundamental (Dv 5
1) region contains n transitions, the Dv 5 2 region con-
tains n(n11)/2 transitions (n overtones and n(n21)/2
combinations); the Dv 5 3 contains n(n11)(n12)/6 transi-
tions: the Dv 5 4 contains n(n11)(n12)(n13)/24 transi-
tions and so forth. For a quite studied molecule like cam-
phor with n 5 16, one has 16, 136, 816, and 3876 transi-
tions, at Dv 5 1, Dv 5 2, Dv 5 3, and Dv 5 4, respectively.
Conversely, a simple spectrum with just few bands is usu-
ally observed both in absorption and in VCD; this oberva-
tion has led some authors to formulate2,3 and to theoreti-
cally justify46,47 the local-mode approximations, whereby
for Dv � 3 XH-stretching vibrational transitions just the n
overtones transitions associated to uncoupled, i.e. local,
XH-stretchings are spectroscopically active, while at Dv 5
1, the n fundamental transitions regard n normal modes,
which result from coupled bond stretchings, and at Dv 5 2
the transitions have a mixed character. This has allowed
rationalization either empirically or semiempirically/semi-
ab initio of a large number of absorption NIR spectra or
even of spectra obtained by nonlinear optics techniques,
like photo-fragmentation spectra, two-photon spectra.
Involvement of other modes, e.g. HCH overtone modes
through Fermi Resonance type mechanisms have also
been considered.48

Mechanical anharmonicities. More attention has
been paid, especially in the context of VCD, to point b), as
it is anharmonicity that causes the failure of the normal
mode scheme at high Dv. Mechanical Anharmonicity has
been and is actively studied, especially having in mind the
possible perturbations to IR-VCD spectra, which are most
of the times interpreted on the basis of DFT/harmonic
approach,49 with the use of packages like Gaussian03.50

The first task is to deal with a nonharmonic Hamiltonian
operator. The most used approach has been proposed for
the first time, in the field of VCD, by Marcott et al.51–53

and is based on the Van Vleck contact-transformation per-
turbation theory,53–55 whereby one finds successive trans-
formations S, allowing diagonalization of the nonharmonic
Hamiltonian:
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H ¼ H0 þ eH1 þ e2H2

H0 ¼ ðhc=2Þ
X

n
xn½p2n=�2 þ q2n�

eH1 ¼ hc
X

nml
Knmlqnqmq1

e2H2 ¼ hc
X

nmlk
Knmlkqnqmq1qk

ð3Þ

qn being the dimensionless normal coordinate, related to
normal coordinate Qn (with associated harmonic fre-
quency xn) by qn 5 (1/an) Qn, where an 5 [2pcxn/�]

1/2

(h Planck’s constant, � 5 h/2p and c speed of light); pn is
the dimensionless moment conjugated to qn, while Pn is
conjugated to Qn. This makes energies, harmonic wave-
numbers xn and both cubic and quartic anharmonic force
constants Knml and Knmlk all have the same units, namely
cm21. Knml and Knmlk are the lowest order mechanical
anharmonic parameters.

At successive orders the transformations S, solving the
mechanical problem, are applied to operators like the
electric and magnetic dipole moments needed for the cal-
culations of dipole and rotational strengths (see eqns. 1
and 2). The transformed operators’ transition moments
are then evaluated for original harmonic wavefunctions,
which depend on new contact-transformed coordinates.
This approach has been made usable for ab-initio calcula-
tions by Bak et al.56 with special attention to the ab-initio
calculation of the dipole moments operators’ expansions,
as will be further discussed below. In the context of NIR-
VCD, this formalism has been adopted by Polavarapu57

and Abbate and coworkers.58–60 The former author con-
sidered an isolated Morse oscillator, the latter assumed
that the magnetic dipole moment can be modeled in the
framework of coupled electric dipole moments. In this
way they arrived at an explanation of the qualitative
behavior of expected signs and intensities of calculated
VCD features associated with XH overtone/combination
transitions: both authors have demonstrated that the
same g ratio (g 5 4R/D, R and D being respectively the
rotational and dipole strength associated with the transi-
tion under study) is expected for fundamental and over-
tone transition.

Schematically, if one wishes to run full ab-initio calcula-
tions of NIR-VCD spectra, one needs to tackle four prob-
lems, two of which consist in dealing with mechanical
anharmonicity, and two consist in dealing with electrical
and magnetic anharmonicities:

(i) Calculations of anharmonic force constants Knml and
Knmlk appearing in eq. 3. Recently Barone61 has provided a
general methodology for the calculation of a complete set
thereof and implemented it in the GAUSSIAN03 pack-
age.50 However we wish to say that for the NIR region a
good and a more economic alternative to that approach for
just XH-stretchings has been suggested and practiced by
Kjaergaard and coworkers62,63; by the latter procedure
one calculates via DFT xn as (Knn/m)1/2 by analytical sec-
ond derivative and Knnn and Knnnn by opportunely stretch-
ing the XH bond and by polynomial interpolation of the
calculated energy function. Therefrom one gets the anhar-
monicity constant from the relation63,64:

vn ¼ h

64p2mc

5

3

K 2
nnn

K 2
nn

� Knnnn

Knn

� �
ð4Þ

so that the anharmonic v-th overtone xnv is given by:

xnv ¼ hc xn vþ 1

2

� �
� vn vþ 1

2

� �2
 !

ð5Þ

The application to chiral molecules is reported in Ref. 65.
(ii) Calculating the S generating function at various

orders from knowledge of Kijk and Kijkl is the second step.
The general formulae date back to the Van Vleck-Nielsen
school54,55 and are given, for the VCD context, among
others, by Marcott et al.51–53 and by Bak et al.56 However
quite efficient procedures to apply these transformations
to multidimensional problems are to be sought carefully,
to decrease computation time and to increase precision.
We find that writing the S functions in terms of creation
and destruction operators, so as to be able to apply Wick’s
ordering theorem results in fast diagonalization, as demon-
strated by Sibert66 for the CH-stretching high overtone
absorption case. We applied that method with empirical
parameters to the calculation of overtone VCD spectra for
an asymmetric HCCH fragment.60

Electrical and magnetic anharmonicities. Below let
us briefly illustrate the two steps regarding the calcula-
tions Electrical and Magnetic Anharmonicities and
combining their effects with those from Mechanical
Anharmonicity.

(i) Evaluation of non-harmonic dipole moment opera-
tors. The latter operators, needed in eq. 1, are to be
expanded beyond the harmonic approximation, and the
expansion coefficients can be calculated ab initio or via
DFT, as proposed by Bak et al.56 or by F. Gangemi
et al.65,67 By defining li and mi being the three Cartesian
components (i 5 x,y,z) of the electric and magnetic dipole
moment operators respectively one has:

li ¼
X
n

X
aj

Y0

aij

Ln
ajffiffiffiffiffiffiffi
mG

p Qn

þ 1

2

X
n

X
ajbk

@
Q

aij

@Rbk

� �
0

Ln
ajL

n
bk

mG
Q2

n

þ 1

6

X
n

X
ajbkgl

@2
Q

aij

@Rbk@Rgl

 !
0

Ln
ajL

n
bkL

n
gl

ðmGÞ3=2
Q3

n þ � � � ð6Þ

mi ¼ 2�h
X
n

X
aj

A0
aij

Ln
ajffiffiffiffiffiffiffi
mG

p Pn

þ 2�h
X
n

X
ajbk

@Aaij

@Rbk

� �
0

Ln
ajL

n
bk

mG
QnPn

þ 1

2
�h
X
n

X
ajbkgl

@2Aaij

@Rbk@Rgl

� �
0

Ln
ajL

n
bkL

n
gl

ðmGÞ3=2
ðQ2

nPn �Q2
nPnÞ þ � � �

ð7Þ
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The atomic polar tensors (APT) and the atomic axial
tensors (AAT), respectively,49,56 are here considered as
functions of nuclear positions and expanded around the
equilibrium geometry. So in eqs. 6 and 7 the APT relative
to atom a:

Q
0
aij 5 @li/@Raj, and the AAT for the same

atom, A0
aij, appear together with their first and second

order derivatives with respect to Cartesian nuclear coordi-
nates Rbk. The derivatives of APT and AAT are precisely
the parameters that define the electrical and magnetic
anharmonicities, respectively. The coefficients Lnaj relate
the normal coordinate Qn to the j-th Cartesian component
of the atomic displacement of atom a. mG is defined in
Ref. 67 as a mass-normalizing constant. This third step is
in general lengthy, but may be simplified by replacing Car-
tesian coordinates with suitable internal coordinates, as
has been done in a real local mode case,65 as well as in
another case, where the existence of local modes has
been assumed.67

(ii) Finally, the S functions are applied to the electric
and magnetic dipole moment operators of eqs. 6 and 7,
affecting coordinates Qn and momenta Pn appearing there.
After this, one takes their transition moments between
unperturbed wavefunctions, formally depending on the
‘‘new’’ coordinates and momenta. This last point is
straightforward, since the transition moments of simple
polynomials as those appearing in eq. 6 and 7, for transi-
tions 0?v are known and tabulated (see the Appendix of
Ref. 67).

The program, composed of all steps illustrated earlier,
has not yet been carried out in general, mainly because of
the difficulties in steps (ii) of Mechanical Anharmonicities
section and Electrical and magnetic anharmonicities sec-
tion and to the long time taken by the calculation of all
anharmonic parameters. The solution of these problems
on simple model systems leads one to understand the tran-
sition from the normal mode to the local mode regime and
to understand how it happens that only pure overtones
bear intensity.59,60

In simple cases there is no doubt that modes are local,
as e.g. when there is just one single XH bond in the mole-
cule under study. This is the case of the OH bond in alco-
hols; additionally bicyclic compound-based alcohols, like
e.g. (1R)-(1)-endo-borneol and (1S)-(2)-endo-borneol or
(1R)-(1)-endo-fenchyl alcohol, possess a limited number
of conformations (essentially three). For these cases one
may skip step (ii) of Mechanical Anharmonicities and may
assume the OH-stretching normal mode Q to be defined
by two atomic motions, the motion of O being (mH/mO)
times the motion of H. Calculations of APTs and AATs and
their derivatives in eqs. 6 and 7 regard just these two
atoms. In step (ii) of Electrical and magnetic anharmonic-
ities one uses then Morse wavefunctions, which are univo-
cally determined by xn and vn, as calculated in step (i) of
Mechanical Anharmonicities. The results are given in Fig-
ure 5 for the Dv 5 2 region for (1S)-(2)-endo-borneol65 and
(1S)-endo-fenchyl alcohol. A first study of basis set influ-
ence on NIR-VCD calculations is given here: two basis
sets, namely 6-31G** and 6-31111G** have been
employed with the same functional B3LYP. The latter
choice provides us with slightly better results, even though

the calculated frequencies are overestimated. The crucial
difference in the two sets of calculations is in the value of
the mechanical frequency xn for the three rotameric states
of the OH-bond in the two molecules (see Table 1). The
calculated values of vn and of the electric and magnetic pa-
rameters (APT and AAT and their derivatives) are less im-
portant for the overall prediction. At this point we need to
say that this simplified procedure, that relies on the local
mode assumption, gives very good results also for (1S)-
camphor and (1S)-camphorquinone at Dv 5 2 and Dv 5 3,
as of Figure 6.67 To go beyond the local mode assumption,
further work needs to be done with full consideration of all
the four steps of paragraphs Mechanical Anharmonicities
and Electrical and magnetic anharmonicities.

Anharmonic non-Born Oppenheimer terms. As a
last comment we wish to reconsider eq. 7, that had been
justified by Bak et al.,56 having in mind that further non
Born Oppenheimer (BO) terms may play a role in over-
tones and combinations that had not been considered in
dealing with fundamentals. Let us make a short digression
for this purpose. To calculate appropriate wavefunctions
for the evaluation of magnetic dipole transition moments,
consider a vibrational state related to the electronic
ground state. The BO expansion may be written as follows
(making use of the suggestions from Refs. 56,68):

W0a ¼ /0v0a þ
X
kg6¼0a

h/kvkgjTN2j/0v0ai
E0a � Ekg

/kvkg

¼ /0v0a þ
X
g6¼a

h/0v0gjTN2j/0v0ai
E0a � E0g

/0v0g

þ
X
k 6¼0

X
g

akg0a/kvkg þ
X
k 6¼0

X
g

acorrkg0a/kvkg ð8Þ

where /k and vkg are the electronic and vibrational part,
respectively, of the wavefunction of level (k,g) in the BO
approximation. TN2 is defined by the equation:

TN2/kvka ¼ �
X
ki

�h2

2Mk

@2/k

@R2
ki

 !
via �

X
ki

�h2

Mk

@/k

@Rki

@vka
@Rki

The coefficient akg0a appearing in eq. 8 is:

akg0a ¼ h/kvkgjTN2j/0v0ai
E0ðRÞ � EkðRÞ

ð9Þ

and had been previously considered by Bak et al.,56 with
the explicit dependence on the geometry off-equilibrium,
under the BO approximation, to keep track of anharmonic-
ity. The coefficient acorrkg0a in the next term is given by:

acorrkg0a ¼ hvkgjh/kjTN2j/0ijv0ai
ðE0 � EkÞ2

½Ekg � Ek � ðE0a � E0Þ�

ð10Þ

and is the first term beyond the approximation considered
in Refs. 56, 65, 67.
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In the second step of eq. 8, the part of summation with k
5 0 has been isolated, as it does not contribute to the cal-
culation of the magnetic moment, as discussed by Bak
et al.56 and by Stephens.49 The energy terms in the de-
nominator of eqs. 9 and 10 are functions of the molecular
geometry, either at equilibrium or off-equilibrium. Exploit-
ing this dependence, the third term in the second step of
eq. 8 has been shown to provide magnetic anharmonicity
to the magnetic dipole moment. Instead, the fourth term
in the second step of eq. 8 has never been considered pre-

viously. Following Ref. 68 it can be shown that the corre-
sponding correction to the transition dipole moment is of
the same order of magnitude as the anharmonic correc-
tions coming from the expansion of the potential up to
fourth order and from the expansions of the atomic axial
and polar tensors as reported in eqs 6 and 7, so that it
turns out to be relevant starting at Dv 5 3. This correction
may be calculated by explicit consideration of the coeffi-
cients acorrkg0a given in eq. 10 and may be written, similarly
to what done in Ref. 56 for the lowest order term, as

TABLE 1. Calculated mechanical harmonic and anharmonic parameters for (1S)-borneol and (1S)-fenchylalcohol in their
three conformational states, obtained by two different Gaussian basis sets. The numbering of carbon atoms for the definition

of the dihedral angles in the table follows the chemical notation

Borneol Fenchylalcohol

s (HOC2C1) x (cm21) v (cm21) s (HOC2C1) x (cm21) v (cm21)

631G**
6311

11G** 6-31G**
6311

11G** 6-31G**
6311

11G** 631G**
6311

11G** 6-31G**
6311

11G** 6-31G**
6311

11G**

1 68 74 3809 3834 88.6 88.6 1 60 60 3818 3830 89.3 88.6
2 175 170 3823 3845 86.8 86.6 2 268 273 3826 3847 88.1 87.7
3 272 268 3813 3827 90.0 88.2 3 2175 2169 3816 3840 88.5 88.7

Fig. 5. Comparison of experimental (red) and calculated (black) NIR-VCD spectra of (1S)-(2)-endo-borneol (Left Panel) and (1S)-(2)-fenchyl alcohol
(Right Panel) at Dv 5 2 for the OH-stretching. Two different basis sets used for the calculations. The experimental spectrum of (1S)-(2)-endo-borneol is
from Ref. 65; the experimental spectrum of (1S)-(2)-fenchyl alcohol is obtained by reversing the sign of the original spectrum obtained on (1R)-(1)-fen-
chyl alcohol with the same apparatus and protocol described in Ref. 65. The calculations are conducted with the procedure described in the text and
rotational strengths are weighted according to Gibbs free energy. Lorentzian band-shape in wavenumber assumed with Dx 5 20 cm21, corresponding
to Dk � 4 nm. Rotational strengths, represented by black bars, are in arbitrary units.
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hmiicorr ¼ hv0vjme;corr
i;00 jv00i � hv00jme;corr

i;00 jv0vi

where, with some algebra that we do not report here, one
may show that:

me;corr
i;00 ¼

X
k 6¼0

h/0jme
i j/ki

ðE0 � EkÞ2
;TN

" #
h/kjTN2j/0i ð11Þ

TN is the usual full nuclear kinetic energy operator and
the square brackets in eq. 11 mean commutation. We have
not yet been able to reconcile eq. 11 with the response of
the molecular energy contribution from higher order
terms in a constant magnetic field B, as done at first order
for the first terms, leading to eq. 7. We only observe that,
because of the presence of TN and TN2 operators, these
correction terms may allow for the presence of pkl

2 and
pkl

3 terms, as pointed out some time ago by Polavarapu.57

These terms are relevant for overtone magnetic dipole
transition moments for Dv 5 3 and further.

SUMMARY AND CONCLUSIONS

We have reviewed the measurements of NIR-VCD spec-
tra made so far and have described the experimental appa-
ratuses designed and employed to this purpose. We have
also presented the current status of theory and calcula-
tions needed to interpret the NIR-VCD spectra. We foresee

a wealth of applications of NIR-VCD spectroscopy, as so
many applications have already been proposed for mere
absorption NIR spectroscopy; we also point out many
interesting theoretical problems tied to the non harmonic
character of the calculations necessary to reproduce NIR-
VCD experimental spectra. We hope that this mini-review
may arouse some curiosity and may motivate young
researchers to enter the field of NIR-VCD spectroscopy.
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