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Trafficking of dendritic cells (DCs) to pe-
ripheral tissues and to secondary lym-
phoid organs depends on chemokines
and lipid mediators. Here, we show that
bone marrow–derived DCs (BM-DCs) ex-
press functional leukotriene B4 (LTB4) re-
ceptors as observed in dose-dependent
chemotaxis and calcium mobilization re-
sponses. LTB4, at low concentrations,
promoted the migration of immature and
mature DCs to CCL19 and CCL21, which
was associated with a rapid (30-minute)
increase of CCR7 expression at the mem-

brane level. At longer incubation times
(6 hours), gene array analysis revealed a
promoting role of LTB4, showing a signifi-
cant increase of CCR7 and CCL19 mRNA
levels. BM-DCs cultured from BLT1�/� or
BLT1/2�/� mice showed a normal pheno-
type, but in vivo BLT1/2�/� DCs showed
dramatic decrease in migration to the
draining lymph nodes relative to wild-
type (WT) DCs. Consistent with these
observations, BLT1/2�/� mice showed a
reduced response in a model of 2,4-
dinitro-fluorobenzene (DNFB)–induced

contact hypersensitivity. Adoptive trans-
fer of 2,4-dinitrobenzene sulfonic acid
(DNBS)–pulsed DCs directly implicated
the defect in DC migration to lymph node
with the defect in contact hypersensitiv-
ity. These results provide strong evi-
dence for a role of LTB4 in regulating DC
migration and the induction of adaptive
immune responses. (Blood. 2007;109:
626-631)
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Introduction

Dendritic cells (DCs) play a unique role in the activation of
antigen-specific naive T lymphocytes.1,2 To perform this func-
tion, antigen-loaded DCs travel from peripheral tissues to lymph
nodes. This migration is dependent on the expression of CCR7
by DCs and the production of CCR7 ligands, namely CCL19, by
stromal cells and mature DCs in the lymph node and CCL21
by afferent lymphatic cells.3-7 However, the expression of CCR7
is not sufficient to ensure the migration of mature DCs.8-10

Experimental evidence generated in vitro and in vivo has shown
that CCR7 function is dependent on the presence of costimula-
tory signals, including cysteinyl-leukotrienes and their
membrane transporter (MRP1), as well as prostaglandin E2.9,10

These results indicate that in vivo, the local inflammatory
microenvironment acts critically in regulating the migration of
maturing DCs.

Inflammatory cytokines and microbial agents are known to
induce phospholipid metabolism and the activation of arachidonic
acid cascade.11 Leukotriene B4 (LTB4) is a potent chemoattractant
generated by sequential actions of cytosolic phospholipase A2,
5-lipoxygenase and leukotriene A4 hydrolase on membrane phos-
pholipids.11,12 Previous studies have shown that LTB4 is a mediator
of innate immunity, based on its chemotactic effect for phagocytic
leukocytes.13,14 Two distinct G protein–coupled receptors, the high
affinity BLT115 and the low affinity BLT2,16 have been identified as
LTB4 receptors. In this study, we show that LTB4 is also a key

mediator of adaptive immunity through the regulation of DC
migration to secondary lymphoid organs.

Materials and methods

All animal studies and procedures were approved by the Animal Care and
Use Committee of University of Louisville Research Resources Center.

Reagents

Murine CCL3, CCL19, and CCL21 were from PeproTech (Rocky Hill, NJ).
Recombinant murine granulocyte macrophage–colony-stimulating factor
(rmGM-CSF), human Fms-like kinase-3 (Flt-3) ligand (hFlt3L), and
recombinant murine tumor necrosis factor � (rmTNF-�) were from R&D
Systems (Minneapolis, MN). Cytokines were endotoxin free as assessed by
Limulus amebocyte assay (BioWhittaker, Walkersville. MD). LTB4 was
purchased from Cayman Chemical (Ann Arbor, MI).

Dendritic cell culture

BLT1�/� and BLT1/2�/�17 mice backcrossed onto B6 background for 7
generations and C57/B6 mice from the National Cancer Institute (NCI)
(wild-type [WT]) were used at 8 to 12 weeks of age. CD34�-derived
myeloid DCs were generated by positive immunoselection using the rat
monoclonal antibody (mAb) MEC 14.7 to mouse CD34 (kindly provided
by Dr Vecchi, Milan, Italy) followed by MACS micro beads coated with
goat anti–rat IgG (Miltenyi Biotec, Auburn, CA) as previously described.18
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DCs were characterized in terms of membrane phenotype (expression of
FITC-MHC II, PE-CD11c, FITC-CD86, and PE-CD80 from BD-
Pharmingen, San Diego, CA; PE-CCR7 from E-Bioscience, San Diego,
CA19), pinocytosis, and antigen presentation in allogeneic mixed leukocyte
reaction (MLR) were determined as previously described.18 To induce
maturation, DCs were cultured with 20 ng/mL murine TNF-� for the last
24 hours of culture.

Chemotaxis assay

Cell migration was evaluated using a 48-well chemotaxis chamber (Neuroprobe,
Pleasanton, CA) and polycarbonate filters (5-�m pore size; Neuroprobe) for a
90-minute incubation as previously described.4 Results are expressed as number
of migrated cells in an average of 5 high-power fields (100�).

Calcium mobilization

Calcium mobilization was monitored in Indo-I–loaded cells stimulated with
various concentrations of LTB4 as previously described.13 Briefly, 1 � 106

cells were loaded with 1.2 �L Indo-1 (1 mM solution) in the presence of 0.6
�L pluronic acid (200 mg/mL in Me2SO) for 30 minutes at 37°C. The
response to various concentrations of ligand was recorded using a
spectrofluorometer (F2500; Hitachi, San Jose, CA).

Gene array analysis

LTB4-induced changes in cytokine and chemokine mRNA levels were
determined using Gene arrays (SuperArray, Frederick, MD) according to
the manufacturer’s protocol. Briefly, 2 �g RNA was used to synthesize
biotinylated cDNA probes to be hybridized with mouse cytokine and
chemokine arrays (SuperArray). A streptavidin-labeled alkaline phospha-
tase reporter antibody was added to the array, followed by development
with a chemiluminescent substrate (CDP, Star; SuperArray). Chemilumines-
cence was detected on photographic film (Biomax Light, GBX fixer/
developer; Eastman Kodak, Rochester, NY) with multiple exposures taken
with different exposure time, which were normalized by GAPDH satura-
tion. These films were scanned and quantified using GEArray Analyzer
software (SuperArray).

Confocal laser scanning microscopy

Immature DCs (iDCs) were washed with ice-cold phosphate-buffered
saline (PBS)/1% fetal bovine serum (FBS) (washing buffer) and fixed in 4%
paraformaldehyde for 10 minutes on ice, and additionally for 30 minutes at
room temperature. The cells were then permeabilized by incubation in
washing buffer containing 0.1% saponin for 3 minutes at room temperature.
Mouse CCL19-hIgG fusion protein (eBioscience) followed by PE-
conjugated anti–human IgG antibody was used for mouse CCR7 detec-
tion.20 Cell morphology and fluorescence intensity were analyzed using a
Zeiss LSM510 Meta confocal laser scanning microscope (Zeiss, Jena,
Germany) equipped with a Plan Neo Fluar 100 �/1.3 numerical aperture
(NA) oil objective and a 10 � eyepiece. Imaging medium is PBS; images
were acquired using LSM510 Meta software, and were processed using
LSM image examiner.

In vivo migration of murine DCs

WT and BLT1/2�/� mature DCs were labeled with 0.5 �M of the vital dye
5-(and-6)-carboxyfluorescein diacetate succinimidyl ester, mixed isomer
(5-(6)-CFDA, SE [CFSE]; Molecular Probes, Eugene, OR) and injected
subcutaneously in the hind leg footpad as previously described.18 Briefly,
popliteal lymph nodes were recovered at the indicated time points,
mechanically disaggregated, and treated with a collagenase A (1 mg/mL;
Boehringer Mannheim, Indianapolis, IN) and DNase (0.4 mg/mL; Roche,
Indianapolis, IN) mixture for 30 minutes; the enzymatically treated cell
suspension was evaluated by FACScan (Becton Dickinson, San Jose, CA).

Contact hypersensitivity (CHS)

The hapten 2,4-dinitro-fluorobenzene (DNFB; Sigma, St Louis, MO) was
freshly prepared before CHS assays as previously described.18 For sensitiza-
tion, mice were painted once (day �5) on the shaved abdominal skin with
50 �L of 0.5% DNFB in 4:1 acetone/olive oil (vol/vol) and 5 �L on each
footpad. Five days later (day 0) mice were challenged by the application of
10 �L DNFB (0.2%) on each side of the right ear, while the left ear received
the vehicle alone. CHS response was determined by measuring the degree
of ear swelling of the antigen-painted ear compared with that of the
vehicle-treated contra lateral ear at the indicated times after challenge using
a dial thickness gauge (Mitutoyo, Cardiff, United Kingdom). In some
experiments CHS response was evaluated after in vivo inoculation of DCs
loaded with 2,4-dinitrobenzene sulfonic acid (DNBS; ICN Biomedical,
Aurora, OH).18,21 Briefly, bone marrow (BM)–derived DCs from WT and
BLT1/2�/� mice were resuspended in Hanks balanced salt solution (HBSS)
without fetal calf serum (FCS) containing 100 �g/mL DNBS and incubated
at 37°C for 30 minutes. For sensitization (day �5) 1 � 106 DNBS-pulsed
BM-DCs from WT and BLT1/2�/� mice were injected subcutaneously into
the flank of WT recipient mice, in 200 �L saline. Five days later (day 0),
mice were challenged by the application of DNFB (0.2%) on each side of
the right ear. A group of mice injected with the same number of PBS-treated
DCs served as a negative control.

Statistical analysis

Experimental groups include at least 5 mice. All experiments were
performed at least 3 times. Statistical significance was evaluated using the
2-tailed Student t test.

Results

Functional expression of LTB4 receptors in murine DCs

Dendritic cells cultured from BM precursors express functional
LTB4 receptors as evaluated by chemotactic response (Figure 1, left
panel) and calcium fluxes (Figure 1, right panel), regardless of their
state of maturation (ie, iDCs and TNF-mature DCs [mDCs]). Both
in chemotaxis and in calcium mobilization assays the peak

Figure 1. Functional expression of LTB4 receptors
on murine BM-DCs. Immature (iDCs) and mature DCs
(20 ng/mL TNF-� for 24 hours) were generated from BM
CD34� precursors in vitro. Chemotaxis (left panel):
Ligand-dependent chemotaxis of both iDCs and mDCs
was measured using a 48-well micro chemotaxis cham-
ber, as described in “Chemotaxis assay.” Data are the
mean � SE of cells from 3 individual fields for each
concentration from a representative experiment of at
least 3 repetitions. Calcium mobilization (right panel):
Both iDCs and mDCs loaded with Indo-1 were induced
with various concentrations of LTB4, and Ca2� mobiliza-
tion was measured. The y-axis indicates the fluores-
cence ratio (F340/380). Arrows indicate LTB4 addition.
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response was observed at the concentration of 100 nM. BM-
derived DCs from BLT1/2�/� mice behaved in a similar manner to
WT DCs in terms of membrane phenotype (Figure 2A), antigen-
uptake (Figure 2B), and induction of allogenic T-cell proliferation
(Figure 2C). In contrast, BLT1/2�/� DCs were not able to respond
to LTB4 in terms of calcium mobilization (Figure 2D-E). Similarly,
BLT1/2�/� DCs did not migrate in response to LTB4, whereas a
normal chemotactic response was detected in response to CCL3
(iDCs) and CCL19 (mDCs), indicating the absence of functional
LTB4 receptors in BLT1/2�/� DCs (Figure 2F-G). Chemotaxis or
calcium responses to LTB4 were also not observed in DCs cultured
from BLT1�/� (data not shown), indicating that BLT1 is the LTB4

responsive receptor in DCs.

Priming effect of LTB4 on CCR7

To elucidate the role of LTB4 in DC biology we evaluated the effect
of LTB4 in modulating DC migration to both inflammatory and
homeostatic chemokines, in vitro. A short exposure (15-30 min-
utes) of DCs to LTB4 did not alter the migration of iDCs in response
to CCL3. However, the migration of iDCs to CCR7 ligands,
CCL19 and CCL21, was markedly increased (Figure 3A). A similar
but less pronounced effect was also observed in mDCs (Figure 3B).
The effect was maximal at 1 nM LTB4 and declined at higher
concentrations (ie, 100 nM LTB4). In order to clarify whether LTB4

pretreatment induced an increased chemokinetic rather than chemo-
tactic response toward CCR7 ligands, checkerboard experiments
were performed. The migratory capacity of iDCs was evaluated in
the presence of a positive chemotactic gradient (100 ng/mL CCL19
in the lower well), in the presence of a negative gradient (ligand
only in upper well), and in the absence of a gradient (equal
concentration of the ligand in the upper and the lower wells).
Figure 3C shows that the LTB4 pretreatment increased iDC

chemotactic response (directional migration) to an optimal concen-
tration of CCL19, with only a minor effect on chemokinesis
(activated random migration). Similar results were observed using
mDCs (data not shown). Fluorescence-activated cell sorting (FACS)
analysis revealed that LTB4 pretreatment induced a rapid (30-
minute) up-regulation of CCR7 membrane expression. No differ-
ences were observed in CCR7 staining in permeabilized LTB4-
treated DCs compared with control cells (Figure 4A). Conversely,
the expression of CCR7 in mDCs was apparently unaffected by
LTB4 treatment (data not shown). Similar results were obtained by
confocal microscopy analysis using a CCL19-Fc fusion protein to
detect CCR7 expression (Figure 4B). To gain further insights into
the regulation of CCR7 expression/function by LTB4, we investi-
gated the effect of LTB4 on chemokine and chemokine receptor
expression using a SuperArray system. These experiments revealed
that LTB4 pretreatment (1 �M; 6 hours) increased CCR7 expres-
sion both in iDCs (14.1-fold increase) and mDCs (1.2-fold
increase; Figure 5). Conversely, in the same experimental system,
LTB4 had no effect on CCR1 mRNA levels. The expression of
CCL19 mRNA was also up-regulated by LTB4 in both iDCs and
mDCs (4.1- and 7.5-fold increase, respectively).

Reduced DC migration in vivo and inhibition of CHS reactions
in BLT1/2�/� mice

To evaluate in vivo the biologic relevance of LTB4 action(s) on
CCR7 expression and function, BM-derived mDCs from WT and
BLT1/2�/� mice were CFSE-labeled and injected into the footpads
of WT recipients. Cell migration was evaluated as the number of
fluorescent cells migrated to popliteal lymph nodes. In comparison
to WT DCs, a significant defect in migration of DCs from
BLT1/2�/� mice was observed at early times, that is, at 20 and 48

Figure 2. Characterization of BM-derived WT and BLT1/2�/� DCs. (A) FACS analysis of membrane phenotype in WT and BLT1/2�/� DCs. Gray line indicates isotype
control; broken line, iDCs; and black line, mDCs. (B) FITC-dextran uptake. (C) Mixed leukocyte reaction induced by WT and BLT1/2�/� DCs. (D,E) Calcium mobilization
measurement in response to LTB4 in WT (D) and in BLT1/2�/� (E) DCs. (F, G) In vitro chemotaxis of iDCs (F) and mDCs (G) toward CCL3 (100 ng/mL), CCL19 (100 ng/mL), and
LTB4 (100 nM). Error bars indicate SE.

628 DEL PRETE et al BLOOD, 15 JANUARY 2007 � VOLUME 109, NUMBER 2



hours after the inoculation (53% and 72.7% inhibition, respec-
tively; Figure 6). However, at longer time points (72 hours), the
migration of BLT1/2�/� DCs was restored, suggesting the exis-
tence of compensatory mechanisms (Figure 6). Similar results were
obtained with DCs from BLT1�/�-deficient mice (data not shown).

Previous studies showed that defective DC migration affects the
induction of adaptive immunity in a model of CHS.18 To test
whether this observation might also be applicable to the LTB4

pathway, BLT1/2�/� and WT mice were sensitized on day 0 and
challenged with the antigen on the right ear after 5 days; the contra

lateral ear received only the vehicle, as a control. CHS response in
BLT1/2�/� mice was strongly decreased compared with WT mice
at all the time points investigated (24 to 72 hours; P � .02 vs WT
mice; Figure 7A). Histopathologic examination of ear sections
showed that BLT1/2�/� mice had a reduced thickness, inflamma-
tory reaction, and cell infiltration compared with WT mice (Figure
7B). Since recent work has reported the expression of functional
LTB4 receptors in T-effector cells,22 experiments were performed to
directly evaluate the relevance of the LTB4 pathway in DC function
in vivo. An adoptive transfer model of CHS was performed using
BLT1/2�/� and WT DCs loaded in vitro with the antigen (DNBS)
and injected subcutaneously into naive WT recipients. Mice were
subsequently challenged at day 5 with DNFB on the right ear.
Figure 7C shows that, similar to the observations in the “classic”
CHS model (Figure 7A), DNBS-pulsed BLT1/2�/� DCs were
poorly effective in inducing CHS response, compared with WT
DCs. This response was specific since it could not be induced using an
unrelated antigen (oxazolone; data not shown) or PBS-loaded DCs
(Figure 7C). Taken together, these results strongly implicate a role for
LTB4 in the regulation of DC migration and function in vivo.

Discussion

The present study shows that murine DCs express functional LTB4

receptors, as observed in chemotactic response and calcium
mobilization assays. The maturation status of DCs does not affect
this expression, since both iDCs and TNF-mDCs showed the same
level of response to LTB4. Moreover, we demonstrate that LTB4 is
capable of controlling DC functions in multiple ways. First, LTB4

Figure 3. Chemotaxis of LTB4-pretreated DCs. BM-derived WT DCs, both iDCs (A) and mDCs (B), were pretreated with LTB4 as indicated for 30 minutes at 37°C. The
chemotactic response toward a fixed concentration (100 ng/mL) of CCL3 and CCL19 (iDCs) and toward CCL19 and CCL21 (mDCs) was determined. Significant difference in
chemotaxis levels between untreated and LTB4-treated DCs was indicated (*P � .05, **P � .01 by t test). Data are the mean � SE of cells from 3 individual fields for each
concentration from a representative experiment of at least 3 repetitions. (C) Checkerboard analysis of DC migration across polycarbonate filters toward CCL19.

Figure 4. Effect of LTB4 treatment on surface expression of CCR7. (A) FACS
analysis of CCR7 expression on the surface and after permeabilization in iDCs after
30 minutes of LTB4 (1 nM) treatment. Gray line indicates isotype control; broken line,
iDCs; and black line, LTB4-treated iDCs. (B) CCL19-Fc fusion protein staining of
untreated and LTB4-treated iDCs, both before and after permeabilization, analyzed
by confocal microscopy (�100).

Figure 5. LTB4-induced changes in gene expression profiles. A cytokine and
chemokine SuperArray was performed using 2 �g/mL RNA for each sample as
described in “Methods.” The graph indicates the fold increase of each group over
iDCs showing changes in CCR1, CCR7, and CCL19.
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can directly promote the migration of circulating immature and
maturing DCs to the sites of inflammation and to the draining
lymph nodes, respectively. Second, LTB4 up-regulates CCR7
expression and functions. At low concentrations, LTB4 promotes
the migration of iDCs to CCR7 ligands; this effect is the induction
of true chemotaxis with only a minor effect on chemokinesis.
LTB4-induced migration of iDCs to CCL19 and CCL21 is associ-
ated with an increase of CCR7 membrane expression. Similarly, a
short preincubation to LTB4 also up-regulates the migration of
mDCs to CCR7 ligands. Although the exact mechanism(s) in-
volved in this effect remain unclear, it is likely that LTB4 exerts
multiple effects both at the level of CCR7 membrane expression
and at the signaling level. The observation that CCL19-Fc fusion
protein binding sites appear on the cell surface following LTB4

pretreatment suggests a novel mechanism for rapid modulation of
DC responsiveness. The mobilization to plasma membrane of
intracellular pools of chemokine receptors was previously reported
for CXCR4.23,24 Furthermore, at a longer time of activation, LTB4

may influence at the transcriptional level the expression of CCR7
and CCL19, one of its ligands. The LTB4-induced DC migration to
CCR7 ligands and the induction of CCL19 might also be relevant
for the entering of maturing DCs into afferent lymphatic vessels.5,6

Since granulocytes are major producers of LTB4, DC migration
might be regulated at the early phases of the inflammatory response
when large numbers of activated granulocytes are recruited at the
pathologic site. In this context, it is interesting to note that
neutrophils were recently described to regulate certain DC func-
tions.25 Finally, LTB4 promotes the migration of mDCs to regional
lymph nodes by increasing their migration in response to CCL19
and CCL21 in vitro and in vivo.

The severe reduction of in vivo migration of BLT1/2-deficient
DCs strongly suggests a role for LTB4 receptors in DC trafficking. This
defect was present at relatively early time points (20-48 hours) and
declined at later time points, suggesting the existence of compensatory
mechanisms. In BLT1�/� mice, similar kinetic effects were observed for
macrophage recruitment in a model of zymosan-induced peritonitis13

and in the development of atherosclerosis.26 Previous studies have
described cysteinyl leukotrienes and PGE2

9 as regulators of DC
functions. The current study identifies LTB4 as a new lipid mediator
able to regulate CCR7-dependent migration of DCs in vitro and in
vivo. Since CCR7 has been described as a regulator of several DC
functions,27 LTB4 might contribute to modulate the immune
response by regulating CCR7 functions.

We previously described that DC migration is tightly associated
with the induction of adaptive immunity, in a model of contact
hypersensitivity.18 Consistent with this finding, the current study
also shows that defective DC migration due to the lack of LTB4

receptors causes a dramatic impairment of DNFB-induced CHS. A
similar defect was also observed in an adoptive transfer experiment
in which DNBS-pulsed BLT1/2�/� and WT DCs showed signifi-
cant reduction in CHS induced by DNBS-pulsed DCs from
BLT1/2�/� mice.

Based on the effects on granulocytes, LTB4 has long been identified
as an important mediator of innate immunity.13,15,28 Recent studies also

Figure 7. Defective CHS in BLT1/2�/� mice. (A) WT and
BLT1�/� mice were sensitized on the shaved abdominal
skin with 50 �L of 0.5% DNFB in 4:1 acetone/olive oil
(vol/vol) and 5 �L on each footpad. Five days later, mice
were challenged on the right ear (10 �L of 0.2% DNFB on
each side). The left ear was painted with vehicle as
control. Increases in ear swelling were measured at
different time points. Mean values � SE for each group (5
mice) are presented. (*P � .05, **P � .01 by t test, vs
respective WT control group). One experiment represen-
tative of 3 is shown. (B) Histology, hematoxylin and
eosin–stained tissue sections from WT and BLT1/2�/�

mice after 24 hours read-out CHS. The top row repre-
sents a �100 magnification; an enlarged region of the
same pictures is shown in the bottom row. Images were
acquired using a Carl Zeiss Axioskope Optical Micro-
scope equipped with an Achroplan 10 �/0.25 NA objec-
tive and a 10 � eyepiece. Images were captured using a
Nikon CoolPix 3.34 Megapixel camera (Nikon, Tokyo,
Japan) at a fine resolution of 1600 � 1200 pixels in JPEG
format and processed using Adobe Photoshop (Adobe
Systems, San Jose, CA). (C) Defective capacity of
BLT1/2�/� DCs to elicit CHS. WT mice were immunized
(on day �5) by subcutaneous injection of DNBS-loaded
DCs (106/mouse) obtained from WT or BLT1/2�/� mice.
Mice were challenged 5 days later (day 0) by ear painting
with DNFB. Figure represents the values for ear swelling
(mean � SE) of 5 mice per group, and is representative of
3 experiments. **P � .01 by t test.

Figure 6. Defective in vivo migration of BM-BLT1/2�/� DCs. Mature DCs from WT
and BLT1/2�/� mice were labeled with the vital dye CFSE and injected subcutane-
ously in the hind leg footpad of WT mice. Popliteal lymph nodes were recovered at the
indicated times and the cell suspension was evaluated by flow cytometry. One
experiment representative of 3 is shown (*P � .05, **P � .01 by t test, vs respective
WT control group). Error bars indicate SE.
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highlight the importance of LTB4 and BLT1 in T-cell responses and
asthma.29,30 The findings reported in this paper propose LTB4 at the
interface of innate and adaptive immunity. These results strongly
suggest that the LTB4/BLT1 axis may have an important role in the
regulation of adaptive immunity through the modulation of DC migra-
tion and function. Further studies will be required to define in a more
detailed manner the molecular mechanisms of the leukotriene receptor
functions in DCs and specific pathologic scenarios under which LTB4

regulates immune functions.
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