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1. Introduction

Several near-infrared (NIR) vibrational circular dichroism (VCD)
spectra have been recently presented mainly from two research
groups [1–9]. For the sake of historical exactness we must say that
the first observation of NIR-VCD spectra was made by Keiderling and
Stephens [10]. Besides some possible applications pointed out in
Refs. [7,9], NIR-VCD data are interesting since they pose a challenge
to interpretation and theory. As the mid-IR VCD case [11], also NIR-
VCD data can be really useful, NIR-VCD data can be made really
useful, if they are preceded by the calculations of frequencies, dipole
strengths and rotational strengths for vibrational transitions for CH
stretching (or XH stretching in general) combination and overtone
modes with minimal simplifying assumptions. This is a very hard
task, the complexity increases with the number of CH bonds and the
overtone order [12,13]. Another difficulty of NIR-VCD is the need to
deal with anharmonicity in the force field and in the molecular
dipole moment functions.

Model calculations [14,15], conducted under the rather
restrictive assumption that rotational strengths are generated by

coupled electric bond dipole moments, have allowed us to get a
qualitative idea of the aspect of fundamental IR- and overtone NIR-
VCD spectra at various overtone orders Dv for a system of two
coupled chirally disposed CH-stretchings. The conclusion was that,
except for rather high values of the interaction force constants
between local stretchings, the NIR-VCD spectra, starting with the
second overtone region, Dv = 3, are too weak with respect to
experimental findings, due to almost exact degeneracies of the
pure overtone couplets of bands of opposite sign: we have
interpreted this conclusion as a further validation of the local mode
behavior. For this reason in Refs. [2–4] we simulated the NIR and
NIR-VCD spectra at Dv = 3 of Camphor and Camphor-related
molecules or of 4-X-[2.2]paracyclophanes in the following way.
We first calculated frequencies, dipole strengths and rotational
strengths for all Dv = 1 transitions associated with isolated CH
stretching modes (the rest of the CH bonds being deuterated) in the
harmonic approximation, as implemented in GAUSSIAN03 [16] at
the DFT level. Then we corrected just the frequencies, by
multiplying them by the given overtone order and by incorporating
experimental mechanical anharmonicities, and transferred the rest
of the results obtained for Dv = 1 to the desired overtone order (in
our case Dv = 3). That is equivalent to assuming that the calculated
local transitions be the only ones contributing to that region, i.e.
assuming that there are no combination bands but just overtones
of pure local modes. With that approach we could reproduce fairly
well the general aspect of NIR absorption and NIR-VCD experi-
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mental spectra with the y-axis of the calculated spectra in arbitrary
units. In the case of 4-X-[2.2]paracyclophanes [4] (see also Ref. [3]),
we explicitly calculated transition moments for the Morse wave-
functions, and could provide absolute values also for the y-axis.
Besides, in Ref. [4] we have evaluated some anharmonic terms in
the APTs (atomic polar tensors) and thereby have significantly
improved the calculations of NIR-VCD and NIR absorption spectra;
however we did not consider there anharmonic corrections to the
magnetic dipole moment terms (we notice, en passant, that the
idea of using Morse local modes for interpreting NIR-VCD spectra
had been suggested by Polavarapu [17] and is discussed also in Ref.
[18]).

In this work we continue that study: we conduct systematic
calculations of anharmonic electric and magnetic terms for all CH
oscillators of rather large molecules, through the use of DFT
calculations. We have chosen the interesting case of Camphor and
Camphorquinone, experimental spectra of which had already been
published by our group [1] and Nafie’s group [8] independently for
Dv = 3 (we have shown in Fig. 1 the VCD and absorption IR (Dv = 1)

and NIR (Dv = 3) spectra [1] of the (1S)-enantiomers). The reasons
for our choice are two: (i) Camphor is one of the most studied
molecules by CD and VCD, one major motivation being that it is
conformationally rigid and thus, even if the number of CH-bond
stretchings is large (16), their mutual orientation is fixed (see Fig. 2,
where we reported the structure of (1S)-Camphor (a) and (1S)-
Camphorquinone (b)) and (ii) peculiar interesting differences
appear in the VCD spectra of Camphor and Camphorquinone for
the same absolute configuration of the stereogenic Carbon 1,
which, in the first place, are a challenge for all theoretical models,
and also may illuminate us on subtle physico-chemical differences
between the two molecules. Indeed, at Dv = 1 Camphorquinone
spectra, especially the VCD one, are less intense than Camphor
spectra, while at Dv = 3 (NIR) one feature of Camphorquinone VCD
spectrum is much larger than in Camphor; this feature is in
correspondence with a shoulder in the absorption spectrum of
Camphorquinone which is not present in Camphor’s; the rest of the
NIR-VCD and absorption spectra are almost the same for the two
molecules.

Fig. 1. Experimental IR absorption and IR-VCD spectra of (1S)-enantiomers of Camphor and Camphorquinone for 1 M CCl4 solutions (Panel 1A) (Dv = 1); corresponding data

for the NIR case in Panel 1B for Dv = 3. For homogeneity of presentation of Dv = 1 and 3 data, to the latter spectra a wavenumber scale axis has been added at the top; the

original data were taken in linear wavelength scale.

Fig. 2. Structure and group numbering of (1S)-Camphor (a) and (1S)-Camphorquinone (b) as obtained from Gaussview [16].
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The interpretation of the IR and IR-VCD spectra at Dv = 1 is
straightforward, and is based on DFT (B3LYP/6-31G**) harmonic
calculations modelled on the magnetic field perturbation method
[19,20]. We present the comparison of experimental and
calculated IR and IR-VCD spectra for the Dv = 1 CH-stretching
region in Fig. 3. The agreement can be considered acceptable but
not complete: the relative magnitude of IR and IR-VCD spectra for
the two molecules is well accounted for, and the general aspect of
sign alternation of VCD bands is partially accounted for.
Analyzing the data of Fig. 3 from left to right we see that the
first positive band is not adequately predicted; the Camphor-
quinone experimental VCD spectrum shows two negative bands
labelled 2 and 3 in the figure, which are in correspondence with
two calculated bands one of which is negative and one positive,
the subsequent three bands are well predicted for the two
molecules. We may generally state that the CH stretchings
spectroscopic region is often not well predicted by standard
normal mode calculations, due also to the presence of Fermi
resonance. However we will not insist on these aspects, since this
is not the focus of the present work. Indeed the aim of this work is
to provide an interpretation of the second part of Fig. 1 (Dv = 3
spectra).

To achieve NIR-VCD spectra prediction, we have developed a
method largely based on the work by Bak et al. [21], which was
devised to account for perturbations brought about by anharmo-
nicities in the IR region. This method is presented in Section 2. In
Section 3 we comment on how actual calculations are performed,
with particular attention to the derivation of electric and magnetic
anharmonic terms from a polynomial fitting of DFT-derived
results. In Section 4 we report the results of the calculations on
the Dv = 3 region of Camphor and Camphorquinone. The conclu-
sions in Section 5 is devoted to a short discussion of our method
and results, in view of what is needed to make the method
completely free from ad hoc hypotheses.

2. Method

In this section we describe the method for the calculation of
absorption and VCD spectra with the inclusion of electrical
anharmonicity corrections and the subsequent restriction to the
local-mode hypothesis.

Dipole and rotational strengths for a transition from the ground
state 0 to an excited state e are given by [22]

D0e ¼
X3

i¼1

jhmii0ej
2 (1)

R0e ¼ Im
X3

i¼1

hmii0ehmiie0 (2)

where

hmii0e ¼ hc0jm̂ijcei (3)

hmiie0 ¼ hcejm̂ijc0i (4)

and the operators m̂i and m̂i represent the ith Cartesian component
of the electric and magnetic dipole moment respectively.

In the Born–Oppenheimer (BO) approximation, a complete set
of wave-functions for a molecule with N atoms can be expressed in
the form [23]

cnvðr;RÞ ¼ fnðr;RÞxnvðRÞ (5)

where r is a shortened notation for electrons’ coordinates, R is for
the corresponding nuclear ones, fn(r,R) is the electronic part of the
wave-function, with index n labeling the electronic levels, and
xnn(R) is the nuclear part, with the additional index v labeling the
vibrational levels. (The rotational part of the wave-function is
omitted here.)

If a transition from the ground state c00 to a vibrational state
c0v is considered, it is well known that the matrix element of the
electronic magnetic transition dipole moment vanishes and a non-
vanishing contribution is obtained from the first perturbative
correction to the BO approximation. The sum-over-states can be
resolved with the help of the magnetic field perturbation method
developed in Refs. [19,20]. The results of that approach are here
briefly recalled mainly for notational purposes, as presented in Ref.
[21]. The transition dipole moments can be expressed as

hmii0v ¼ hx00jmiðRÞjx0vi (6)

hmiiv0 ¼ hx0vjmiðRÞjx00i � hx00jmiðRÞjx0vi (7)

Fig. 3. Comparison of experimental and calculated IR and IR-VCD spectra of (1S)-Camphor and (1S)-Camphorquinone. The calculations are conducted by DFT methodology

with Gaussian 03 [16] and finally shifted downward by 130 cm�1 (�2x).
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where

miðRÞ ¼ hf0ðRÞjm̂ijf0ðRÞi (8)

miðRÞ ¼ �h
X
a j

1

Ma

� @f0ðRÞ
@Ra j

@f0ðRÞ
@Bi

����
� �

B¼0

þ i

4�hc

X
k

ei jkRakZae

 !
�h

i

@
@Ra j

¼ �h
X
a j

1

Ma
Aai jðRÞpa j (9)

where £ is reduced Planck’s constant, h/2p, e is the electron charge,
c is the speed of light, Za is the atomic number and Aaij is the atomic
axial tensor (AAT) for the atom a, Bi is the ith Cartesian component
of the magnetic induction vector, and Ma is the a-atom mass. The
expressions above can be expanded around the equilibrium
positions, R0

ai, of the nuclear coordinates,

miðRÞ ¼ m0 þ
X
a j

@mi

@Ra j

� �
0

ra j þ
1

2

X
a jbk

@2mi

@Ra j@Rbk

 !
0

ra jrbk

þ 1

6

X
a jbkgl

@3mi

@Ra j@Rbk@Rgl

 !
0

ra jrbkrgl þ � � � (10)

miðRÞ ¼ �h
X
a j

1

Ma

 
A0

ai j pa j þ
@Aai j

@Rbk

 !
0

rbk pa jþ

1

2

@2
Aai j

@Rbk@Rgl

 !
0

rbkrgl pa j þ � � �
!

(11)

where ra j ¼ Rai � R0
ai are the displacements from the equilibrium

coordinates and pai = (£/i)(@/@Rai).
A slightly different expansion is given in Ref. [17] for the magnetic

dipole moment, where the r and p variables appear in symmetric
combinations, like rp + pr, and r2p + pr2. As already discussed in [17],
if one takes into account the form of Eq. (7) and the commutation
rules of operators r and p, one can check that the more general expa-
nsion is equivalent to Eq. (11) as long as off-diagonal matrix elements
are considered. Moreover, an additional term in p3 is reported in the
expansion of Ref. [17], which is not present in Eq. (11). Inclusion of
that term in the present context would require an extension of the
approach of Ref. [21] that is beyond the scope of this work.

WhentheseexpansionsaresubstitutedintoEqs. (6)and(7), taking
intoaccountthatthefirstterminEq.(10)givesnocontribution,dueto
the orthogonality of the wave-functions, and assuming the wave-
functions to be real, the transition dipole moments become

hmii0v ¼
X
a j

P0
ai jhx00jra jjx0vi

þ 1

2

X
a jbk

@Pai j

@Rbk

 !
0

hx00jra jrbkjx0vi

þ 1

6

X
a jbkgl

@2Pai j

@Rbk@Rgl

 !
0

hx00jra jrbkrgljx0vi þ � � � (12)

hmiiv0 ¼ 2�h
X
a j

A0
ai j

1

Ma
hx0vjpa jjx00i þ 2�h

X
a jbk

@Aai j

@Rbk

 !
0

1

Ma

�hx0vjrbk pa jjx00i þ
�h

2

X
a jbkgl

@2
Aai j

@Rbk@Rgl

 !
0

1

Ma

�ðhx0vjrbkrgl pa jjx00i � hx00jrbkrgl pa jjx0viÞ þ � � � (13)

where the APT Paij = @mi/@Raj has been introduced.

The solution of the mechanical problem, i.e. the determination
of the nuclear wave-functions, provides us with the modes of
vibration. As is usually done in the harmonic approximation, this is
achieved by a transformation to mass-weighted variables

rai ¼
X

n

Sn
aiQn (14)

pai ¼
X

n

MaSn
aiPn (15)

where Pn are the conjugate momenta of Qn.
The same scheme may be used for the local-mode approach to

be discussed below. After normalizing the coefficients Sn
a j through

1

mG
¼
X
a j

ðSn
a jÞ

2 (16)

Ln
a j ¼

ffiffiffiffiffiffiffi
mG
p

Sn
a j (17)

where the normalization factor mG is a quantity with the
dimensions of a mass, Eqs. (12) and (13) in the new variables,
when restricted to one particular vibrational mode n, become

hmii0v ¼
X
a j

P0
ai j

Ln
a jffiffiffiffiffiffiffi
mG
p h0jQnjvi þ

1

2

X
a jbk

@Pai j

@Rbk

 !
0

Ln
a jL

n
bk

mG

� h0jQ2
n jvi þ

1

6

X
a jbkgl

@2Pai j

@Rbk@Rgl

 !
0

Ln
a jL

n
bkLn

gl

ðmGÞ3=2
h0jQ3

n jvi þ � � �

(18)

hmiiv0 ¼ 2�h
X
a j

A0
ai j

Ln
a jffiffiffiffiffiffiffi
mG
p vh jPn 0j i

þ 2�h
X
a j

X
bk

@Aai j

@Rbk

 !
0

Ln
a jL

n
bk

mG
vh jQnPn 0j i

þ 1

2
�h
X

a jbkgl

@2
Aai j

@Rbk@Rgl

 !
0

Ln
a jL

n
bkLn

gl

mGð Þ3=2

� vh jQ2
n Pn 0j i � 0h jQ2

n Pn vj i
� 	

þ � � � (19)

The set of coefficients Ln
a j may be interpreted as the normalized

Cartesian displacements of the a-nucleus along the Cartesian axis j,
corresponding to the vibrational mode n. In the hypothesis of a
local CH-stretching mode, these quantities are easily determined:
to calculate the dipole and rotational strengths of each mode, the
coordinate system may be chosen in such a way that the z-axis
(which is numbered as 3 henceforth) is along the CH bond
direction, and if the displacements of the two atoms from their
equilibrium positions are called zH and zC, the local mode
coordinate can be written

Qn ¼
ffiffiffiffiffiffiffi
mR
p

ðzH � zCÞ (20)

with mR = MHMC/MCH and MCH = MH + MC. The CH-stretching
coordinate that can be defined from the instantaneous bond
length z as z � ze = zH � zC (where ze is the equilibrium value of the
bond length), and its canonical conjugate p are related to the
variables Qn and Pn through

z� ze ¼
Qnffiffiffiffiffiffiffi
mR
p (21)

p ¼
ffiffiffiffiffiffiffi
mR
p

Pn (22)

The only non-vanishing coefficients Ln
a j are those with a = C or

H, and with j = 3, namely

Ln
H3 ¼

MCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H þM2
C

q (23)
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Ln
C3 ¼ �

MHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H þM2
C

q (24)

and the normalization factor mG for this mode can be expressed in
terms of the reduced mass mR as

mG ¼ mR
M2

CH

M2
H þM2

C

(25)

After substitution of the variable z in place of Qn in Eqs. (18) and
(19), one can observe that the differential operators (as expected)
have the form

X
a¼H;C

Ln
a3

ffiffiffiffiffiffiffi
mR

mG

r
@

@Ra3
¼ MC

MCH

@
@RH3

� MH

MCH

@
@RC3

¼ @
@z

(26)

so that the transition dipole moments are given by

hmii0v ¼
X

a¼H;C

P0
ai3Ln

a3

ffiffiffiffiffiffiffi
mR

mG

r
0h jz� ze vj i

þ 1

2

X
a¼H;C

@Pai3

@z

� �
0

Ln
a3

ffiffiffiffiffiffiffi
mR

mG

r
0h jðz� zeÞ2 vj i

þ 1

6

X
a¼H;C

@2Pai3

@z2

 !
0

Ln
a3

ffiffiffiffiffiffiffi
mR

mG

r
0h jðz� zeÞ3 vj i þ � � � (27)

hmiiv0 ¼ 2�h
X

a¼H;C

A0
ai3

Ln
a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRmG
p hvj pj0i

þ 2�h
X

a¼H;C

@Aai3

@z

� �
0

Ln
a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRmG
p hvjðz� zeÞpj0i

þ 1

2
�h
X

a¼H;C

@2
Aai3

@z2

 !
0

Ln
a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRmG
p

� vh jðz� zeÞ2 p 0j i � 0h jðz� zeÞ2 p vj i

 �

þ � � � (28)

As it has been discussed by various authors [19,21,24], atomic
polar and atomic axial tensors depend on the choice of the
coordinate system, and special care is needed in their use: APTs
depend on axes’ orientation, but are origin-independent for a
neutral molecule, while AATs depend on both the origin and the
axes’ orientation of the coordinate system. However in principle
rotational and dipole strengths, which are observable quantities,
do not depend on the choice of the reference frame. In Ref. [21] it
was shown indeed that the use of electric and magnetic dipole
moment operators as those given in Eqs. (8) and (9) above gives
rise to origin-independent rotational strengths, provided that AATs
have the correct origin-dependence. This, in turn, is ensured [24]
by the use of GIAO atomic orbitals, as implemented e.g. in the
Gaussian 03 VCD calculation procedure employed here (see
Section 3). In Eqs. (27) and (28), one local CH stretching mode is
considered at a time, so that one is free to choose the most
convenient reference frame, as long as all the terms appearing in
the expressions are calculated in the same system.

As described in the next subsection, the derivatives of atomic
polar and axial tensors are calculated ab initio, taking into account
Eqs. (23) and (24) to determine the magnitude of atomic
displacements to be used in the numerical procedure.

In addition, in order to implement the above-described
computational method, frequencies and matrix elements must
be determined: we assume as mechanical harmonic frequencies,
v0n, those obtained by a standard harmonic calculation with
selective deuteration [2–4] and the correct values for overtones are
calculated by including the anharmonicity parameter xn in the

expression of vibrational energy eigenvalues

Env ¼ hc v0n vþ 1

2

� �
� xn vþ 1

2

� �2
 !

(29)

As previously done [2–4], the same value xn = 65 cm�1, taken
from the analysis of experimental overtone absorption spectra, is
assumed for every local mode n (i.e. for every CH group) and is
applied to both (1S)-Camphor and (1S)-Camphorquinone.

The matrix elements in Eqs. (27) and (28) are calculated with
Morse wave-functions, assuming the following Morse potential for
local mode n [25]:

UnðzÞ ¼ Dnð1� eanðz�zeÞÞ2 (30)

an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p2mRcxn

h

r
(31)

Dn ¼
v2

0n

4xn

(32)

Details about matrix elements’ evaluations with Morse wave-
functions are described in Appendix A.

3. Numerical calculations

3.1. DFT calculations

In order to derive the APT and AAT derivatives appearing in
Eqs. (27) and (28), we have first studied ab initio the APTs and AATs
at different values of CH bond lengths; this approach had
previously been applied by Kjaergaard and Henry [26,27] for
studying electric dipole moments. From the continuous curve
constructed by polynomial interpolation, we finally obtained its
derivatives at equilibrium.

Calculations were performed by the Gaussian 03 suite of
programs [16], first optimizing with the DFT method the molecule
geometry with a 6-31G** basis set and the B3LYP functional. Then a
number of modified input geometries corresponding to the
different stretching displacements were generated starting from
the equilibrium optimized geometry; ten points for each local
mode were verified to be enough, as explained below. For each CH-
bond stretching mode, Cartesian axes have been chosen such that
the z-axis lies along the considered bond. As discussed in Section 2,
this procedure is correct as long as all the terms involved in the
calculation of the dipole and rotational strength of a given local
mode are referred to the same Cartesian axes system: indeed all
the points corresponding to displacements of one CH group are
generated here in the same coordinate system, and the results from
Gaussian 03 are always taken in the input coordinate system.

3.2. Derivation of anharmonic terms for the APTs and AATs

In the present treatment each CH-bond stretching local mode is
supposed to occur as if the two atoms were isolated from the rest of
the molecule, and their mass-center fixed at its rest position. Thus
the Hydrogen and Carbon atoms’ motions bear a relationship to
each other described by Eqs. (23) and (24) and we consider their
APT and AAT components as functions of their relative distance.

In principle though, and as done in GAUSSIAN03 for the
harmonic case, one might regard as a more general approach to
calculate the derivatives with respect to the Cartesian coordinates
of each single atom and to combine them later according to the
actual modes of vibration. However, even in the hypothesis of local
CH stretching modes, this would require evaluation of AATs and
APTs on a two-dimensional grid of points to work out mixed
derivatives that appear in second-order corrections (see Eqs. (18)
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and (19)). On the other hand, restriction to derivatives with respect
to Hydrogen atoms alone, as practised in our previous paper [4], is
in general inaccurate, as discussed in Section 4 of the present work.

The method adopted here, instead, evaluates also second-order
(and in principle higher order) corrections by a one-dimensional
grid, with relevant reduction of the computing time: as the
Hydrogen atom is displaced from equilibrium in the interval
(�0.4 Å, 0.4 Å) by steps of 0.08 Å, the corresponding Carbon atom is
also displaced and its displacement is calculated according to
Eqs. (23) and (24).

The maximum Hydrogen atom compression (�0.4 Å), which
might seem overrated, is justified a posteriori, in that the
interpolated curves show no special (pathological) behaviour
about this end, but continue smooth. As to the stepsize for
Hydrogens, a spacing of 0.02 Å was initially employed, but by
trying in a few cases we have concluded that, adopting the value
0.08 Å does not significantly affect the values of derivatives at
equilibrium.

The data thus collected are arranged to represent the dependence
of APT and AAT on local stretching coordinates. We express each
component as an eight-degree polynomial in the scanned coordinate
using a linear regression routine. By trying polynomials with
increasing degrees starting from four, we have observed that the first
and second derivatives of APTs and AATs vary considerably with the
degree, whereas they become steady from degree seven/eight
upwards. On the other hand the number of points makes it
meaningless to use polynomials of higher degree.

4. Results

In Fig. 4 we report the results of interpolations for Hydrogen
APTs and AATs for (1S)-Camphor (a) and (1S)-Camphorquinone (b).
Of course, since the stretching local mode is along the bond
direction, we concentrate just on the three tensor components
containing the derivative with respect to z. While z has always a
univocal definition, x and y are somewhat arbitrary, so that it
seems proper to consider in Fig. 4 (not in actual calculations, where
x and y are treated distinctly!), a direction accounting for the
components transverse to z jointly, viz. quadratically summed
(henceforth ‘‘transverse component’’).

One may notice that the z-component of APTs and their
derivatives are one order of magnitude larger than the correspond-
ing transverse components, while the opposite is true for AAT. This
is intuitively acceptable, since stretching CH bonds give rise to
larger variation of polarity on the CH bonds and thus to larger z

components in the electric dipole moment, while the same charge
rearrangement generates larger magnetic dipole moment perpen-
dicular to the CH bond. Since x and y components of AAT are
comparatively large, also x and y components of APT should not be
neglected, even if small, since the dot product of APT and AAT is
needed in calculating rotational strengths, unlike what we had
done earlier [2–4]. To make our considerations more quantitative,
we give in Table 1 the values of APT and AAT at z = 0 and their first
derivatives with respect to z still at z = 0. We observe that APT z-
components (longitudinal components) have a negative value and
a negative derivative in all cases, and this is in accord with the
results of Ref. [26] and with what found from the interpretation of
NIR-absorption spectra [28] (see also Ref. [4]). Indeed, one obtains
for (@/@z)PHzz an average value of �0.53 e/Å for Camphor and
�0.50 e/Å for Camphorquinone, values which compare very well
with the values of �0.547 e/Å and �0.485 e/Å determined
experimentally for (@2m/@r2) of equatorial and axial CH bonds
respectively in dioxane [28]. Also, from Table 1, we gather an
average value for PHzz at z = 0 of–0.149 e for Camphor and of
�0.137 e for Camphorquinone, that compares quite well with the
experimental value of �0.195 e and �0.143 e for (@m/@r) of

equatorial and axial CHs respectively in dioxane [28]. The success
of the DFT method in predicting electric anharmonic terms had
been already observed in Ref. [26] for the CH bonds of cyclohexane
and also for aromatic CHs in paracyclophanes [4]. No clear analysis
and meaningful comparison was made for AAT values at z = 0 or
their first derivatives, but we report them anyway in Table 1, since
they show a trend. Finally, it is interesting to notice in Fig. 4 that a
curve is clearly distinct from the others in the transverse
components of APTs and AATs, namely the one corresponding to
the single Hydrogen atom (C4-H) (also C7a-H* of Camphorquinone,
see Fig. 2, has a distinct behaviour for just transverse components
of AAT). The reason for this peculiarity we may guess is due to its
position in the molecule, this CH bond being under strong
influence from the neighbouring oxygen atoms. The effect is
larger for (1S)-Camphorquinone.

In Fig. 5 calculations of absorption and CD spectra in the NIR
region are reported for (1S)-Camphor and (1S)-Camphorquinone at
various levels of approximation. The spectra are obtained by
applying a Lorentzian line-shape to each transition centered at the
calculated frequencies, with areas equal to the calculated dipole
strengths for absorption and rotational strengths for VCD, each one
with a Dl � 6 nm bandwidth. The reason for this choice is that it
best reproduces the results of NIR-VCD (vide infra); actually it is close
also to the value employed in Ref. [4]. The lines labeled ‘Abs0’ and
‘CD0’ only include the lowest contributions, corresponding to the
very first terms of Eqs. (18) and (19), hence they do not include
electrical anharmonicity at all. The lines labeled ‘Abs11’ and ‘CD11’
include only Hydrogen-atom contributions from the first anhar-
monic terms of Eqs. (18) and (19), i.e. terms with both a and b
therein corresponding to the Hydrogen atom in the CH bond
stretching under observation; the lines labeled ‘Abs12’ and ‘CD12’
include also first-order anharmonic contributions with a = b = C,
and the lines ‘Abs13’ and ‘CD13’ contain the full first-order
corrections, including mixed C–H terms that are ignored in the
previous ones (i.e. a = H, b = C, and a = C, b = H). Finally, the lines
‘Abs2’ and ‘CD2’ contain corrections up to second-order, calculated
according to Eqs. (27) and (28), where the derivatives of the APT’s
and AAT’s are determined with respect to the internal CH-stretching
variable and naturally include all Hydrogen and Carbon atoms’
contributions with proper weights. Comparison of the different first-
order results shows that restricting to Hydrogen atoms’ contribu-
tions leads to significant errors and, among the neglected terms, the
most important ones are mixed C–H contributions. As discussed in
Section 2, this leads to the conclusion that the best approach is to
scan the APT’s and AAT’s along the internal CH-stretching variable,
as is done for obtaining the results of Fig. 5 called ‘Abs2’ and ‘CD2’.

As a general rule one knows that in order to best reproduce
spectra at Dv = 2 one needs to consider anharmonic terms relative
to z2 terms, for Dv = 3 one needs to consider terms of the order z3

and so forth [26,28,29]. In this case one may notice that the second-
order corrections (relative to z3) are smaller than the first-order
ones (relative to z2) and generally have opposite sign. Their use
does not significally change the results except in the case of
NIR-VCD spectra of (1S)-Camphor.

To let the reader further appreciate the relative importance of the
various terms, we give in Table 2 the calculated wavelengths l (nm),
dipole strengths D (�10�42 esu2 cm2) and rotational strengths
R (�10�47 esu2 cm2) at the three levels of approximations 0, 13, and
2 described above. One may notice from this table that VCD and
absorption spectra are originated by closely lying transitions. This is
a consequence of the fact that the calculated DFT harmonic
frequencies of the isolated CHs are quite similar and this is
ultimately related to the peculiar cage-type structure of Camphor as
pointed out in Ref. [3]. The correct sign of the calculated VCD bands,
giving rise to the alternating features that match the observed ones,
is related to the proper calculation of the rotational strengths
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Fig. 4. Dependences of longitudinal and transverse components of APTs and AATs of Hydrogen atoms for (1S)-Camphor (a) and (1S)-Camphorquinone (b) on corresponding

CH-bond lengths’ displacements (z-directions) (see text). By definition, APT and AAT transverse components are always positive and this requires attention in looking at the

results in the figure. APT’s are in units of e (electrons), AAT’s are in units of (ea0)/(£c), where a0 is the Bohr radius, and c the velocity of light. On x-axes, displacements are in

angstroms (Á̊).
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Fig. 5. Calculated absorption (top) and VCD (bottom) spectra for (1S)-Camphor (left) and (1S)-Camphorquinone (right) in the NIR region. The different curves correspond to

different levels of approximation as described in the text.

Table 1
APT and AAT values (upper half) and their first-order derivatives (lower half) for (1S)-Camphor and (1S)-Camphorquinone at equilibrium position.

Camphor APT Camphor AAT Camphorquinone APT Camphorquinone AAT

PHtz PHzz AHtz AHzz PHtz PHzz AHtz AHzz

APT’s and AAT’s at equilibrium position

C1a-H 0.042 �0.137 0.246 �0.010 0.038 �0.127 0.240 �0.009

C1a-H 0.037 �0.150 0.235 0.013 0.034 �0.140 0.232 0.015

C1a-H 0.049 �0.118 0.166 0.011 0.046 �0.111 0.172 0.006

C3-H 0.021 �0.102 0.223 �0.023 – – – –

C3-H 0.037 �0.116 0.165 0.007 – – – –

C4-H 0.010 �0.190 0.085 0.004 0.008 �0.131 0.060 0.017

C5-H 0.055 �0.179 0.224 0.020 0.054 �0.135 0.172 0.018

C5-H 0.043 �0.169 0.262 0.006 0.036 �0.138 0.173 �0.002

C6-H 0.050 �0.144 0.178 �0.021 0.049 �0.131 0.169 �0.023

C6-H 0.029 �0.149 0.174 �0.003 0.028 �0.138 0.156 0.009

C7a-H 0.048 �0.163 0.202 0.013 0.043 �0.145 0.187 0.011

C7a-H 0.041 �0.153 0.249 �0.019 0.037 �0.142 0.224 �0.016

C7a-H* 0.018 �0.142 0.277 �0.005 0.009 �0.137 0.318 �0.003

C7b-H 0.031 �0.149 0.293 0.000 0.028 �0.144 0.284 �0.003

C7b-H 0.043 �0.155 0.264 0.014 0.039 �0.143 0.259 0.008

C7b-H 0.050 �0.165 0.217 0.002 0.045 �0.150 0.222 0.007

Camphor APT Camphor AAT Camphorquinone APT Camphorquinone AAT

(@zPHiz)t @zPHzz (@zAHiz)t @zAHzz (@zPHiz)t @zPHzz (@zAHiz)t @zAHzz

APT’s and AAT’s first-order derivatives at equilibrium position

C1a-H 0.118 �0.490 0.646 0.037 0.117 �0.478 0.663 0.043

C1a-H 0.117 �0.483 0.716 �0.010 0.112 �0.464 0.728 �0.007

C1a-H 0.139 �0.482 0.542 �0.016 0.137 �0.470 0.571 �0.029

C3-H 0.109 �0.481 0.662 �0.021 – – – –

C3-H 0.139 �0.506 0.473 0.006 – – – –

C4-H 0.058 �0.676 0.272 0.009 0.038 �0.570 0.216 0.050

C5-H 0.168 �0.613 0.571 0.019 0.174 �0.551 0.560 �0.015

C5-H 0.142 �0.599 0.686 0.006 0.132 �0.568 0.496 0.005

C6-H 0.153 �0.546 0.510 �0.022 0.154 �0.524 0.536 �0.012

C6-H 0.111 �0.559 0.476 �0.012 0.110 �0.538 0.434 0.013

C7a-H 0.139 �0.538 0.521 0.031 0.131 �0.511 0.510 0.026

C7a-H 0.117 �0.502 0.680 �0.061 0.110 �0.488 0.630 �0.045

C7a-H* 0.067 �0.442 0.730 �0.012 0.023 �0.416 0.726 �0.005

C7b-H 0.077 �0.461 0.811 �0.001 0.075 �0.458 0.799 �0.003

C7b-H 0.123 �0.506 0.720 0.043 0.123 �0.491 0.731 0.027

C7b-H 0.149 �0.541 0.578 �0.001 0.144 �0.517 0.611 0.003

Data for hydrogen atoms of corresponding positions in the two compounds are presented in a row (the parallel is supported by the similarity of structures in Fig. 2a and b).

Column headings: P = APT, A = AAT, @z = @/@z; as to indexes: Paij = @mi/@Raj, where a is the stretched atom PHtz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

Hxz þP2
Hyz

q
; ð@zPHizÞt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@zPHxzÞ2 þ ð@zPHyzÞ2

q
, and

analogously for A. Side column on the left associates to each row the chemical group to which the stretched atom belongs. Units of measure are (e) for P’s and (ea0)/(£c) for A’s.

Derivatives are with respect to lengths in Å.
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including all electric anharmonic terms. Finally, the isolated
negative feature at lowest wavelength in the VCD spectrum of
(1S)-Camphorquinone is due to the almost isolated C4H local mode.

In Fig. 6 the calculated spectra, obtained by including all
corrections up to second-order, are compared with the experi-
mental spectra. The agreement is rather satisfactory for absorption
spectra of both molecules: the shape is predicted, also the shoulder
at 1170 nm observed in Camphorquinone and not in Camphor
absorption spectrum is reproduced; the total intensity is slightly

overestimated and we think this to be related to the bandwidth, as
mentioned above. We obtain a nice prediction for (1S)-Camphor-
quinone VCD spectrum, as well as for the overall intensity ratio
between VCD spectra of (1S)-Camphor and (1S)-Camphorquinone.
Some minor problems for the VCD of (1S)-Camphor are encoun-
tered. One should take into account that some of the approxima-
tions made here may have significant effects on the rather complex
combination of rotational strengths of similar magnitude that give
rise to the VCD spectrum of Camphor: besides the choice of the

Fig. 6. Comparison of experimental and calculated NIR (top) and NIR-VCD (bottom) spectra of (1S)-Camphor (left) and (1S)-Camphorquinone (right) at Dv = 3, with e and De in

c.g.s. units. Vertical bars represent dipole strengths D (right axis of top panels) in 10�40 esu2 cm2 and rotational strengths R (right axis of bottom panels) in 10�44 esu2 cm2. A

wavenumber axis has been added at the top of each graph as in Fig. 1. The calculations are conducted following Bak et al. [21] as explained in the text.

Table 2
Calculated wavelengths l (nm), dipole strengths D0, D13, D2 (�10�42 esu2 cm2) and rotational strengths R0, R13, R2 (�10�47 esu2 cm2) at various levels of approximation for

(1S)-Camphor and (1S)-Camphorquinone (see text for discussion of orders of approximation).

Local mode # l D0 D13 D2 R0 R13 R2

(1S)-Camphor

C7b-H 1182.97 1.2321 3.4935 3.6460 1.4855 �3.4283 �4.5240

C7a-H 1181.72 1.1997 3.4320 3.6619 �4.9231 �3.3889 �3.5852

C6-H 1181.15 0.9483 3.9490 3.5872 3.9803 11.1822 6.5542

C5-H 1179.64 1.4717 4.5261 4.4411 �4.3469 6.4693 3.8042

C6-H 1179.31 0.9872 3.9956 3.8029 �1.3605 �3.6914 �1.3044

C7b-H 1178.65 1.0587 3.0020 3.2957 �5.2300 �4.2277 �3.5365

C3-H 1178.21 0.5755 4.0186 3.6807 �5.7809 8.2278 8.4860

C7a-H 1177.88 1.0065 2.9845 3.2690 6.1224 6.3929 6.2798

C1a-H 1177.75 1.0130 2.7876 2.9146 �2.8451 �3.6134 �5.3166

C4-H 1177.05 1.6159 5.2522 4.4743 �0.8630 �4.5864 �2.6421

C3-H 1176.63 0.4351 3.7522 3.3084 5.0676 �3.4637 �3.6865

C5-H 1176.25 1.3035 4.2641 4.0346 �5.1971 �4.6258 �5.8813

C1a-H 1174.50 0.8358 2.9165 3.1269 �1.7169 �0.0866 �2.4789

C1a-H 1171.83 0.6296 3.4066 3.4843 3.6184 8.0946 9.5427

C7a-H 1168.96 0.7956 2.1939 2.6632 0.3407 5.3390 3.1666

C7b-H 1161.80 0.8781 2.2837 2.6222 0.3690 �0.1579 1.5940

(1S)-Camphorquinone

C7a-H 1179.48 0.7660 1.9475 2.6536 �0.8957 0.3016 0.0114

C7b-H 1179.44 1.0071 3.3861 3.6117 �0.1490 �2.4337 �5.2764

C6-H 1178.00 0.8223 3.7617 3.5057 2.7342 �0.3229 �2.1827

C6-H 1177.74 0.8317 3.8907 3.7457 �0.5567 �5.1379 �2.3163

C7a-H 1177.44 0.9179 3.3571 3.6057 �2.8227 �1.6210 �0.4091

C7b-H 1176.81 0.8848 3.0227 3.2390 �4.2482 3.5935 7.2773

C7a-H 1175.49 0.8622 2.9426 3.2599 4.8440 4.3354 4.0560

C5-H 1175.30 0.8922 4.4011 4.2692 0.3622 11.5052 7.6426

C1a-H 1175.11 0.8761 2.7918 2.8669 �4.4660 �1.5723 �2.4015

C5-H 1173.73 0.8430 4.3371 4.0284 �3.1711 1.6500 1.5365

C1a-H 1172.54 0.7134 2.8053 3.0170 �1.7920 �2.1202 �3.9988

C1a-H 1171.39 0.5572 3.3500 3.4621 4.6837 10.3443 12.5187

C7b-H 1163.75 0.8339 2.3227 2.6944 1.4643 �0.5377 �0.5849

C4-H 1163.66 0.6920 4.5616 3.7768 4.9762 �42.4253 �36.5177
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bandwidth, the frequency values and the anharmonicity para-
meter x could be better estimated. The VCD spectrum of (1S)-
Camphorquinone seems to be less sensitive to such small
corrections, because of the very strong negative band at low
wavelengths that is almost entirely determined by few CH bond
stretchings, C4H in particular.

5. Conclusions

The absorption and VCD spectra of (1S)-Camphor and (1S)-
Camphorquinone in the NIR region have been calculated in the
local mode approximation, including electrical anharmonicity
corrections and describing local CH stretchings by means of a
Morse potential. Ab initio calculations and interpolation of the
obtained numerical results have been performed to determine the
first two derivatives of relevant APT and AAT components with
respect to the internal stretching coordinate of each CH group.

The calculated absorption spectra satisfactorily reproduce the
main features of the experimental ones for both molecules. The
VCD spectrum of (1S)-Camphorquinone is also in very good
agreement with experiment, while (1S)-Camphor is slightly less
accurate, but still quite acceptable. In particular our analysis allows
to point out the special role played by C4H which in Camphorqui-
none accounts for the evident shoulder at 1170 nm and for the
most intense VCD signal. The latter VCD signal, whose importance
has been noted in Ref. [1] for configurational analysis, is explained
only by including anharmonic electric terms.

The procedure adopted here does not include the calculation of
anharmonic force constants, and an experimentally determined
value of the anharmonicity parameter x = 65 cm�1 has been
applied to all CH bonds. An improvement of the results could be
expected from a theoretical evaluation of this parameter. Efforts
towards the determination of mechanical anharmonic terms have
been made for several years [30,31] and we will include their
results in our future works.

The local-mode approach adopted here disregards also
couplings between different bonds and this can affect our results.
The molecules considered here have many CH bonds which are
mechanically quite similar [2,3]: further developments should take
into account mechanical and electrical couplings within methy-
lene and methyl groups considering all mechanical and electrical
anharmonic cross terms [26,27]. To implement and test this more
general approach a smaller system containing fewer CH-bond
stretchings should be considered. In any case we reiterate that the
prediction obtained on the basis of the strict local mode
approximation is quite satisfactory for these large systems (16
inequivalent CH bonds): it reproduces the sign and intensity of the
measured signals, the differences observed between the two
molecules and it permits the assignment of the most intense VCD
feature. Most importantly, the detailed analysis of the procedure
adopted has allowed to point out the different relative importance
of each electrical anarmonicity correction term in obtaining good
prediction of experimental data.

With a view to future generalization, we notice that the
expansion of the magnetic dipole moment here adopted is based
on Ref. [21], but an additional term in p3 is obtained at the same
order in Ref. [17]. An analysis of the possible inclusion of such a
contribution in the approach of Ref. [21] has not been considered in
the present work. We notice that in Ref. [21] a discussion of the
influence of non Born–Oppenheimer terms on anharmonic
corrections to the absorption and VCD calculated spectra was
provided and we think that discussion should be kept in mind in
future progress of this work.

Finally, we wish to point out that this work is part of our
ongoing programme for providing a fully non-parametric inter-
pretation of the NIR-VCD spectra, comparable in quality to that

used for the IR-VCD case, where just the harmonic approximation
is needed. A little bit of additional work is still necessary for
calculating anharmonic field corrections, anharmonic electrical
interactions and, most important, from the knowledge of the full
force field, appropriate evaluation of local mode mixing. We think
we are close to achieving this goal and to report pretty soon results
on this. Once this is achieved, anharmonic corrections can also be
used to improve calculations of IR and VCD of fundamentals.
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Appendix A. Morse integrals

In this appendix, matrix elements with Morse eigenfunctions [25]

that have been used in the calculations described in the text are

presented. Most of them are available in the literature [29,32].

Definitions and conventions here are essentially the same as in [32],

and also the method to calculate new matrix elements is taken from

that work.

The Morse potential has the form [25]:

VðrÞ ¼ Dð1� e�aðz�zeÞÞ2 (A.1)

where z is the distance between the two atoms and ze is its
equilibrium value. The parameters D and a are related to the
frequency v and to the anharmonicity parameter x (in wave-
numbers) through the relations (31) and (32) in the text.

The eigenfunctions corresponding to the potential (A.1) are given

by

cvðzÞ ¼ Nv e�j=2zb=2Lb
vðjÞ (A.2)

where v is a non-negative integer, Lb
vðjÞ is a Laguerre polynomial

and [32]

Nv ¼
abv!

G ðk� vÞ

� �1=2

(A.3)

j ¼ k e�aðz�zeÞ (A.4)

b ¼ k� 2v� 1 (A.5)

k ¼ v
x

(A.6)

In the calculations discussed in the text, matrix elements of some

combinations of the operator q = z � ze and of its canonical conjugate

p are useful. Some results for transitions from the ground state to an

excited one, some of which are the most common transitions in NIR

absorption processes, and some are more useful for NIR-VCD, are

reported below:

h0jqjvi ¼ A0v

a

ð�1Þvþ1

vðk� v� 1Þ (A.7)

h0j pjvi ¼ ia
A0v

2
ð�1Þv (A.8)

h0jq pjvi ¼ i
A0v

2
ð�1Þv log kþ k� 1

vðk� v� 1Þ �
Xv

j¼1

1

j
�cðk� vÞ

0
@

1
A

(A.9)
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h0jq2jvi ¼ 2
A0v

a2

ð�1Þvþ1

vðk� v� 1Þ

� log k�
Xv�1

j¼1

1

j
�cðk� v� 1Þ

0
@

1
A (A.10)

h0jq2 pjvi ¼ 2
log k

a
h0jq pjvi � log k

a

� �2

h0jpjvi þ i

a

N0Nv

a

� �1

2
R0

1 þ
b

2
R0

2 � R0
3

� �
(A.11)

h0jq3jvi ¼ N0Nv

a4

Xv

j¼0

vþ b
v� j

� �
ð�1Þ jþ1

j!
G ðwÞððcðwÞ � log kÞ3

þ 3ðcðwÞ � log kÞcð1ÞðwÞ þcð2ÞðwÞÞ (A.12)

where the following notations have been used

A0v ¼
N0Nv

a
G ðk� vÞ (A.13)

R0
1 ¼ ð�1ÞvG ðk

� vÞ 2
Xv

i¼1

Xv

j¼iþ1

1

i j
þ 2

Xv

i¼1

1

i
cðk� vÞ þcðk� vÞ2 þ zð2; k� vÞ

0
@

1
A

(A.14)

R0
2 ¼
ð�1Þv

v
G ðk� v� 1Þ

Xv�1

i¼1

1

i
þcðk� v� 1Þ

 !
(A.15)

R0
3 ¼ ð�1Þv�1G ðk

� vÞ 2
Xv�1

i¼1

Xv�1

j¼iþ1

1

i j
þ 2

Xv�1

i¼1

1

i
cðk� vÞ þcðk� vÞ2 þ zð2; k� vÞ

0
@

1
A

(A.16)

w ¼ k� vþ j� 1 (A.17)

and the special functions are as defined in [33], namely G(z) in
Section 8.31; c(z) in Section 8.36; z(z,q) in Section 9.51. Moreover
c(n)(z) = dnc(z)/dzn.

Results (A.7), (A.8), (A.10) and (A.12) are special cases of those

presented for example in [32] and in [29] for arbitrary initial state.
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