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1. Introduction 
As already stated in the chapter addressing the calibration of serial manipulators, kinematic 
calibration is a procedure for the identification and the consequent compensation of the 
geometrical pose errors of a robot. This chapter extends the discussion to Parallel 
Manipulators (also called PKM Parallel Kinematic Machines). As described in the following 
(Section 2) this extension is not obvious but requires special care. 
Although for serial manipulators some procedures for the calibration based on automatic 
generation of a MCPC (Minimum Complete Parametrically Continuos) model exist, for PKMs only 
methodologies for individual manipulators have been proposed but a general strategy has not been 
presented since now. A few examples of the numerous approaches for the calibration of individual 
PKMs are proposed in (Parenti-Castelli & Di Gregorio, 1995), (Jokiel et al., 2000) for direct 
calibration and (Neugebauer et al., 1999), (Smollett, 1996) for indirect or self calibration techniques. 
This paper makes one significant step integrating available results with new ones and reordering 
them in simple rules that can be automatically applied to any PKM with general kinematic chains. In 
all the cases a MCPC kinematic model for geometrical calibration is automatically obtained.
In Section 2 the main features of PKMs calibration is pointed out and the total number of the 
necessary parameters is determined; this is an original contribution. In Sections 3 and 4 two 
novel approaches for the generation of a MCPC model are described. Sections 5 and 6 are 
dedicated to the analysis of the singular cases and to the procedure for the elimination of the 
redundant parameters respectively; actual cases are discussed. Section 7 presents several 
examples of application of the two proposed procedures to many existing PKMs. Section 8 
eventually draws the conclusions. 
Note: in this chapter it is assumed that the reader has already familiarised himself with the notation 
and the basic concepts of calibration described in the chapter devoted to serial manipulators. 

2. PKMs Calibration 
2.1 Differences with respect to serial robots 
The identification of the parameter set to be utilized for parallel manipulators can be 
performed generalizing the methodology adopted for the serial ones. However some 
remarkable differences must be taken into account, namely: 
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• most of the joints are ‘unsensed’, that is the joint motion is not measured by a sensor; 
• PKMs make use of multi-degree of freedom joints (cylindrical, spherical); 
• some links have more than two joints; 
• links form one or more closed kinematic loops;
• PKMs can be calibrated by ‘internal calibration‘ which does not require an absolute 

external measuring system. 
Internal calibration (also called indirect or self calibration) is performed using the 
measure of extra-sensors monitoring the motion of non actuated joints and comparing 
the sensor readings with the values predicted using the nominal manipulator 
kinematics (Parenti-Castelli & Di Gregorio, 1995), (Ziegert et al., 1999), (Weck et al, 
1999). In these cases, some of the manipulator parameters cannot be identified and just 
a partial robot calibration can be performed. A typical full internal calibration is able to 
identify all the ‘internal parameters’ (relative position of the joints, joints offsets) but 
not the location of the arbitrary ‘user’ frames of the fixed and of the mobile bases (6 
parameters for the base and 6 for the gripper). 
External calibration (also called direct calibration) mainly consists in calibrating the 
pose of the frame attached to the mobile base with respect to that of the fixed base, and 
it is similar to the calibration of serial manipulators (Neugebauer et al., 1999), 
(Smollett, 1996). To perform it, it is necessary to measure the 6 absolute coordinates (3 
translations and 3 rotations) of the mobile base. When the instrumentation measures 
less than 6 coordinates (e.g. when calibration is performed using a double ball bar - 
DBB), some of the robot parameters cannot be identified and a proper complete 
external calibration is not possible. 

2.2. Identification of the number of the parameters 
The number of the parameters necessary to describe a PKM can be very high (e.g. up to 138 
for a 6 d.o.f. Stewart-Gough platform). However with standard geometrical dimension of 
the links, the effect of some of them is usually small and so the corresponding parameters 
can be neglected. A complete discussion of this ‘reduction’ is outside the scope of this paper 
which is devoted to identify all the parameters theoretically necessary. However some of the 
most common situations will be mentioned in Sections 5.2, 6.2 and 7.8. 
The first result that should be achieved is the identification of the number of the parameters 
necessary to construct a MCPC model. 

R revolute joint P prismatic joint SS number of singular links 
S spherical joint C cylindrical joint F number of reference frames 
L number of kin. loops Ji i-th joint E number of encoder (or position sensors) 
Table 1 Symbols and abbreviations. 

 For convenience we report the formula that gives the total number N  of the parameters for 
a generic serial robot

624= ++ PRN  (1) 
while the number of the internal ones is 

624=12= −+− PRNNi  (2) 

In literature, the only available general result for PKMs is due to Vischer (Visher, 1996) who 
suggests to generalize Eq.s (1) and (2) as
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1)6(63= −+++++ FLESSPRN  (3) 

where SS  is the number of the links composed simply by two spherical joints connected by 
a rod, E  is the number of the encoders (or of the joint sensors), L  is the number of the 
independent kinematic loops and F  is the number of the arbitrary reference frames. 
However Vischer does not give a proof of Eq. (3) but simply states that ‘this equation has been 
empirically tested on several examples and seems to be valid...’. However some cases are not 
included and in the following we prove that the correct equation is 

1)6(623= −++++++ FLESICPRN  (4) 

where C  is the number of cylindrical joints and SI  is the number of ‘singular’ links which 
include the SS  links with 1= +SI  (Section 5.1) and the SPS legs with 1= −SI  (Section 5.2). 
As proved in the following, spherical joints do not require any parameter and their number 
is not present in Eq. (4).  
Eq. (4) which works both for serial and parallel manipulators can be explained generalizing 
the Eq. (1) and Eq. (2) given for serial robots. First of all, in the case of serial manipulators 
we get 0=SS , PRE += , 0=L  and 2=F  for external calibration while 0=F  for internal 
calibration and so Eq. (3) reduces to Eq.s (1) and (2). 
Moreover it is evident that, after choosing an absolute reference frame, each further ‘user’ 
frame needs 6 parameters (3 rotations and 3 translations) to calibrate its pose; this explains 
the term 1)6( −F .
To explain the term L6  we initially consider a serial robot with two ‘branches’ (Fig. 1 left). 
Its calibration can be performed considering two kinematic chains 1B  and 2B  from the 
base frame to the two gripper frames (Khalil et a., 1991). Each joint requires the usual 
number of parameters, however since we have two grippers the total number of external 
parameters is incremented by 6 and Eq. (1) is transformed as PRN 2466= +++ . If now we 
‘weld’ link m  to link d , the number of the parameters is clearly unchanged because the 
parameters describing the links geometry are still the same and the 6 parameters just added 
are used to describe the location of the ‘welding’ between the links md − . We conclude that 
for each closed loop we add 6 parameters to Eq. (1). 

Fig. 1. A serial robot with two branches (left) and one with a closed loop (right). 
As a further step we remember that for serial manipulators using the ED&H approach one 
parameter for each link corresponds to the joint variable. Now since in general in the PKMs 
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most of the joints are unsensed, we must remove one parameters for each of them; so the 
term PR 24 +  of Eq. (1) transforms to EPR ++3  (if all the joints are sensed it is PRE += ).
A cylindrical joint can be considered as composed by a revolute joint plus a prismatic one 
so, apparently, it would require 4=13+  parameters. However the direction of the two joint 
axes coincides and so two parameters must be removed; this explains the term C2 .
Universal joints are kinematically equivalent to a sequence of 2 revolute joints, and can be 
modelled accordingly. 
Spherical joints (ball and socket) can be realised with high accuracy and so they can be often 
considered ideal and their modellisation requires only three coordinates to represent the location 
of their center. However spherical joints have 3 DOF and are always unsensed and so we must 
subtract three parameters. As a result we get zero and so S  joints do not appear in Eq. (4). 
The explication of term SI  is more complex and will be analysed in Section 5. At the moment we 
just observe that for SS  links it is evident that the rod length has to be counted as parameter. 
We also observe that PKMs with SS  links hold internal degrees of freedom because the rods can 
freely rotate about their axes. Other ‘singular links’ will be analyzed in Section 5. 

2.3 Comparison between different approaches 
By extending the discussion given for serial manipulators in the first part of the work it 
follows that, since generally in any PKM there are unsensed joints, the Incremental 
approach will produce a model which is not minimum. It is so necessary to refer to the 
ED&H or to the Modified Incremental ones. 
The adoption of ED&H approaches has the good point that the joint variables are explicitly 
present in the model and it is then easy to eliminate the joint offsets of the unsensed joints. 
However it is necessary to define new rules to fix the frames onto the links to take into 
account the presence of S and C joints. Some manipulators present singular cases that must 
be treated in a special way. They may result in the temporary insertion of redundant 
parameters to be removed in a second time. 
On the other side, with the modified incremental approach it is nearly impossible to develop 
an algorithm for a general PKM that automatically generates a ‘minimum’ model. It is 
always necessary to generate a model that contains some redundancy and then eliminate 
them. This operation can be difficult because the jacobian to be analyzed could be quite 
large since it has a number of columns equal to the number of the parameters and a number 
of rows equal to the number of the scalar equations ( 1)6( −+ FL ). As already mentioned a 
Stewart-Gough PKM with URPU legs has 138 parameters and 5 loops producing a jacobian 
matrix with 36 rows and 138 columns. However this procedure can be automatized and it is 
sometime possible to work just on a part of the jacobian as explained for the serial robots in 
the relative chapter and extended to PKMs in Section 6 of this chapter. 

3. An Extended D&H Approach for PKMs 
3.1 Description of the procedure 
The extension to PKMs of the ED&H methodology proposed for serial manipulators is based on 
the adoption of the multi frame approach (Section 9) which requires the definition on each link 
(fixed and mobile bases included) of a frame for each joint. One of them will be called ‘intrinsic‘
frame of the link and the other ‘auxiliary‘ frames of the joint. The univocal definition of the 
intrinsic frame, discussed further on, allows to verify once for all the minimality of the 
parameters used to describe the relative position of the joint auxiliary frames. 
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We indicate with H  the matrices that describe the relative position of two frames embedded onto 
the same link (link transformation) while matrices G  describe the relative location of the frames of 
two links connected by a joint, that is the assembly an the motion of the joint (Fig. 2 and Fig. 3). 
The matrices H  depend on some geometrical parameters called ‘link parameters‘.
The fixed base and the mobile base have an extra ‘user‘ frame. Their pose with respect to the 
intrinsic frame will be described by matrices FE  (fixed base) and ME  (mobile base). 
A PKM with F  user frames and L  loops requires 1−+ FL  kinematics equations: one for 
each (closed) loop and one for each user (gripper) frame to represent its pose with respect to 
the fixed one (‘branch’ or ‘open loop’). For each PKM different alternative choices are 
possible. For example for the PKM of Fig. 1-right three alternatives are possible: one 
equation for each of the two branches 1B  and 2B , or one equation for loop 1L  and one 
equation for one of the two branches ( 1B  or 2B ).

Fig. 2. Transformation matrices between user, 
intrinsic and joint auxiliary frames for the fixed 
base (example of a PKM with 3 legs). The 
auxiliary frame of the first leg coincides with the 
intrinsic frame and so IHF =1 . The matrices of 
the mobile base are similar. 

Fig. 3. Transformation matrices between the 
frames of three consecutive links with 2 joints.
The pose of the joint frame 1,2+iJ  with respect 
to 1,1−iJ  is obtained as 111= ++− iiiii HGHGHM .

The kinematic equations are obtained in matrix form by multiplying all the matrices that describe 
the relative position of the frames encountered by travelling along the considered branches or loops. 
For each branch we follow this path: 

• Start from the absolute user frame and move to the intrinsic reference frame of the 
fixed base. This transformation is described by the matrix FE

• Move to the joint frame of the first joint of the branch (matrix FH ).
• Move to the joint frame embedded on the next link (matrix G ).
• Move to the last joint frame of the same link (matrix H ).
• Repeat the two previous steps until the last link (mobile base). 
• Move to the user frame of the mobile base (matrix ME ).
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When a loop is considered only the joint frames must be considered: 
• start from the last joint frame of an arbitrary link of the loop. 
• move to the first joint frame of the next link (matrix G ).
• move to the last joint frame of the same link (matrix H ).
• repeat the two previous steps for all the joints of the kinematic loop. 

The kinematics equations result as:  

MMknkkkkkFkFk EHGHGHGHEM 2211= for the k-th branch k=1,b

mjjjj HGHGI 211=  for the j-th loop ,1=j (5)

1= −++ FLb

where I  denotes the identity matrix, kM  is the pose of the gripper at the end of the k -th
branch, n is the number of the joints encountered on the branch and m  is the number of the 
links composing the j -th loop. b  and  are the number of equations for branches and 
loops ( 1−≥ Fb , L≤ ). Subscripts k  and j  will be often omitted for simplicity. Matrices 

FE  and ME  are identical for all the branches. 
A complete set of rules to assign the location of the frames is given in the following Sections 
which also discuss the singular cases. 

3.2 Definition of the intrinsic frames 
As already mentioned, on each link it is necessary to fix an ‘intrinsic frame’. The procedure 
is conceptually equivalent to that adopted for serial manipulators when frames are 
embedded on links with the D&H approach. The rules used for the positioning of the 
intrinsic frame avoid the use of redundant parameters. However, those rules must be 
generalized to consider also cylindrical and spherical joints. The necessary rules are 
summarized in Table  2 where the type of the link is identified by the group of its joints used 
to define the intrinsic frame. Table  2 also presents the intrinsic parameters of the links and 
the condition of singularity that may happen. 
In links having several joints, different choices may sometimes be performed to define the intrinsic 
frame all resulting in a different but equivalent model. For example, in a link with two revolute 
joints (R) and a spherical one (S), it is possible to adopt the rules for RR -links or that for RS ones.
Some considerations must be done. C joints are not explicitly mentioned because they follow 
the rules given for the R ones. Moreover PS -joints (spherical joints that move on a straight 
line) also follows the rules of R joints; no parameters are defined in this case for the 
prismatic joint offset which is assumed to be null. Finally, if a link is composed by two R or
C parallel joints only, the Hayati representation has to be adopted. When on one link more 
joints of the same type are present, they can be arbitrary numbered. 
The geometry of some links does not allow a complete automatic definition of the intrinsic 
frame (‘singular cases’). In these cases, some parameters that define the origin position 
and/or the attitude of the intrinsic frame can be partially freely assigned and they do not 
enter in the calibration model. All these singular cases are described in Table  3. 

3.3 Definition of the auxiliary joint frames ( H  matrices) 
For each joint of each link, an auxiliary joint frame must be defined following some rules 
dependent on the joint type: 
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• R and C joints: the axis z  is chosen coincident to the joint axis. The axis x  is chosen 
to lay on the common normal to the joint axis and one axis (generally z ) of the 
intrinsic frame which is not parallel to it. 

• P joints: the axis z  is parallel to the joint axis. The axis x  is defined as for revolute 
joints. Like the standard D&H links the origin of the frame can be freely translated so 
that in the assembly configuration it coincides with the origin of the frame associated 
to the first revolute or spherical joint which follows it in the kinematic chain. 

• S joints: the origin of the frame coincides with the center of the joints and the frame 
axes are parallel to those of the intrinsic frame.

RR -links  
Rules: the iz  axis coincident with the first joint axis, the ix  axis 
coincident with the common normal.  
2 Intrinsic parameters: the distance between the two joint axes 
and the angle among them. 
Singular case: when the axes of the two joints are parallel. 

SSS -links
Rules: the origin of the frame in S1, the axis ix  toward S2, the axis 

iy  in such a way that the z  coordinate of S3 is null.  
3 Intrinsic parameters: the coordinate x  of S2 and the 
coordinates x  and y  of S3.
Singular case: when the three joints are aligned.
RS -links
Rules: The axis iz  coincident with the revolute joint axis, the axis 

ix  toward the spherical joint.
1 Intrinsic parameter: The coordinate x  of the spherical joint.
Singular case: When the center of S is on the axis of R . 

PPS -links
Rules: The origin of the frame in the spherical joint, the axis iz
parallel to P1 joint axis, the axis ix  defined by the cross product 
of the two prismatic joint axes.
1 Intrinsic parameter: The angle between P1 and P2.
Singular case: When the two P axes are parallel to each other. 

PSS -links
Rules: the origin of the frame in the spherical joint S1, the axis iz
parallel to P axis, the axis ix  laying in the plane passing through 

iz  and S2.
2 Intrinsic parameters: the coordinates x  and z  of S2.
Singular case: when the axis of P is parallel to the segment 
connecting S1 and S2.

Table  2. Rules to position the intrinsic frame on a link. 
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SS -links
Rules: the origin of the frame in S1, the axis z  toward 
S2, the orientation of x  and y  axis arbitrary but 
orthogonal to the z  axis.  
1 Intrinsic parameter: the coordinate z  of S2.
1 Free parameter: the rotation around z  axis.  
PS -links
Rules: the origin of the frame in S, the axis z  parallel to 
P , the orientation of x  and y  axis arbitrary but 
orthogonal to z  axis.  
None intrinsic parameter
1 Free parameter: the rotation around z  axis.  
RP -links
Rules: the axis z  coincident to the R joint axis, the axis 
x  in such a way that the P axis is parallel to the yz

plane.
1 Intrinsic parameter: the angle between the joint axes.
1 Free parameter: the translation along z. 
PP -links
Rules: the axis z  parallel to the P1 joint axis, the axis x
in such a way that the P2 axis is parallel to the yz  plane 
( =x  P2 ×  P1).
1 Intrinsic parameter: the angle between the joint axes.
3 Free parameters: the translations along x , y  and z .

Table  3.  Rules to position the intrinsic frames on a link with free parameters (singular cases). 
In all the mentioned cases a constant matrix H  (the ‘link matrix’) can be built to represent the 
location of the auxiliary joint frame with respect to the intrinsic one. This matrix has generally the 
form of D&H-like standard matrices defined by two translations and two rotations. However for 
S joints three translations are required. As usual when a prismatic joint is present, its location can 
be arbitrary assigned and so two redundant parameters are inserted. 
During the construction of the matrices H  for the joints which have been involved in the 
definition of the intrinsic frame some parameters have necessarily a constant null value and 
so they are not inserted in the calibration parameter set Λ . For instance in a link with 3>sn
spherical joints labelled 

sn
SSS ,,, 21  where the intrinsic frame is assigned with the rules of 

Table  2, the matrices describing the joint frames locations are:

),(),(=),(== 333221 yyTxxTHxxTHIH

siiii nizzTyyTxxTH 4=),(),(),(=

where I  is the identity matrix. So we need 2)3( −sn  parameters to describe their relative 
position.
As a further example, in a link with 3 revolute joints R1, R2 and R3 and a spherical one 
(labelled 4), assuming that the intrinsic frame have been defined using the revolute joints R1
and R2, we get  
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),(),(),(),(=),(),(== 333332221 ϕθϕ xRlxTzRhzTHxRlxTHIH

),(),(),(= 4444 zzTyyTxxTH
Note: for all the link types the frame of the first joint coincides with the intrinsic one and so 

IH =1 .

3.4 Joint assembly and joint motions (G  matrices) 
If all the mentioned joint frames are defined with the given rules, R, C and P joints axes will 
coincide with the z  axes of a frame (intrinsic or auxiliary). The relative assembly and 
motion of contiguous links can be then described by the ‘joint matrices’ iG  defined as

jointsfor),,,,,(=
jointsand,for),(),(=

21 S
CRP

++ iiii

iii
qqqzyxRG

zRczTG γ

 where ic  and iγ  are joint coordinates or assembly condition in dependence of the joint 
type (Table. 10 in Section 9) while ),,,,,( 21 ++ iii qqqzyxR  is often represented by the product 
of three elementary rotations around orthogonal axes. 

3.5 Parameters set for the ED&H approach 
The complete set of parameters to be included in the MCPC calibration model is composed 
by increments of all the parameters describing the matrices E , G , H  necessary to write the 

1−+ FL  kinematics equations (Eq. (5)). 
From the set of the parameters must be removed the offsets of the unsensed joints and the 
redundant parameters due to the P joints or the singular SS links. The elimination can be 
performed applying the methodology described for the serial robots in relative chapter and 
adapted to PKMs in Section 6. 
When the external calibration is to be performed it is not necessary to define the intrinsic frame of 
the fixed and of the mobile base. If this alternative is chosen, a joint frame must be defined for each 
joint connected to the base and their position is assigned with respect to the user frame. 

4. Modified Incremental Approach 
When an external calibration is required, the identification of the parameters set to form the 
calibration model can be performed upgrading the modified incremental approach 
developed for the serial manipulators in the first part of this work. 
It is possible to define on each link a number of frames equals to the number of its joints 
minus one ( 1−jn ) and then representing the nominal kinematics of the PKM by a suitable 
number of matrix equations as already indicated by Eq. (5) 

1=
1,=loopeachfor=
1,=brancheachfor=

21

210

−++ FLb
jAAAI

bkAAAAM

mjjj

nkkkkk
 (6) 

These matrix equations are equivalent to Eq. (5) with FkFk HEA =0 , ikikik HGA =  and 

Mnknknk EHGA =  . Eq.s (6) are then updated adding the matrices iB  describing errors in 
the joint location, matrices FE ′  and ME ′  describing the errors in the location of the frames 
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of the fixed and of the mobile frames and the matrices iD  describing the offset in the joint 
coordinates. Assuming that the intrinsic frame is attached to the first joint of each link 
encountered travelling from the base to the gripper we get  

loopeachfor=
brancheachfor=

222111

1112211100

mmm

MnnnnnnF
BADBADBADI

EABDBADADBADBAEM ′−−−′  (7) 

 where the subscripts k  and j  have been omitted for simplicity. If the intrinsic frame is 
attached to the second joint of the link or for i=n the product ii BA  commutes to ii AB .
Matrices FE ′  and ME ′  are identical for all the branches. 
Assuming that the frames are created in such a way that the axes of R, P and C joints
coincide with z  axes, the matrices iB , FE ′  and ME ′  are as follows

),(),(),(),(= iiiii byTaxTyRxRB ΔΔΔΔ βα if Ji+1=R or C
),(),(= iii byRaxRB ΔΔ if Ji+1=P

),(),(),(= iiii czTbyTaxTB ΔΔΔ if Ji+1=S
),(),(),(),(),(),(= kkkkkkk zRyRxRczTbyTaxTE γβα ΔΔΔΔΔΔ′ base frame k=F,M

and nB  has the same form but depends on Jn.
Matrices iD  assume the following form

),(= ii qzRD Δ if Ji=R
),(= ii qzTD Δ if Ji=P

),(),(= 1+ΔΔ iii qzTqzRD if Ji=C
),(),(),(= 21 ++ ΔΔΔ iiii qzRqyRqxRD if Ji=S

Then the Eq.s (7) are analyzed in order to remove from matrices iB  the parameters which 
are redundant to the joint offsets of matrices iD  (Section 6). Finally all the parameters 
describing the joint offsets of the unsensed joints are also removed. 
To reduce from the beginning the number of the redundant parameters to be removed, the 
matrices iB  can be defined taking in account some concepts developed in the HED&
methodology. On each link it is necessary to define the intrinsic and the joints frames, a 
matrix iB  is defined for each joint frame but some of its parameter can be immediately 
removed. The parameters removed are those whose value is implicitly fixed to zero by the 
definition of the intrinsic frame. 
For instance in a link with 3>sn  spherical joints S i , we get  

siiii niczTbyTaxTB
byTaxTBaxTBIB

4=),(),(),(=
),(),(=),(== 333221

ΔΔΔ
ΔΔΔ

or in a link with 3 revolute joints (R1, R2 and R3) and a spherical one (labelled 4), assuming 
that the intrinsic frame was defined using the revolute joints R1 and R2, we get:  

),(),(),(=
),(),(),(),(=),(),(==

4444

333332221
czTbyTaxTB

xRaxTzRczTBxRaxTBIB
ΔΔΔ

ΔΔΔΔΔΔ αγα
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 Note that for all the links we have IB =1  (see for analogies Section 3.3). 

5. Singular Links 
5.1 SS links 
The Fig.  4 shows a SS link connecting link 1−i  with link 1+i . Adopting the modified 
Incremental approach, among the other parameters, it could be necessary to consider 3 joint 
offsets 1, −Δ ixq , 1, −Δ iyq  and 1, −Δ izq  in the joint 1−i  and 3 translation parameters 1+Δ ia ,

1+Δ ib  and 1+Δ ic  in the joint 1+i .
An infinitesimal analysis (Section 6) of the error propagation in the kinematic chain gives 
the following results. The error iaΔ  is equivalent to - izi lq 1−Δ  and icΔ  is equivalent to 

ixi lq 1−Δ ; therefore, iaΔ  and icΔ  must be ignored. The joint rotations 1, −Δ ixq , 1, −Δ iyq , and 

1, −Δ izq , are to be discharged because the joint is unsensed. And so only ibΔ  survives. The 
result is that SS -links require just one parameter (the link length); that is 1= +SI .

Fig.  4.  Redundant parameters on a SS -link. Fig.  5. An actuated SPS leg ( l<<λ ).

5.2 SPS legs 
Fig.  5 represents a simplified scheme of a SPS leg which is often employed in PKMs.  
According to the general formula (Eq. (4)) such a structure would require two 
parameters to be described in fact the prismatic link is actuated ( 1=P , 1=E ). The two 
parameters are the link offset λ  and the length l .   The total link length (the distance 

between the two spheres) is )= 22 ll +′ λ . However in general it is l<<λ  and so ll ≅′ .
In these circumstances the parameters λ  could be neglected, this is taken into account 
assigning the value 1= −SI  to each SPS leg. 

6. Elimination of the Redundant Parameters of PKMs Models 
6.1 Analytical reduction 
As explained in the chapter devoted to serial manipulators, the relation between the error 
SΔ  of the gripper pose and the errors in the manipulator geometry Λ  can be expressed by 

means of the jacobian ΛJ

ΔΛΔ ΛJddddzdydxS T =],,,,,[= γβα  (8) 

For PKM, the identification of the redundant parameters to be removed can be performed 
using the methodology developed for serial robots (see relative chapter). The only difference 
with the case of serial manipulators is that in general each parameter can be present in more 
than one of the 1−+ FL  kinematic equations (Eq. (7)) and so the redundancy analysis must 
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be performed analyzing an extended jacobian ΛJ  formed by the 1−+ FL  jacobian kJ ,Λ

( 11,= −+ FLk ) generated from each matrix equation (Eq. (5))

ΛΛ kJJ ,=

The matrix ΛJ  has 1)6( −+ FL  rows. The i -th parameter is considered redundant to others if the 

i -th column of ΛJ  can be expressed as a linear combination of those of the quoted parameters. 

6.2 Numerical reduction of the parameters set 
The algorithms described in the previous sections lead to a theoretically minimum and 
complete parametrically continuous set of parameters. For some PKMs, the number of 
parameters can be very high. However, as already mentioned in the paper, with particular 
dimensions of the links or when calibration is performed in a limited portion of the working 
area, some of the parameters may have a very limited effect on the manipulator motion and 
also considering the measuring errors their value cannot be reliably identified by calibration. 
We will call them ‘numerically unobservable’ parameters. In other cases two or more 
parameters may have nearly the same numerical effect on the collected data. In these cases it 
is not possible to separate their effects and estimate the correct value of all of them. In 
practice one (or more) of these parameters is considered ‘numerically redundant’. A 
remarkable example is the link offset λ  of SPS legs (Section 5.2). 
In general, it is advisable to remove numerically unobservable and redundant parameters 
from the model to improve the calibration effectiveness because their presence degrades the 
identification of the numerical value of the parameters especially in presence of measuring 
noise or in case of not modelled sources of error. 
A deep analysis of this topics is outside the scope of this paper but it is worth mentioning how this 
subject can be addressed. The basic idea is that, as already mentioned, one parameter is redundant 
if its column of the jacobian matrix can be expressed as linear combination of others. The 
methodology proposed in Section 6.1 based on an analytical analysis of the jacobian guarantees 
the elimination of all the redundant parameters. However, in the case of ‘numerically 
unobservable’ parameters, some columns are theoretically independent to each other but their 
numerical values is very close to this condition. In this case the elimination algorithm must be 
based on a numerical analysis of the jacobian and of Eq. (8) evaluated for all the measured poses. 
One possible approach has been presented in (Tosi & Legnani, 2003). The methodology is based 
on the analysis of the singular values of the jacobian which assume the meaning of amplification 
factors of the geometrical errors. A singular value equal to zero means that there is a certain linear 
combination of parameters which has no effect on the pose of the robot. A singular value whose 
numerical value is different from zero but lower than a prescribed threshold indicates that there is 
a parameter (or a group of parameters) that is ‘nearly’ redundant and whose effect is numerically 
indistinguishable from the others. 
Indicating with S the position of the mobile base, with Q the joint positions and with Λ the 
geometrical parameters we can write 

),(= ΛQFS ΔΛΔΛ
Λ∂

∂≅Δ Sii JFS =
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where F is the direct kinematics and SiJ  is the jacobian evaluated in the i-th configuration. 
The different jacobians evaluated for all the considered m poses as well as the variations in 
the mobile base pose coordinates can be merged in one global equation 

ΔΛΔΛ

Δ

Δ
Δ

Δ Stot

Sm

S

S

m

tot J

J

J
J

S

S
S

S === 2

1

2

1

 (9) 

The global jacobian can be splitted in three matrices by Singular Value Decomposition (Press 
et al. 1993) VUSJ sStot =  converting Eq. (9) in  

** = ΔΛΔ Stot SS

with
T

N
T

tot
T

tot VSUS ΔΔΔΔΛΔΛΔΛΔΔ *=== *
2

*
1

*** λλλ

where *ΔΛ  represents the combined parameters, *
totSΔ  represents the pose error in the 

considered configurations and the diagonal matrix Ss contains the singular values of StotJ that can 
be interpreted as amplification coefficients. If one singular value is lower than a suitable threshold, 
the corresponding combined parameter can be neglected. The threshold Sσ  depends on the 
sensors precision, the manufacturing tolerance and the required final precision. We can define two 
diagonal weight matrices SP  containing the maximum acceptable error for the i -th coordinate of 
the pose and ΛP  containing the maximum expected parameter error for the parameter iλ .
These matrices can be used to normalize the vectors totSΔ , and ΔΛ  as

ΔΛΛΔ

ΔΔ
−

Λ

−

1

1

=

=

P

SPS totStot  (10) 

ΛΔ  is called ‘scaled’ parameters vector. Merging Eq.s (10) and Eq.(9)  it can be found that 
the proposed procedure based on SVD must be applied to the normalized matrices  

ΛΔΔ
Λ

−

Stottot

StotSStot

JS

PJPJ

=

= 1
 (11) 

 In this case, a proper threshold values Sσ  for the singular values depends only on the 
dimension of vector ΛΔ . Indeed, the maximum expected parameter error ΛΔ  may cause an 
error on a coordinate is  of the platform smaller than the acceptable one. We can write

2||||
||||

=
ΛΔ

Δ ∞tot
S

Sσ

 where, for a generic vector A , the norms are defined as |)(|max=|||| iaA ∞  and 2
2=|||| iaA .

From the definition of matrix ΛP  if follows that 1|| ≤Δ iλ  then using the euclidean norm
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N≤ΛΔ 2||||
 where N is the number of the parameters. From the definition of matrix SP  we have  

1=|||| ∞Δ totS
 then, a proper threshold value is  

N
S

1=σ

R P C SI E L F N Reference 

3 1 2 1± 1 6 6  
Stewart-Gough 6[ SPS ] (Jokiel et al., 2000) 0 6 0 0 6 5 2 48 (42 ♣ )
Stewart-Gough 6[URPU] (Wang et al., 1993) 30 6 0 0 6 5 2 138 
3[ CCR ] (Callegari & Tarantini, 2003) 3 0 6 0 3 2 2 40 
3[( RP )( RP ) R ] Section 7.4 9 6 0 0 3 2 2 46 
6[ PSS ] (Ryu & Rauf, 2001) 0 6 0 6 6 5 2 54 
Cheope 3[ P (2 S /2 S )] (Tosi & Legnani, 2003) 0 3 0 6 3 5 2 48 
Hexa 6[ RSS ] Fig. 10 6 0 0 6 6 5 2 66 
Delta4 3[ R (2 S /2 S )] (Clavel, 1991) 3 0 0 6 3 5 2 54 
Table 4. Number of parameters for external calibration ( 2=F ) of some serial or parallel 
manipulators (Eq. (4)). For Internal calibration subtract 12 parameters ( 0=F ). For extra sensors 
add the suitable number of parameters. ♣  generally one parameter for each of the 6 SPS leg can 
be numerically neglected. 

7. Examples: Analysis of Some PKMs 
This Section analysis some PKMs to clarify the presented methodology for the 
automatic identification of the parameter set. The discussion refers to Table 4. The 
manipulators are identified by a code containing the number of legs and the sequence 
of their joints. 

7.1 External calibration of the Stewart-Gough platform with SPS legs 
The parameters set of a standard Stewart-Gough platform with spherical joints (Fig. 6) can 
be identified as follows.

• Fixed base: an ‘user frame’ is created on the fixed base requiring 6 parameters. Then 
the intrinsic frame is defined using the rules given in Table  2 for SSS -links. The joint 
frames are created on the spherical joints requiring 0+1+2+3+3+3=12 parameters 
(Section 3.3). We get a total of 6+12=18 parameters. 

• Mobile base: as for the fixed base we get 18 parameters. 
• Legs: each leg is composed by two spherical joints connected by a prismatic joint. 

Each leg then requires 2=EP +  parameters. 
• Total number of parameters: N  = 2*18+6*2 = 48. As a check using Eq. (4) we get 0=R ,

6=P , 0=C , 0=SI , 6=E , 5=L , 2=F  which confirms 48=N .
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h1=h2=0  (nominal values) 

Fig. 6 Stewart-Gough platform. The 
‘intrinsic frames’ defined on the joints are 
dashed, the ‘user frames’ are continuous. 

Fig. 7 A six-joints URPU leg. 

As a control, in this simple case, the same results can be obtained observing that we need 3 
coordinates for each spherical joints (their coordinates on the bases) plus the prismatic joint 
offsets and inclination errors ( λ  in Fig.  5). 
In the common case in which l<<λ , λ  can be neglected reducing the number of the parameters 
by 6 ( 6= −SI ). Total number of parameters ignoring λ  is then: 42=N . This parameter set has been 
adopted during the external calibration of several PKMs (e.g., J kiel et al., 2000). 

7.2 External calibration of Stewart-Gough platform with URPU legs 
Stewart-Gough platforms are usually realized using universal joints in spite of spherical ones, 
due to their limited performances. Generally, the joints of one base are realized with universal 
joints plus rotational joints, while the others with bare universal joints (Fig. 7). We assume that 
also in this case we are interested in representing the mobile base motion with respect to the fixed 
one in the more general case and so the user base frames can be freely assigned on them. 
On each of the 6 legs there are 5 not actuated revolute joints and one actuated prismatic joint. 
Using Eq. (4) it is 30=R , 6=P , 0=C , 0=SI , 6=E , 5=L , 2=F  and we get 138=N .
Calibrating a so large number of parameters can be a problem but some of them can be 
neglected because URPU legs are usually realized with intersecting and orthogonal joints 
axes; referring to Fig. 7, their nominal value is 0== 21 hh , (Wang & Masory, 1993), (Wang et 
al., 1993). In this case, little errors in some of the structural parameters do not affect 
significantly the mobile base pose (e.g. the relative orientation between joints 21 JJ −  or 

)65 JJ − . As a further example, if the joint inclination changes just a little during PKM 
operation, errors on ih  are un-distinguishable from the offset error of the P joint coordinate. 
These parameters are sometimes neglected during external calibration and the URPU leg is 
modelled as a SPS leg (Patel & Ehmann, 1997). This is not possible when indirect calibration 
is performed using extra-sensors measuring the leg rotations because, for example, the value 
of the joint coordinate of 2J  is affected by its orientation with respect to 1J .

7.3 Stewart-Gough platform calibrated by a double ball bar 
Consider the SPS platform of Section 7 and assume that calibration is performed by a double ball 
bar (DBB) (Ryu & Rauf, 2001). No user frames are defined on the fixed and mobile bases. The 
number of the parameters is then decreased by 12. Since errors can be also present in the DBB or in 
its connection to the bases, 8 further parameters are needed (a DBB is cinematically equivalent to 
an actuated SPS leg). We get: Total number of parameters: N  = 48-12+8=44. 
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If the parameter set is composed by the coordinates of the center of the spherical joints and 
by 2 parameters for each leg (joint offset and )λ , this would give 56 parameters. To achieve 
minimality, the number of parameters can be reduced to 44 with a proper choice of the 
reference frames on the two bases: the origin is located on one sphere S 1 , being the x  axis 

directed toward a second sphere S 2 , and y  axis chosen in such a way that a third sphere 

S 3  lies in the yx −  plane. As a results, the following coordinates error must be neglected 

for each base: xΔ , yΔ  and zΔ  for S 1 , yΔ  and zΔ  for S 2  and zΔ  for S 3 .

7.4 3[ CCR ] PKM 
Fig.  8 represents a 3-dof PKM (Callegari & Tarantini, 2003) witch has three legs with two 
cylindrical and one revolute joint. If the axes of the cylindrical joints of each leg is 
orthogonal to the axes of the joints connecting the leg to the fixed and mobile bases, then the 
motion of the mobile platform is a pure translation. This PKM can be actuated by the 
prismatic joint located in the legs or those located in the base. We get a total of 40 
parameters (Table  2). 
The cylindrical pairs can be realized with true C pairs or by a combination of a R and a P
joints; in this case it is not possible to assure that their joint axes are exactly parallel and so 
the number of parameters increases to 46 (see manipulator 3[( RP )( RP ) R ] in Table 4). 

Fig.  8 A 3 DOF PKM with CCR. Fig.  9. A PKM with PSS legs.

7.5 6-dof PKM with PSS legs 
The analyzed PKM is described in (Ryu & Rauf, 2001). It is similar to the Stewart-Gough 
platform but the legs have constant length (Figure 9). The mobile base is actuated by moving 
the ends of the legs on prismatic joints of the fixed base. 
For the external calibration 5 parameters are necessary to define the position of the moving 
end of each leg (4 to define the joint axis, 1 to define the position of the spherical joint on the 
line), 1 parameter is necessary for each leg (its length), 3 parameters are necessary for each 
spherical joint on the mobile base. Total number of parameters: N =6*(5+1+3)=54. This number 
is confirmed by eq. Eq. (4) and Table 4. 
If indirect calibration is performed by a DBB, in analogy with what discussed for the 
Stewart-Gough platform, we get: Total number of parameters: N =54-12+8=50.
If we have only 3 slides each one moving 2 spherical joints we get the Cheope manipulator 
(Tosi & Legnani, 2003) which has 48 parameters (Section 7.8). 
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7.6 PKM with RSS legs (Hexa manipulator) 
Equations: Let us consider a generic 6[ RSS ] PKM with rotational actuated joints. The i -th leg is 
shown in Fig. 10-left. According to Eq. (4) and to Table 4, the model requires 66 parameters. 
Adopting an ED&H model, the complete transformation matrix M , describing the position and 
the orientation of the gripper with respect to the reference frame, comprehensive of all possible 
geometrical and joint offset error parameters of the i -th leg, is (Eq. (5), Fig. 10-right):

MMiiiiiiFiF EHGHGHGHEM ⋅⋅⋅⋅⋅ 32211=

 while for the modified incremental approach we need for each leg

MiiiiiiiiiiF EABBADBADBAEM ⋅⋅⋅⋅⋅ 3322211100=

If internal calibration is performed, some error parameters, modelled by matrices B  and D ,
can be neglected, and IEE MF == . For a comparison between the available alternatives see 
Table  5, Table  6, Table 7 and Table  8. 
Internal calibration: An intrinsic frame is defined on the fixed base considering the revolute 
joints of leg 1 and leg 2 and on the mobile base considering the spherical joints of legs 1, 2 and 3. 

Fig. 10. Reference frames and transformation matrices for nominal kinematics on i -th leg of a 
RSS PKM. The actuator is on the R  joint. 
Internal Parameters 
Leg Fixed Base R Joint RS Link RS Link SS
i FiH iG1 iH1 iH 2 MiH
1 - qc ΔΔ , aΔ aΔ -
2 ϕΔΔ ,l qc ΔΔ , aΔ aΔ aΔ
3 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ ba ΔΔ ,
4 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
5 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
6 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
External Parameters 
Fixed Base FE γβα ΔΔΔΔΔΔ ,,,,, cba
Mobile Base ME γβα ΔΔΔΔΔΔ ,,,,, cba
Table  5. The 66 parameters (54 internal, 12 external) of the RSS PKM (ED&H Model).
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Internal and External Parameters 
Leg Fixed Base R Joint RS Link RS Link SS
i FiH iG1 iH1 iH 2 MiH
1 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
2 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
3 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
4 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
5 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
6 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
Table  6. The 66 parameters of the RSS PKM (ED&H Model, no intrinsic frames on the fixed and 
mobile bases).
Internal Parameters 
Leg Fixed Base R Joint RS Link RS Link SS
i iB0 iD1 iB1 iB2 iB3
1 - qΔ ac ΔΔ , aΔ -
2 αΔΔ ,a qΔ ac ΔΔ , aΔ aΔ
3 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ ba ΔΔ ,
4 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
5 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
6 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
External Parameters 
Fixed Base FE γβα ΔΔΔΔΔΔ ,,,,, cba
Mobile Base ME γβα ΔΔΔΔΔΔ ,,,,, cba
Table 7. The 54 internal and the 12 external parameters of the RSS PKM (Modified Incremental 
Model).
Internal and External Parameters 
Leg Fixed Base R Joint RS Link RS Link SS
i iB0 iD1 iB1 iB2 iB3
1 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
2 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
3 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
4 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
5 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
6 βα ΔΔΔΔ ,,, ba qΔ ac ΔΔ , aΔ cba ΔΔΔ ,,
Table  8. The 66 parameters of the RSS PKM (ED&H Model, no intrinsic frames on the fixed and 
mobile bases). 

On the RS links an intrinsic frame is constructed with the rules given in Section 3.2. The 
parameter error aΔ  is the link length. Each revolute joint requires the parameter cΔ
(translation along the joint axis) and the joint coordinate offset qΔ . On the SS link only the 
link length error aΔ  is to be considered because the spherical joints are not actuated and 
they do not require any parameter. 
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External calibration: For external calibration, 12 more parameters are added to describe 
matrices FE  and ME  containing the errors in the pose of the user frames with respect to the 
intrinsic ones (compare Table  5 and Table 7). 
As a second alternative, we can omit to define the intrinsic frames on the two bases and errors of 
the joints can be defined with respect to the user frame ( IEE MF == , Table  6 and Table  8). 

7.7 Delta 4 PKM 
 The delta robot (Clavel, 1991) can be obtained by merging two-by-two the contiguous RS
links of the 6[ RSS ] PKM described in Section 7.6. In this case we get 3=R , 0=P , 6=SI ,

5=L , 3=E , 0=C , 6= −SI  giving a total number of parameters 
54=1)(265536003*3= −⋅+⋅+++++N  for external calibration (Table  9). 

Internal and External Parameters 
Leg Fixed Base R Joint RSS Link SS Link Mobile Base
i FiH iG1 iH1 iH 2 MiH
1 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
2   cba ΔΔΔ ,, aΔ cba ΔΔΔ ,,
3 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
4   cba ΔΔΔ ,, aΔ cba ΔΔΔ ,,
5 ϕθ ΔΔΔΔ ,,, lh qc ΔΔ , aΔ aΔ cba ΔΔΔ ,,
6   cba ΔΔΔ ,, aΔ cba ΔΔΔ ,,
Table  9. The 54 parameters of the Delta4 PKM (ED&H Model, no intrinsic frames on the fixed 
and on the mobile bases). 

7.8 Calibration of the Cheope manipulator 
The Cheope manipulator (Fig. 11) has three slides. Each one moves two spherical joints on a 
linear track. Six spherical joints are located on the mobile platform and 6 rods connect the 
spherical joints of the platform with those of the slides. The PKM has three translational 
DOF. Other configurations, not described in this paper, may use the forth slide and an 
optional seventh rod (Tosi & Legnani, 2003). 
As already mentioned in Table 4 Cheope requires 48 parameters for external calibration and 
36 for internal. In practice, as mentioned in Section 6.2, many of these parameters may have 
a limited influence on the manipulator motion and so they can be eliminated from the 
calibration process. This is quite useful especially in presence of noise in the measures. 
It is important to note that in many circumstances it is more important to consider the 
combined effects of some parameters rather than their individual effects. For example 
in Cheope, the average (and the difference) of the length error of each pair of rods are 
more significant than the individual length errors. The calibration will then be 
performed using suitable linear combinations of the parameters rather that using the 
individual parameters. 
The extraction of the reduced set of parameters to be considered as well as the generation of 
the combined parameters can be automatically performed on the bases of the procedure 
explained in Section 6.2.
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Fig. 11. Photo of the hybrid robot ‘CHEOPE’ and scheme of the parallel kinematic part. 
Figure 12 and Figure 13 show the singular values of Cheope respectively for external and 
internal calibration. For each case three different situations are investigated: a) when both 
position and rotational errors of the mobile base are important, b) when only position errors 
are of interest, c) when only rotational errors are considered.

 a) T
ppp zyxS ][= ψϕθ  b) T

ppp zyxS ][=  c) TS ][= ψϕθ

Fig. 12.  Singular values of matrix StotJ  in the case of external calibration: (a) complete pose, 

(b) position only, (c) rotation only; 0.14=481/=Sσ

a) T
ppp zyxS ][= ψϕθ  b) T

ppp zyxS ][=  c) TS ][= ψϕθ

Fig. 13. Singular values of matrix StotJ  in the case of internal-calibration: (a) complete pose, 

(b) position only, (c) rotation only; 0.17=361/=Sσ .

The dashed line represent the threshold Sσ , only the parameters associated to the higher 
singular values must be considered. For example, when both linear and angular errors are of 
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concern, the external calibration requires 30 combined parameters (Figure 12-a) while the 
internal one can be performed with 24 combined parameters only (Figure 13-a).  
The thresholds have been evaluated considering manufacturing errors and joint sensor 
offsets with a maximum magnitude of 10-5 m, required PKM accuracy of 10-4 m, measuring 
error of 10-5 m for linear sensors and 10-5 rad for the rotational ones. 

8. Conclusions 
The paper has presented a complete methodology for the identification of the geometrical 
parameter set necessary to describe inaccuracy in the kinematic structure of a generic 
parallel manipulator. 
The methodology, that can be applied to any existing PKM, supplies a minimum, complete 
and parametrically continuous model of the manipulators. It can be applied both to intrinsic 
(internal) and extrinsic (external) calibration. 
The methodology identifies the parameters describing geometric errors of the manipulator, 
joint offset errors and errors in the external devices used for calibration (e.g. double ball 
bar). Furthermore, a general formula to determine the total number of necessary parameters 
has been presented and discussed. 
The paper shows how for some manipulators the number of parameters that are theoretically 
necessary is quite large and a numerical methodology to remove the less significant is mentioned. 
The final methodology is general and it is an algorithm, this means that it can be 
automatically applied to any given PKM. 
Numerous practical explicative examples are also given. 

9. Appendix. D&H Notation: the Multiple Frames Extension 
In the first part of this work it has been mentioned how the four D&H parameters of one 
link represent its geometry, the assembly condition with the previous link and the relative 
motion with respect to it (joint coordinate). In some situations it is advisable to separate 
these factors (Sheth & Uicker, 1971) defining a notation with a constant part representing the 
rigid link and its assembly and a distinct variable part describing (the joint) motion. This is 
particularly necessary in the calibration of PKMs where there are links with more than two 
joints. Standard D&H notation for a link with jn  joints requires the definition of 1−jn

frames attached to it and the so 1−jn  sets of parameters are generated. As an example the 
case of a ternary link is reported in Fig. 14. 
In the quoted example, the frame i  is embedded on link A, while frames j  and k  are 
placed on link B. The link assembly and the joint motion between the links A - B  are 
represented by the link offsets jh  and kh  plus the rotations jθ  and kθ . The shape of 
the link is described by the two lengths jl , and kl  plus the two twists jϕ  and kϕ  and 
by the difference between the two rotations jkB θθθ −=  and of the two link offsets 

jkB hhh −= . To separate the constant and the variable parts Sheth and Uicker propose 
the adoption of a further frame to be attached on the link B in a free location with the 
only constrain to have its z  axis coincident with the joint between the links A - B . In 
this paper we give rules to assign the location of this frame in a convenient way for 
calibration purposes (Section 3.2). 
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Fig. 14 The Denavit and Hartenberg parameters for a ternary link.  

In the case of R , P and C joints, the transformation between the frames i - j  and i - k  can 
then be represented as

( )
( ) ),(),(),(),(),(),(==

),(),(),(),(==

kkBBjjBkjik

jjjjBjjij
xRlxThzTzRhzTzRHGM

xRlxThzTzRHGM
ϕθθ

ϕθ
 (12) 

 The term ),(),(= jjj hzTzRG θ  is common to both equations and is called ‘joint transformation’. 
The product of the other terms is called ‘link transformation’ and will be indicated by H . Each 
joint has one joint transformation and each link has 1−jn  link transformations. If we define on 
the link B a frame labelled (B) having its axis z  coincident with the joint between the links A - B
and its x  axis coincident with axis jx , we can interpret the common term G  of Eq. (12) as the 

transformation between frames i - B  and the others (H ) as description of the link shape. For 
simplicity, the frame B is not shown in the figure. The exact interpretation of jθ  and jh  depends 
on the joint type as shown in Table. 10. 

J  Type jθ jh

R Joint Variable Assembly 
P Assembly Joint Variable 
C Joint Variable Joint Variable 

Table. 10 Meaning of coordinates jθ  and jh  in the joint matrix jG  of Eq. (12).

In this paper, the frame B is called intrinsic frame of the link while j  and k  are (auxiliary) 
joint frames. Depending on the number and on the type of the joints of the links, the rules to 
assign the intrinsic frames must be adapted for calibration purposes in order to avoid 
singularities and redundancy (Sections  3.2 and 3.3). 
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