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Abstract

The European standard EN 1065 - to which most current Europeaduction appears not to have
been upgraded - addresses the design and the manufactiisidigistable telescopic steel props, an inter-
est bearing economic sector. The present work aims at sgamirfficient strategy for the assessment of
the ultimate strength of steel props according to EN 1065deoto identify the ideal cost-performance
ratio in the real life production.

1 Introduction

The European standard EN-1065 specifies materials, deigirements, and protection alternatives against
the corrosion together with validation methods using baticwations and tests for adjustable telescopic
steel props (from now on called simply props) with threadingered or uncovered. It addresses their pro-
duction, design and validation through calculations amststeruling an interest bearing economic sector.
Noteworthy, the current European production generallysdus comply the standard in terms of dimen-
sional requirements: therefore the optimal cost-perforcegroduct design seems to be mandatory. Since
the raw material cost is of fundamental incidence, the mahiweight has to be pursued in the production.
This target can be reached through an effective evaluafitimeocarrying capacity: this is the aim of the
present note. It concerns the structural design of propsrder to minimize the safety facter> 1 with
respect to the collapse mechanisms [1] defined in the starktrl 065.

Paragraph 2 summarizes the standard requirements for signdsf the tubes; the classification based
on the strength; the configurations of the components of elads, which cause strong dimensional con-
straints to the production; the criteria for the evaluatidrthe ultimate loading capacity and the collapse
mechanisms considered by the standard; the static motielgletscription of the constructive flaws and
their modeling; the tolerances; the materials.

The next paragraph deals with an algorithm for the evalnatfdahe carrying capacity. It stems from the
interpretation of the non linear constitutive law that migdbe base of a prop. The algorithm allows: i) the
exact description of the “three steps” structural evoluti) the Eulerian critical loads; iii) the evaluation
of the loads capable to activate each collapse mechaniamglened by the standard: the lowest of them is
defined as theltimate strengttof a prop. This analytical approach seems to be charadtavfthe present
note, whereas different methodologies have been auttieeliaproposed in the literature [2].

The algorithm is finally applied in paragraph 4 to the evabraof the carrying capacity of a prop, with
features taken from the real life production. A critical bus#s of standard EN-1065, concerning subjective
interpretations by the designer in the evaluation of theyirag capacity, concludes the work together with
possible further developments.



2 The standard EN-1065

2.1 Classification, strength features

Five classes of prop#\{E) are established. For each type the standard defines thedozapacityR,
for prop clasg, at the current extensidn

lm'x lm'x

Raxr = 51,0 l; <44,0kN ; Rg . = 68,0 l; <51,0kN (1)
lm'x

Rcr = 102,0 l; <59,5kN; Rp = 34,0kN ; Rej =51,0kN 2)

2.2 Materials and components

Materials must be in agreement with the existing Europesrdstrds. All the components must be protected
against the corrosion through criteria which affect theiglestion of a prop: the EN-1065 considers five
protection methods, classified according to the manufagjur

The transversal tube sections must be selected accordihg faternational reference standards. For
the props in clas8, C, D, andE the nominal thickness of any tube (tolerances included)treaso
smaller thar2.6 mm; for A class props, it must b23 mm at least. An overlap between the internal and
that external tube df00 mm or more is mandatory when the prop is completely extended.

A device is compulsory to avoid that the outside and intepaats of a prop are separated by an invol-
untary action. A minimal length 100 mm between the final part of the outer tube and the internal gart o
the base when the prop is completely closed - is requireddm dlie hand crushing.

2.3 Design guidelines

The ultimate strengti®, ... of a prop by no means can be lower then the loading capdjty at the
maximum extensiom,,q,. For the props classes, B, andC R, ..: > R, must be also tested at any
intermediate configuration, including the configuratiompbetely closed; tests must be executed with the
inner tube downward as well.

The structural schematization defined by the EN-1065 isategiin figure 1, in case of covered and
uncovered threading. The overlapping zone is modeled byaheemporary presence of the inner and outer
tubes, relatively bonded by a hinge (located at point C bydiadce of length regulation) and a frictional
constraint (at point B of contact among the two tubes). Inhus opinion this last issue is not sufficiently
clear: in the present note a perfect constraint has beeldewad as in figure 1.

Production defects are modeled as follows. An eccentrigitat the load application point - taken
as independent on the geometry of the prop and of its baseal &mu0 mm; an inclination angle\yq
due to the outer/inner tube spacing and to the length of theahoverlapping zorfe an initial sinusoidal
configuration with a maximal inflection ogé—, being! the actual prop length. Props must be designed
againstbuckling of the tubegaking into account the influence of the actual configuratia the internal
actions (according to the second order beam model). Thaaah of the actions in the tubes must follow
the principles of elasticity, assuming that the materidldséor is linear at all the tension levels. The stress
state in the transversal sections of the tubes can be ceddutathe framework of perfect plasticity, up to
the rise of a plastic hinge.

According to the standard, the slope of the prop base mubtesgiaring the loading process, simulating
the progressivéilure of a real supportthis is one of the three collapse mechanisms indicated byl &55.
The mechanics of such an evolution is summarized in a toabielastic constraint, ruled by a non linear
constitutive law - see figure 2 - between rotatipn of the base and momet,,;,,. An eccentricity
ev.0 = 0,40 D; models initial defects in the prop b&seBy the action of external loads the prop base is
free to rotate up tq, = 19¢9. Any further rotation is prevented until the rat%ﬁ\;ﬂ reaches the limit
valueey, core = —0,25 Dy. For higher values of the ratid/,,,:»4 increases linearly with the base rotation

1Apo must be evaluated from the nominal device sizes; see an éxamgection 4.
2For plane bases, the base thicknesan be considered as a part of the effective diamBter= D + 2¢ having denoted wittD
the outer diameter of the downward tube



Figure 1: Structural modeling for prop design. In the présere a perfect constraint has been considered
at point B instead of a frictional one. Distanéés actually vanishing: it must be conceived as a graphical

artefact. Constitutive law(y) is described in figure 2. Throughout the paper, vertical lgas denoted by
the usual letteP.
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Figure 2: Prop base modeling by means of torsional consttdip, ;,,, versusy.

increment with stiffnessc, = 3e07 ]\’Tﬁjf up to a failure value which corresponds to a failure ecceityri
ep,1imit = —0,50 Dy.

S3This is true only for given axial loadV. See a remark in the conclusion.



Flexural collapsés the third mechanism provided by the EN-1065. The plastiailal strength/,;
must be reduced according to the equation:

N
]\/[pl,N = Mpl COS <E > (3)

2 Ny
in order to take in to account the axial lo&d effects. In (3)M,,;, x denotes the reduced plastic flexural
strength,M,,; the plastic flexural strength of the tube sectid¥), the compressive strength of the tube
section.

3 An algorithm for ultimate strength assessment.

A three step algorithm is here described for the prop dedigit, each step corresponds to a branch of the
constitutive law for the prop base torsional constraint), as depicted in figure 2.

In the presence of external actions that induce rotatignkbower than1?¢9, the prop base torsional
constraint has null stiffness and corresponds to a startdage @nalysis #). Once the limit rotation
v, = 19¢9 has been reached, any further rotation is prevented %ﬁjﬂ = ep,core- 1IN SUCh a step
of the proceduregnalysis #2 the spring stiffness is unbounded and the torsional caimstis equivalent
to a full constraint with an imposed rotatian, = 1¢9. Finally, when external actions induce a ratio
% > epcore (@nalysis #3, the torsional stiffness is constant and equatto= 3@7%. This

analysis runs untiIMS‘J’Vﬂ = ep,1im, at which the prop fails due to ttexhausted support strengthilure
mechanism.

At any given prop geometry, three sets of admissible loaglslafined, one for each analysis. The prop
falls into the first set if0 < P < Pjacq; analysis #2 is required faP,acs < P < Py, Whereas the last
analysis runs for;,,, < P < Pyq. Accordingly, the external load is increased from a nulliahivalue
until P = Pyq; and, within each interval, internal stresses and stramsleduced from the corresponding
structural schematization. Figure 3 summarizes this patbasoning.
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Figure 3: External load intervals for the proposed algomit®; aeq, Py, € Ptq: depend on geometry and
on the material properties.



To evaluateP,aeq, Pim € Prqi, the structural schematization is subdivided in partsassng the
outer from the inner tube, as in figure 4. TH& interval is the non-overlapping part of the downward
tube, wherea®3C is its overlapping part. SimilariypDC' is the non-overlapping part of the upwards tube,
whereagU B is its overlapping part.
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Figure 4: Notation and elastica configurations.

Functionsv,, (s) withn = AB, BC,CD, C B describe the prop axis (small) deflection in each part: the
Bernoulli-Navier equations of bending read:

d2 el M P
d:; - E(SI ) n = AB, BC,CD,CB (4)

- see also figure 4. Boundary conditions (8 for analysis #1%fat analyses #2 and #3 which are over-
constrained) can be derived from continuity and constraiquirements. For all the three analyses, a linear
system of equations comes out; once solved, the elasticilootior* v¢' can be recovered as a function of
the external load P.

The values ofP4eq, Piim € Prqi Can be thereafter straightforwardly evaluated. By impgsimotation
of 1 degree at the bottom hinge in analysis #1, the valu® abrresponding taP, .., is recovered. By
imposing% = ey core at the bottom full constraint in analysis #2, one evaludlgs. Finally, P
comes out in analysis #3 by imposiﬁé‘ﬁ\;ﬂ = €p,limit-

If the loading capacity?, . - evaluated from equations (1-2) - is lower thEp.,, the displacements
and bending moment must be deduced from analysis #P;dif, < R, < Py, they turn out from
analysis #2 and iP;,,, < Ry 1 < Pyqq from analysis #3. 11P¢,;; < R, then the prop cannot avoid the
failure due to the exhausted support strength: geometrpanthterials must be modified properly.

Once the bending moment (s, P) has been deduced from the structural schematization pergai
to R, , safety against flexural collapse requires théts, P) < My y forany0 < s < [, with M, n
evaluated by (3). Moreover, structural stability requitiest R, , < Pr where Pg denotes the Eulerian
loacP of the scheme pertaining ®, ; - see figure 4.

4EN 1065 standard defines the total deflectigras the sum of the elastic contributioff, of the initial sinusoidal deflections:™
and of the deflectioni™° due to the inclination angl&.¢o. These last two displacement fields do contribute to the ingndoment
within the second order theory.

SEvaluated at the singularity point of Bernulli-Navier laresystem matrix: see equations (10-17) for the examplediiosed.



4 An application

Assumingl = [,,4, and the inner tube upwards, the ultimate strength oA&b steel prop is evaluated.
Materials for both tubes is S355JR (Young modultrs210GPa, yield strengtli,=355MPa). Geometry
parameters read - see also figure 5: maximal exterlgion = I, + ., + [; = 4000 mm; overlapping
lengthl,,, = 300 mm; holes diametetl;, = 18 mm; distance between holes, = 100 mm; diameter
at the end of the inner tubg, = 50.5 mm; inner diameter of the threadi, = 54.5 mm, base thickness
t=6mm.

Outer tubeparameters: outer diametBy, = 60.9 mm; effective diameter at the bage,, = D, +2t =
72.9 mm; thicknesg, = 2.3 mm; lengthi, + [,,, = 2100 mm.

Inner tubeparameters: outer diametBy, = 52.3 mm,; effective diameter at the bag&; = D; + 2t =
64.3 mm; thicknesg; = 2.3 mm; lengthl; + [,,, = 2200 mm.

Figure 5. Modeling of the two tubes overlapping. Hemi, is the angle between the tubds; the
overlapping lengthd, inner diameter at the end of the outer tugputer diameter at the end of the inner
tube

Parameterd, e d, (see figure 5) play a basic role in the evaluation of anlyl®, between the tubes;
making reference to figure the deflection due to the inclination anglep, - denoted withyi"¢(s) - reads:

VL (s) = me - s vg’é( )=11.94+m,-s vglé(s) =m;-s vg’é( )=12.84+m; s
wherem, = tanpy = 4 = 0.00661rad andm; = tanyp = ¢p = 0.00672rad (see figure 5). The
standard does not indicate an algorithm to evalustg, the following approach has been pursued. The
tolerances at the top and at the bottom between the two akftices are defined as:

Gvott = do — dp 5 Gtop = ds — D

having setl, the inner diameter of the outer tube ahlidthe outer diameter of the inner tube. Moving from
the vertical position, the tubes relatively rotate aboethinge in figure 1. Geometrical analysis lead to the
following first order approximated (i.ean ¢ = ¢) equations:

(lo+lm)'(px4_gt%:i'§0D (5)
lo-pa= (i +lm) pp — Lt

whose solution yieldg 4 andyp, whenceAy, = ¢4 + ¢p.
The initial sinusoidal deflection®™ (s), with notation of figure 4, reads:

sin __ 1 sin __ 1
Vap = lgb%T sin —— mas s VBC = 500 fln (LAB +s)
sin _ lmaex SN — lmae
UDC = 7500 E’lnl o (lmaz — $) VB = 500 Slnl . (lmaz — Lep — )



The involved tubes geometry has an impact on the inertia mtsrad the tubes section. For the outer
tube, the section is a ring with inerti&,, = 182033 mm?*. For the inner one, the standard EN-1065
provides a special procedure for inertia evaluation, surized in appendix 11;, = 87587 mm* comes
out.

According to the Eulerian theory of beams, one gets the ikesaftirces of figure 4. In analysis #2 and
#3, X stands for the over-constrain force at the prop base. Traioeaforce H has to be evaluated in
the deformed configuration as a function of the external IBadf deflectionvpc(Lep) at pointC and
eventually ofX .

Inanalysis #1 0 < P < P, 4., - the Bernoulli-Navier equations (4) read:

2
lmlll' .
+ eb70) _ %ap sin 7 —> (6)

h(5) + ahsoan(s) = —ads (mes (e eno Bomet ginr -

lmax

lmae . L + s
ho(s) + apumols) = —ady 2 LAE

()

lmax

lmaz . lmax - L L S
+a?43 vpe(Lep) + sin eD . +m; Lep + e — D (et —epo) | —+
500 lmaa; lmam LBC

L
—(er — eb,o)’?Bi—i_S —epo— 11,9 —m, s]
" 2 2 S 2 lmaw . lmam - S

vpo(s) +agpvpe(s) = agp | (e — eb’o)l— —m;s—e | —aop 200 sinm 7 (8)

S lmax . lmaz - LC
vhp(s) = —agp <1 - L—BC> {UDC(LCD> + 500 ST Py ()]

Lep
+m; Lep +er — (er — eb,O)l

with o2 5 = ﬁ eat, = an Eight boundary conditions are mandatory to solve probl®)(
vap(0) = 0 (20)
vap(Lap) = wvpc(0) (11)
vpe(0) = vip(Lan) (12)
vpc(0) = wvep(Lpe) (13)
vpc(0) = 0 (14)
vpc(Lep) = weog(0) (15)
vep(0) = vpe(Lep) (16)
vep(0) = wvpe(Lpe) a7

The limit load P, ., for analysis #1 satisfies the conditiofy; (0) = 155 it amounts toPyac, = 5,49 kN.
By imposing a null matrix determinant in the system of equagi(10-17) the critical load for analysis #1
turns out to beP., ; = 15,32 kN.

Algorithms for analysis #2 and #3 follow the same path of oe&sg. They require a further boundary

condition because of the over-constraint. In the seconeraetthe rotation at the base must be one degree.
™

”143(0) = 180 ;

In the third scheme, the moment at the base is related to thgamw in the spring by means of elasticity
constant; - see figure 2:
{ _ (eb,O + eb,core) P ™

!/ — _ -
vap(0) = -7 et T 180

The transition between analysis #2 and #3 is stated by thditomm
UQXB (0) = 1LSO — X = —P(ep0 + ebcore)



whenceP;,, = 10,25 kN. The support strength of the prop is exhausted wes —P (ep 1im + €5,0),

and Py, turns out to be 3, 64 £ N. By imposing a null matrix determinant in the system of nioehdary
conditions, the critical loads for analyses #2 and #3 conte ®hey amount taP,, » = 29,44 kN and
P..3 =21,45kN.
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Figure 6: Comparison between the plastic flexural streaghy and the (absolute value of) actual bending
moment.

The ultimate strengtii®a ..: of a prop by no means can be lower then the loading cap&uity evalu-
ated from equation (1):

lmax 4
; = bl. =51.0—= =12.75kN
Rar =510 2 51.0 6 (6]

In view of the inequality:

Raj =12.75kN < 15.32kN = Pepy = min_ Pepp (18)
it can be concluded that the ultimate strength is adequat@stghe failure due to structural instability. It
is also adequate against failure at the base of the propefogb

Ray = 12.75kN < 13.64kN = Pjay (19)

Finally, becausé’;,,, < Ra r < Ptqi, itis mandatory to check that the bending moment dul te Ra i

in analysis #3 is lower than/,, y at all points of the prop. The plastic flexural strength, adow to
equation (3), amounts td/,; y = 2629226 Nmm for the outer tube and td/,;, y = 1280789 Nmm for

the inner one. A plot of bending moment versus the plastiafigdstrength is represented in figure 6. Its
analysis allows to conclude that, at the maximum extensfenanalyzed prop is in agreement to standard



EN-1065. The analysis of the carrying capacity accordirigNe1065 is mandatory at the minimum length
and at the most unfavorable intermediate configuration dis ealyses must to be repeated positioning
the prop with the internal tube downward.

It seems interesting to plot (figure 7) the elastic contidouto the deflection: the effect of the constraints
imposed in the three phases of the load process is cleamdanalysis #1 the rotation at poidtis free,
while it is prevented in analysis #2: in the latter, the slopéhe deflection curve at poit in figure 7 is
constant and equal t*?. The deflection at the end of analysis #2 (corresponding texternal load of
about75% of Py,;) is abouts8% of the ultimate deflection. As expected therefore, most efdéflection
takes place in analysis #3.

v(s)
[mm] maximal deflection trajectory

50 y

B C )
Abscissa on the tubes

Figure 7: Elastic deflection®! (s) [mm] as a function of the external load up to the carrying capagity; .
One notes - at poir - the effect of changing constraints in the three analyshe.nbn rectilinear trajectory
of the point of maximum deflection is noticed, whose knowkedgems of interest, for instance, in order to
the deflection measure in the evaluation of the carrying@aptnrough experimental tests.

5 Conclusions

Target of this note was the design of adjustable telescop@t props, evaluating their carrying capacity in
agreement to the standard EN 1065. The carrying capacitgfisetl by the standard as to the minimum
value of the external load which is able to activate one offthlewing three mechanisms: the collapse
due to Eulerian instability [1], to exhausted support gjtbnand to flexural failure of the tubes. For the
evaluation of the carrying capacity a strategy was sugde#tstems from the non linear modeling of the
torsional spring that aims at reproducing the prop basewehar he algorithm analytically describes the
evolution of the structural response while the externatl lmecreases from the initial null value up to the
loading capacity?, ., required to be lower than the ultimate strengtf1,..

The methodology described in this work has been implemeintedcomputer code, named PrOpti-
mize. The code was successfully used for the optimization of teel prop production of an Italian

6A companion code, named PrCertifier, has been used for ttiiozion according to the Germany DIN-EN-1065 standardthB



company: in the set of the props in agreement with EN-1065jrmim weight props were determined.
The optimum products were subject to further constraimsnfoercial dimension of tubes, further com-
pany requirements): the outcomes of beyond 200.000 pessibps are not publishable. In section 4 an
application was shown with data concerning the real pradoct
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Figure 8: A comprehensive plot of bending moment [kN mm] ia thbes at different tube lengths [mm]
and a comparison with/,,; n (the upper plateau) defined by formula (3). The plot, one efahtcomes
of code PrOptimizer, refers to a C30 test with outer tube deard. Red curves refer to the minimum
extension, whereas yellow curves to the maximum one.

In conclusion, it might be useful to highlight a few issuesttie standard which require subjective
interpretations by the designer in the evaluation of theyiiag capacity. Thestructural schematizatioof
figure 1 is not of immediate comprehension in the tubes oppitey zone neither from the graphic point of
view, in particular the crossing of the tubes, nor from thehamics - the frictional constraint description
is largely inadequate. The standard does not give any direfdr the evaluation of the tilt anglyq; the
eventual relationship between the angle at the bagehe sinusoidal initial deflection, and the modeling of
the prop support is not specified. In the latter, there is kilathe norm of the motivations for the adopted
constitutive law and its independency on the base and oftbestconfiguration, at least with reference to
the spring constant = 3e7Nmm/rad. It seems to of interest noting that such a constitutive femely:

Mspring . (eb,O + eb,core) N i
Ct Ct 180

Pp = —

is linear for a given external loa®. Whereas the load increment history is taken into accotetyeal
relationship between momeff;,,;,, and rotationp, is no longer proportional - see figure 9.

Further developments are in progress. The assumption df stra&ins seems to be inappropriate at
least in analysis #8;,,, < P < Py, for some flexible props. Perhaps, the large deformation ikaory
[3], might explain more precisely the influence of the exé¢lload on the bending moment. This issue
is motivated also from experimental investigations: fomsoclasses of props, design from point 9.2 of
EN-1065 appear to be more conservative than prop certiic&ia experimental tests.

codes are property of the Authors at the University of Bresci
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Figure 9: Relationship betweeW,,, ., and rotationp, at P, < P < Py.u (analysis #3): the dashed
line comes from the standard, the solid line is the “actuak.o
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Appendice 1 - Inertia moments

Numbers in the present appendix refers to the example ifosett The external tube inertia moment

is evaluated by:
7T

Lot = a(D;1 — d2) = 182033 mm*
The presence of the holes in the inner tube makes the defirdtiol the evaluation of the inertia quite
involved. The standard suggests the following equatiorf for see also figure 10 - in the presence of the

holes:

_ 6pout R — d(3+2 sin® Oout) SIN oyt ”3_ 6pinr — d(3 + 2 sin® ©Yin) SN Qi 3
12 12

I, 62494 mm?*

where: J J
PR = arccos oo = 174,219 ; pr = arccos oo = 1794184
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Figure 10: A section of the inner tube.

andR = g r = DQi — t; are the outer and inner radius of the tube, respectivelyadse holes do not

cover the inner tube completely, the inertia momgntof a generic section is established by the standard
as:
1

I =1, = 87587 mm*
g d I
1424 (ﬁf - )

wherel,, denotes the inertia of a section with no holes:

™

Ly =7 (R* — ") = 113140 mm*

anday, is the distance between two consecutive holes.
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