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Abstract

The European standard EN 1065 - to which most current European production appears not to have
been upgraded - addresses the design and the manufacturing of adjustable telescopic steel props, an inter-
est bearing economic sector. The present work aims at showing an efficient strategy for the assessment of
the ultimate strength of steel props according to EN 1065 in order to identify the ideal cost-performance
ratio in the real life production.

1 Introduction

The European standard EN-1065 specifies materials, design requirements, and protection alternatives against
the corrosion together with validation methods using both calculations and tests for adjustable telescopic
steel props (from now on called simply props) with threadingcovered or uncovered. It addresses their pro-
duction, design and validation through calculations and tests, ruling an interest bearing economic sector.
Noteworthy, the current European production generally does not comply the standard in terms of dimen-
sional requirements: therefore the optimal cost-performance product design seems to be mandatory. Since
the raw material cost is of fundamental incidence, the minimal weight has to be pursued in the production.
This target can be reached through an effective evaluation of the carrying capacity: this is the aim of the
present note. It concerns the structural design of props, inorder to minimize the safety factors > 1 with
respect to the collapse mechanisms [1] defined in the standard EN 1065.

Paragraph 2 summarizes the standard requirements for the design of the tubes; the classification based
on the strength; the configurations of the components of eachclass, which cause strong dimensional con-
straints to the production; the criteria for the evaluationof the ultimate loading capacity and the collapse
mechanisms considered by the standard; the static models; the description of the constructive flaws and
their modeling; the tolerances; the materials.

The next paragraph deals with an algorithm for the evaluation of the carrying capacity. It stems from the
interpretation of the non linear constitutive law that models the base of a prop. The algorithm allows: i) the
exact description of the “three steps” structural evolution; ii) the Eulerian critical loads; iii) the evaluation
of the loads capable to activate each collapse mechanisms considered by the standard: the lowest of them is
defined as theultimate strengthof a prop. This analytical approach seems to be characteristic of the present
note, whereas different methodologies have been authoritatively proposed in the literature [2].

The algorithm is finally applied in paragraph 4 to the evaluation of the carrying capacity of a prop, with
features taken from the real life production. A critical analysis of standard EN-1065, concerning subjective
interpretations by the designer in the evaluation of the carrying capacity, concludes the work together with
possible further developments.
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2 The standard EN-1065

2.1 Classification, strength features

Five classes of props (A-E) are established. For each type the standard defines the loading capacityRy,k

for prop classy at the current extensionl:

RA,k = 51, 0
lmax

l2
≤ 44, 0 kN ; RB,k = 68, 0

lmax

l2
≤ 51, 0 kN (1)

RC,k = 102, 0
lmax

l2
≤ 59, 5 kN ; RD,k = 34, 0 kN ; RE,k = 51, 0 kN (2)

2.2 Materials and components

Materials must be in agreement with the existing European standards. All the components must be protected
against the corrosion through criteria which affect the designation of a prop: the EN-1065 considers five
protection methods, classified according to the manufacturing.

The transversal tube sections must be selected according tothe international reference standards. For
the props in classB, C, D, andE the nominal thickness of any tube (tolerances included) must be no
smaller than2.6 mm; for A class props, it must be2.3 mm at least. An overlap between the internal and
that external tube of300 mm or more is mandatory when the prop is completely extended.

A device is compulsory to avoid that the outside and internalparts of a prop are separated by an invol-
untary action. A minimal length -100 mm between the final part of the outer tube and the internal part of
the base when the prop is completely closed - is required to avoid the hand crushing.

2.3 Design guidelines

The ultimate strengthRy,act of a prop by no means can be lower then the loading capacityRy,k at the
maximum extensionlmax. For the props classesA, B, andC Ry,act ≥ Ry,k must be also tested at any
intermediate configuration, including the configuration completely closed; tests must be executed with the
inner tube downward as well.

The structural schematization defined by the EN-1065 is depicted in figure 1, in case of covered and
uncovered threading. The overlapping zone is modeled by thecontemporary presence of the inner and outer
tubes, relatively bonded by a hinge (located at point C by thedevice of length regulation) and a frictional
constraint (at point B of contact among the two tubes). In Authors opinion this last issue is not sufficiently
clear: in the present note a perfect constraint has been considered as in figure 1.

Production defects are modeled as follows. An eccentricityet at the load application point - taken
as independent on the geometry of the prop and of its base - equal to 10 mm; an inclination angle∆ϕ0

due to the outer/inner tube spacing and to the length of the actual overlapping zone1; an initial sinusoidal
configuration with a maximal inflection ofl

500
, beingl the actual prop length. Props must be designed

againstbuckling of the tubes, taking into account the influence of the actual configuration on the internal
actions (according to the second order beam model). The evaluation of the actions in the tubes must follow
the principles of elasticity, assuming that the material behavior is linear at all the tension levels. The stress
state in the transversal sections of the tubes can be calculated in the framework of perfect plasticity, up to
the rise of a plastic hinge.

According to the standard, the slope of the prop base must evolve during the loading process, simulating
the progressivefailure of a real support; this is one of the three collapse mechanisms indicated by EN-1065.
The mechanics of such an evolution is summarized in a torsional elastic constraint, ruled by a non linear
constitutive law - see figure 2 - between rotationϕb of the base and momentMspring. An eccentricity
eb,0 = 0, 40 D1 models initial defects in the prop base2. By the action of external loads the prop base is
free to rotate up toϕb = 1deg. Any further rotation is prevented until the ratioMspring

N
reaches the limit

valueeb,core = −0, 25 D1. For higher values of the ratio,Mspring increases linearly with the base rotation

1∆ϕ0 must be evaluated from the nominal device sizes; see an example in section 4.
2For plane bases, the base thicknesst can be considered as a part of the effective diameterD1 = D + 2t having denoted withD

the outer diameter of the downward tube
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Figure 1: Structural modeling for prop design. In the present note a perfect constraint has been considered
at point B instead of a frictional one. Distanced is actually vanishing: it must be conceived as a graphical
artefact. Constitutive lawk(ϕ) is described in figure 2. Throughout the paper, vertical loadV is denoted by
the usual letterP .

Figure 2: Prop base modeling by means of torsional constraint Mspring versusϕb.

increment3 with stiffnessct = 3e07N mm
rad

up to a failure value which corresponds to a failure eccentricity
eb,limit = −0, 50 D1.

3This is true only for given axial loadN . See a remark in the conclusion.
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Flexural collapseis the third mechanism provided by the EN-1065. The plastic flexural strengthMpl,N

must be reduced according to the equation:

Mpl,N = Mpl cos

(

π

2

N

Npl

)

(3)

in order to take in to account the axial loadN effects. In (3)Mpl,N denotes the reduced plastic flexural
strength,Mpl the plastic flexural strength of the tube section,Npl the compressive strength of the tube
section.

3 An algorithm for ultimate strength assessment.

A three step algorithm is here described for the prop design.In it, each step corresponds to a branch of the
constitutive law for the prop base torsional constraintk(ϕ), as depicted in figure 2.

In the presence of external actions that induce rotationsϕb lower than1deg, the prop base torsional
constraint has null stiffness and corresponds to a standardhinge (analysis #1). Once the limit rotation
ϕb = 1deg has been reached, any further rotation is prevented untilMspring

N
= eb,core. In such a step

of the procedure (analysis #2) the spring stiffness is unbounded and the torsional constraint is equivalent
to a full constraint with an imposed rotationϕb = 1deg. Finally, when external actions induce a ratio
Mspring

N
≥ eb,core (analysis #3), the torsional stiffness is constant and equal toct = 3e7N mm

rad
. This

analysis runs untilMspring

N
= eb,lim, at which the prop fails due to theexhausted support strengthfailure

mechanism.
At any given prop geometry, three sets of admissible loads are defined, one for each analysis. The prop

falls into the first set if0 ≤ P ≤ P1deg ; analysis #2 is required forP1deg ≤ P ≤ Plim whereas the last
analysis runs forPlim ≤ P ≤ Pfail. Accordingly, the external load is increased from a null initial value
until P = Pfail and, within each interval, internal stresses and strains are deduced from the corresponding
structural schematization. Figure 3 summarizes this path of reasoning.

Figure 3: External load intervals for the proposed algorithm. P1deg , Plim e Pfail depend on geometry and
on the material properties.
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To evaluateP1deg , Plim e Pfail, the structural schematization is subdivided in parts, separating the
outer from the inner tube, as in figure 4. TheAB interval is the non-overlapping part of the downward
tube, whereasBC is its overlapping part. Similarly,DC is the non-overlapping part of the upwards tube,
whereasCB is its overlapping part.

a) notation b) analysis #1 c) analysis #2 and #3

Figure 4: Notation and elastica configurations.

Functionsvn(s) with n = AB, BC, CD, CB describe the prop axis (small) deflection in each part: the
Bernoulli-Navier equations of bending read:

d2 vel
n

d s2
= −

M(s, P )

E In

n = AB, BC, CD, CB (4)

- see also figure 4. Boundary conditions (8 for analysis #1 and9 for analyses #2 and #3 which are over-
constrained) can be derived from continuity and constraintrequirements. For all the three analyses, a linear
system of equations comes out; once solved, the elastic contribution4 vel

n can be recovered as a function of
the external load P.

The values ofP1deg , Plim ePfail can be thereafter straightforwardly evaluated. By imposing a rotation
of 1 degree at the bottom hinge in analysis #1, the value ofP corresponding toP1deg is recovered. By
imposingMspring

N
= eb,core at the bottom full constraint in analysis #2, one evaluatesPlim. Finally,Pfail

comes out in analysis #3 by imposingMspring

N
= eb,limit.

If the loading capacityRy,k - evaluated from equations (1-2) - is lower thenP1deg , the displacements
and bending moment must be deduced from analysis #1; ifP1deg ≤ Ry,k ≤ Plim they turn out from
analysis #2 and ifPlim ≤ Ry,k ≤ Pfail from analysis #3. IfPfail ≤ Ry,k then the prop cannot avoid the
failure due to the exhausted support strength: geometry and/or materials must be modified properly.

Once the bending momentM(s, P ) has been deduced from the structural schematization pertaining
to Ry,k, safety against flexural collapse requires thatM(s, P ) ≤ Mpl,N for any0 ≤ s ≤ l, with Mpl,N

evaluated by (3). Moreover, structural stability requiresthatRy,k < PE wherePE denotes the Eulerian
load5 of the scheme pertaining toRy,k - see figure 4.

4EN 1065 standard defines the total deflectionvn as the sum of the elastic contributionvel
n , of the initial sinusoidal deflectionvsin

n

and of the deflectionvinc
n due to the inclination angle∆ϕ0. These last two displacement fields do contribute to the bending moment

within the second order theory.
5Evaluated at the singularity point of Bernulli-Navier linear system matrix: see equations (10-17) for the example in section 4.
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4 An application

Assumingl = lmax and the inner tube upwards, the ultimate strength of anA40 steel prop is evaluated.
Materials for both tubes is S355JR (Young modulusE=210GPa, yield strengthfy=355MPa). Geometry
parameters read - see also figure 5: maximal extensionlmax = lo + lm + li = 4000 mm; overlapping
length lm = 300 mm; holes diameterdh = 18 mm; distance between holesah = 100 mm; diameter
at the end of the inner tubedp = 50.5 mm; inner diameter of the threadds = 54.5 mm; base thickness
t = 6 mm.

Outer tubeparameters: outer diameterDo = 60.9 mm; effective diameter at the baseDo1 = Do +2t =
72.9 mm; thicknessto = 2.3 mm; lengthlo + lm = 2100 mm.

Inner tubeparameters: outer diameterDi = 52.3 mm; effective diameter at the baseDi1 = Di + 2t =
64.3 mm; thicknessti = 2.3 mm; lengthli + lm = 2200 mm.

Figure 5: Modeling of the two tubes overlapping. Here:∆ϕ0 is the angle between the tubes;lm the
overlapping length;ds inner diameter at the end of the outer tube;dp outer diameter at the end of the inner
tube

Parametersdp e ds (see figure 5) play a basic role in the evaluation of angle∆ϕ0 between the tubes;
making reference to figure 4,the deflection due to the inclination angle∆ϕ0 - denoted withvinc

n (s) - reads:

vinc
AB(s) = me · s vinc

BC(s) = 11.9 + me · s vinc
DC(s) = mi · s vinc

BC(s) = 12.8 + mi · s

whereme = tanϕA
∼= ϕA = 0.00661rad andmi = tanϕD

∼= ϕD = 0.00672rad (see figure 5). The
standard does not indicate an algorithm to evaluate∆ϕ0, the following approach has been pursued. The
tolerances at the top and at the bottom between the two vertical tubes are defined as:

gbott = do − dp ; gtop = ds − Di

having setdo the inner diameter of the outer tube andDi the outer diameter of the inner tube. Moving from
the vertical position, the tubes relatively rotate about the hinge in figure 1. Geometrical analysis lead to the
following first order approximated (i.e.tanϕ = ϕ) equations:

{

(lo + lm) · ϕA −
gtop

2
= li · ϕD

lo · ϕA = (li + lm) · ϕD −
gbott

2

(5)

whose solution yieldsϕA andϕD, whence∆ϕo = ϕA + ϕD.
The initial sinusoidal deflectionvsin

n (s), with notation of figure 4, reads:

vsin
AB = lmax

500
sin π

lmax
s vsin

BC = lmax

500
sin π

lmax
(LAB + s)

vsin
DC = lmax

500
sin π

lmax
(lmax − s) vsin

CB = lmax

500
sin π

lmax
(lmax − LCD − s)
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The involved tubes geometry has an impact on the inertia moments of the tubes section. For the outer
tube, the section is a ring with inertiaIout = 182033 mm4. For the inner one, the standard EN-1065
provides a special procedure for inertia evaluation, summarized in appendix 1:Iin = 87587 mm4 comes
out.

According to the Eulerian theory of beams, one gets the reactive forces of figure 4. In analysis #2 and
#3, X stands for the over-constrain force at the prop base. The reaction forceH has to be evaluated in
the deformed configuration as a function of the external loadP , of deflectionvDC(LCD) at pointC and
eventually ofX .

In analysis #1 -0 ≤ P ≤ P1deg - the Bernoulli-Navier equations (4) read:

v′′AB(s) + α2

ABvAB(s) = −α2

AB

(

me s + (et − eb,0)
s

lmax

+ eb,0

)

−
α2

AB lmax

500
sin π

s

lmax

(6)

v′′BC(s) + α2

ABvBC(s) = −α2

AB

lmax

500
sin

LAB + s

lmax

π + (7)

+α2

AB

[(

vDC(LCD) +
lmax

500
sin

lmax − LCD

lmax

π + mi LCD + et −
LCD

lmax

(et − eb,0)

)

s

LBC

+

−(et − eb,0)
LAB + s

lmax

− eb,0 − 11, 9 − me s

]

v′′DC(s) + α2

CDvDC(s) = α2

CD

(

(et − eb,0)
s

lmax

− mi s − et

)

− α2

CD

lmax

500
sinπ

lmax − s

lmax

(8)

v′′CB(s) = −α2

CD

(

1 −
s

LBC

) [

vDC(LCD) +
lmax

500
sin π

lmax − LCD

lmax

+ (9)

+mi LCD + et − (et − eb,0)
LCD

lmax

]

with α2

AB = P
EIout

eα2

CD = P
EIin

. Eight boundary conditions are mandatory to solve problem (6-9):

vAB(0) = 0 (10)

vAB(LAB) = vBC(0) (11)

v′BC(0) = v′AB(LAB) (12)

vBC(0) = vCB(LBC) (13)

vDC(0) = 0 (14)

vDC(LCD) = vCB(0) (15)

v′CB(0) = v′DC(LCD) (16)

vCB(0) = vBC(LBC) (17)

The limit loadP1deg for analysis #1 satisfies the conditionv′AB(0) = π
180

: it amounts toP1deg = 5, 49 kN .
By imposing a null matrix determinant in the system of equations (10-17) the critical load for analysis #1
turns out to bePcr,1 = 15, 32 kN .

Algorithms for analysis #2 and #3 follow the same path of reasoning. They require a further boundary
condition because of the over-constraint. In the second scheme the rotation at the base must be one degree.

v′AB(0) =
π

180
;

In the third scheme, the moment at the base is related to the rotation in the spring by means of elasticity
constantct - see figure 2:

v′AB(0) = −
X

ct

−
(eb,0 + eb,core) P

ct

+
π

180

The transition between analysis #2 and #3 is stated by the condition

v′AB(0) =
π

180
→ X = −P (eb,0 + eb,core)

7



whencePlim = 10, 25 kN . The support strength of the prop is exhausted whenX = −P (eb,lim + eb,0),
andPfail turns out to be13, 64 kN . By imposing a null matrix determinant in the system of nine boundary
conditions, the critical loads for analyses #2 and #3 come out. They amount toPcr,2 = 29, 44 kN and
Pcr,3 = 21, 45 kN .

Figure 6: Comparison between the plastic flexural strengthMpl,N and the (absolute value of) actual bending
moment.

The ultimate strengthRA,act of a prop by no means can be lower then the loading capacityRA,k evalu-
ated from equation (1):

RA,k = 51.0
lmax

l2
= 51.0

4

16
= 12.75 kN

In view of the inequality:

RA,k = 12.75 kN < 15.32 kN = Pcr,1 = min
n=1,2,3

Pcr,n (18)

it can be concluded that the ultimate strength is adequate against the failure due to structural instability. It
is also adequate against failure at the base of the prop, for being

RA,k = 12.75 kN < 13.64 kN = Pfail (19)

Finally, becausePlim < RA,k < Pfail, it is mandatory to check that the bending moment due toP = RA,k

in analysis #3 is lower thanMpl,N at all points of the prop. The plastic flexural strength, according to
equation (3), amounts toMpl,N = 2629226Nmm for the outer tube and toMpl,N = 1280789Nmm for
the inner one. A plot of bending moment versus the plastic flexural strength is represented in figure 6. Its
analysis allows to conclude that, at the maximum extension,the analyzed prop is in agreement to standard

8



EN-1065. The analysis of the carrying capacity according toEN-1065 is mandatory at the minimum length
and at the most unfavorable intermediate configuration as well. Analyses must to be repeated positioning
the prop with the internal tube downward.

It seems interesting to plot (figure 7) the elastic contribution to the deflection: the effect of the constraints
imposed in the three phases of the load process is clear. During analysis #1 the rotation at pointA is free,
while it is prevented in analysis #2: in the latter, the slopeof the deflection curve at pointA in figure 7 is
constant and equal to1deg. The deflection at the end of analysis #2 (corresponding to anexternal load of
about75% of Pfail) is about58% of the ultimate deflection. As expected therefore, most of the deflection
takes place in analysis #3.

Figure 7: Elastic deflectionvel(s) [mm] as a function of the external load up to the carrying capacityPfail.
One notes - at pointA - the effect of changing constraints in the three analyses. The non rectilinear trajectory
of the point of maximum deflection is noticed, whose knowledge seems of interest, for instance, in order to
the deflection measure in the evaluation of the carrying capacity through experimental tests.

5 Conclusions

Target of this note was the design of adjustable telescopic steel props, evaluating their carrying capacity in
agreement to the standard EN 1065. The carrying capacity is defined by the standard as to the minimum
value of the external load which is able to activate one of thefollowing three mechanisms: the collapse
due to Eulerian instability [1], to exhausted support strength, and to flexural failure of the tubes. For the
evaluation of the carrying capacity a strategy was suggested; it stems from the non linear modeling of the
torsional spring that aims at reproducing the prop base behavior. The algorithm analytically describes the
evolution of the structural response while the external load increases from the initial null value up to the
loading capacityRy,k, required to be lower than the ultimate strengthRy,act.

The methodology described in this work has been implementedin a computer code, named PrOpti-
mizer6. The code was successfully used for the optimization of the steel prop production of an Italian

6A companion code, named PrCertifier, has been used for the certification according to the Germany DIN-EN-1065 standard. Both
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company: in the set of the props in agreement with EN-1065, minimum weight props were determined.
The optimum products were subject to further constraints (commercial dimension of tubes, further com-
pany requirements): the outcomes of beyond 200.000 possible props are not publishable. In section 4 an
application was shown with data concerning the real production.

500 1000 1500 2000 2500 3000
s

500

1000

1500

2000

2500

MHsL

Figure 8: A comprehensive plot of bending moment [kN mm] in the tubes at different tube lengths [mm]
and a comparison withMpl,N (the upper plateau) defined by formula (3). The plot, one of the outcomes
of code PrOptimizer, refers to a C30 test with outer tube downward. Red curves refer to the minimum
extension, whereas yellow curves to the maximum one.

In conclusion, it might be useful to highlight a few issues inthe standard which require subjective
interpretations by the designer in the evaluation of the carrying capacity. Thestructural schematizationof
figure 1 is not of immediate comprehension in the tubes overlapping zone neither from the graphic point of
view, in particular the crossing of the tubes, nor from the mechanics - the frictional constraint description
is largely inadequate. The standard does not give any direction for the evaluation of the tilt angle∆ϕ0; the
eventual relationship between the angle at the baseϕA, the sinusoidal initial deflection, and the modeling of
the prop support is not specified. In the latter, there is a lack in the norm of the motivations for the adopted
constitutive law and its independency on the base and of the tubes configuration, at least with reference to
the spring constantct = 3e7Nmm/rad. It seems to of interest noting that such a constitutive law,namely:

ϕb = −
Mspring

ct

−
(eb,0 + eb,core) N

ct

+
π

180

is linear for a given external loadP . Whereas the load increment history is taken into account, the real
relationship between momentMspring and rotationϕb is no longer proportional - see figure 9.

Further developments are in progress. The assumption of small strains seems to be inappropriate at
least in analysis #3Plim ≤ P ≤ Pfail for some flexible props. Perhaps, the large deformation beamtheory
[3], might explain more precisely the influence of the external load on the bending moment. This issue
is motivated also from experimental investigations: for some classes of props, design from point 9.2 of
EN-1065 appear to be more conservative than prop certification via experimental tests.

codes are property of the Authors at the University of Brescia.
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Figure 9: Relationship betweenMspring and rotationϕb at Plim ≤ P ≤ Pfail (analysis #3): the dashed
line comes from the standard, the solid line is the “actual” one.
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Appendice 1 - Inertia moments

Numbers in the present appendix refers to the example in section 4. The external tube inertia moment
is evaluated by:

Iout =
π

64
(D4

o − d4

o) = 182033 mm4

The presence of the holes in the inner tube makes the definition and the evaluation of the inertia quite
involved. The standard suggests the following equation forIn - see also figure 10 - in the presence of the
holes:

In =
6ϕoutR − d(3 + 2 sin2 ϕout) sin ϕout

12
R3

−
6ϕinr − d(3 + 2 sin2 ϕin) sin ϕin

12
r3 = 62494 mm4

where:

ϕR = arccos
d

2R
= 1rad.219 ; ϕr = arccos

d

2R
= 1rad.184
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Figure 10: A section of the inner tube.

andR = Di

2
, r = Di

2
− ti are the outer and inner radius of the tube, respectively. Because holes do not

cover the inner tube completely, the inertia momentIin of a generic section is established by the standard
as:

Iin = Igr

1

1 + 2 d
ah

(

Igr

In
− 1

) = 87587 mm4

whereIgr denotes the inertia of a section with no holes:

Igr =
π

4

(

R4
− r4

)

= 113140 mm4

andah is the distance between two consecutive holes.
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