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A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid
core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention
is paid to the question of how the buoyancy force on the core, caused by a density difference
between the core and the annular layer, is counterbalanced. From earlier studies it is known that at
the interface between the annular layer and the core waves are present that move with respect to the
pipe wall. In the present study the core is assumed to consist of a solid center surrounded by a
high-viscosity liquid layer. Using hydrodynamic lubrication theory �taking into account the flow in
the low-viscosity liquid annular layer and in the high-viscosity liquid core layer� the development
of the interfacial waves is calculated. They generate pressure variations in the core layer and annular
layer that can cause a net force on the core. Steady eccentric core-annular flow is found to be
possible. © 2007 American Institute of Physics. �DOI: 10.1063/1.2775521�

I. INTRODUCTION

In transporting a high-viscosity liquid through a pipe a
low-viscosity liquid can be used as a lubricant film between
the pipe wall and the high-viscosity core. This technique,
called core-annular flow, is very interesting from a practical
and scientific point of view. In a number of cases it was
successfully applied for pipeline transport of very viscous
oil. The low-viscosity liquid in these cases was water. The
pressure drop over the pipeline was considerably lower for
oil-water core-annular flow than the pressure drop for the
flow of oil alone at the same mean oil velocity.

Much attention has been paid in the literature to core-
annular flow. Joseph and Renardi1 have written a book about
it. There are several review articles, see for instance, Olie-
mans and Ooms2 and Joseph et al.3 Most publications deal
with the development of waves at the interface between the
high-viscosity liquid and the low-viscosity one, see Ooms,4

Bai et al.,5 Bai et al.,6 Renardy,7 Li and Renardy,8 Kouris and
Tsamopoulos,9 and Ko et al.10 These studies deal with axi-
symmetric vertical core-annular flow �the core has a concen-
tric position in the pipe�. In that case the buoyancy force on
the core, due to a density difference between the two liquids,
is in the axial direction of the pipe. It was shown experimen-
tally and theoretically that both liquid phases can retain their
integrity, although an originally smooth interface was found
to be unstable.

For the transport of very viscous oil �or other liquids� it
is also important to pay attention to core-annular flow
through a horizontal pipe. Since the densities of the two liq-

uids are almost always different, gravity will push the core
off-center in that case. Experimental results suggest that un-
der normal conditions a steady eccentric core-annular flow
�rather than a stratified flow� is achieved. It can be shown,
that for a steady flow a wavy interface is needed to levitate
the core. Relatively little attention has been given to the ex-
planation of the levitation mechanism. Ooms,11 Ooms and
Beckers,12 Ooms et al.,13 Oliemans and Ooms,2 and
Oliemans14 proposed a mechanism based on hydrodynamic
lubrication theory. They showed that levitation could not
take place without a hydrodynamic lifting action due to the
waves present at the oil-water interface. They concluded
from their experiments, that there are limitations to the pa-
rameter values that produce levitation. For instance, it be-
came clear that the viscosity of the core liquid had to be
much larger than the viscosity of the annular liquid. In their
theoretical work they assumed that the core viscosity is infi-
nitely large. So any deformation of the interface was ne-
glected and the core moved as a rigid body at a certain speed
with respect to the pipe wall. The shape of the waves was
given as empirical input. They were assumed to be sawtooth
waves, that were like an array of slipper bearings and pushed
off the core from the wall by lubrication forces. In their case
the core would be sucked to the pipe wall if the velocity was
reversed. So the slipper bearing picture is obligatory if levi-
tation is needed. However it was pointed out by Bai et al.,6

that �at finite oil viscosity� the sawtooth waves are unstable
since the pressure is highest just where the gap between the
core and the pipe wall is smallest. So the wave must steepen
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where it is gentle and become smooth where it is sharp, and
levitation of the core due to lubrication forces is no longer
possible. To get a levitation force from this kind of wave
inertial forces are needed according to Bai et al.

From their study of the wave development for a concen-
tric vertical core-annular flow �taking into account inertial
forces� Bai et al. tried to draw some conclusions about the
levitation force on the core in the case of an eccentric hori-
zontal core-annular flow. They considered what might hap-
pen if the core moved to a slightly eccentric position owing
to a small difference in density. The pressure distribution in
the liquid in the narrow part of the annulus would intensify
and the pressure in the wide part of the annulus would relax
according to their predicted variation of pressure with the
distance between the core and the pipe wall for the concen-
tric case. In that case a more positive pressure would be
generated in the narrow part of the annulus which would
levitate the core. �It is important to point out again that the
study of Bai et al. was for a concentric core. In a horizontal
core-annular flow with a density difference between the liq-
uids the core will be in an eccentric position and due to the
presence of waves at the interface secondary flows perpen-
dicular to the pipe axis are generated. This type of secondary
flows that also contribute to the force on the core, is not
considered in concentric core-annular flow.�

The statement by Bai et al. that a levitation of the core
does not come from lubrication forces but from inertial
forces was made for cylindrically symmetric waves. The
waves that were used in their calculation were periodic in the
axial direction of the pipe and were independent of the cir-
cumferential coordinate. As found by Renardy7 also waves
are possible that are not cylindrically symmetric; waves that
are dependent on the axial direction and also on the circum-
ferential direction. It seems evident that for such waves the
force on the core and also the secondary flow in the annulus
will be different than for a core with cylindrically symmetric
waves. Therefore Ooms and Poesio15 studied the levitation of
the core for the case of noncylindrically symmetric waves by
investigating the hydrodynamic lubrication forces. They
showed that core levitation by lubrication forces alone is
possible for these types of waves. However, like in the ear-
lier work of Ooms11 and Oliemans14 they assumed that the
core viscosity is infinitely large. So the core �with waves�
moves as a rigid body at a certain velocity with respect to the
pipe wall.

Another contribution to the core levitation force was
proposed in a model by Bannwarth.16 It is based on an

interface-curvature-gradient effect associated with interfacial
tension; if the radius of curvature increases with the circum-
ferential coordinate a downward force acts on the core due to
interfacial tension.

In this publication a further development is made of the
idea, that �eccentric� core-annular flow through a horizontal
pipe with a density difference between the core liquid and
the liquid in the annulus is possible due to hydrodynamic
lubrication forces caused by the movement of waves at the
core-annular interface with respect to the pipe wall. Contrary
to earlier work the core is no longer assumed to be solid. The
core is assumed to consist of a solid center surrounded by a
high-viscosity liquid layer. �The problem in which the com-
plete core has a finite viscosity cannot be solved by the au-
thors by means of the partly analytical and partly numerical
method that is applied in this publication.� Using hydrody-
namic lubrication theory �taking into account the flow in the
low-viscosity liquid annular layer and in the high-viscosity
liquid core layer� the development of the interfacial waves
will be calculated. Also the force exerted on the core will be
determined, with special attention being paid to the position
of the core with respect to the pipe wall.

Papageorgiou et al.,17 Wei and Rumschitzki,18 and others
have all developed lubrication models for axisymmetric
core-annular flow. They derive nonlinear evolution equations
for the interface between the two liquids. These equations
include a coupling between core and annular film dynamics
thus enabling a study of its effect on the nonlinear evolution
of the interface. A difference between their work and our
study is, that we take into account the upward buoyancy
force on the core �in a horizontal pipe� due to the density
difference between the two liquids. Because of the buoyancy
force we will also consider the eccentricity of the core,
whereas Papageorgiou, Rumschitzki and others study axi-
symmetric core-annular flow.

II. THEORY

A sketch of the flow problem is given in Fig. 1. The pipe
is horizontal. As mentioned the core is assumed to consist of
a solid center surrounded by a high-viscosity liquid layer �the
core layer�. The solid center and core layer have the same
density. The core �solid center and core layer� is surrounded
by a low-viscosity liquid annular layer �the annulus�. When
the density of the core is smaller than the density of the
annulus, the core has an eccentric position in the pipe. In that
case the thickness of the annulus at the top of the pipe is

FIG. 1. Sketch of the flow problem.
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smaller than its thickness at the bottom. In real core-annular
flows the thickness of the annulus h2 is small compared to
the pipe radius R �smaller as shown in the figure�. In the
upcoming calculation we assume that also the thickness of
the core layer h1 is much smaller than the pipe radius. The
�horizontal� solid center is cylindrically symmetric with
known radius h3

�0�. The distance between the center line of
the pipe and the surface of the solid center is given by h3.
When the core has an eccentric position in the pipe, also the
solid center is eccentric with the same eccentricity � as the
core. So when the eccentricity is known, also h3 is known.
The relation between h1 and h2 is given by h1=R−h3−h2. A
reference system is chosen according to which the solid cen-
ter of the core is at rest and the pipe wall moves with a
velocity ww. At the interface between the core layer and the
annulus waves are present, that move with respect to the pipe
wall. The shape of the waves can depend on both the axial
direction x and the circumferential direction �. They are pe-
riodic. The liquid in the core layer �liquid 1� and the liquid in
the annulus �liquid 2� are assumed to be incompressible. The
liquids move in the axial and circumferential direction due to
the movement of the waves and the �possible� eccentric po-
sition of the core in the pipe.

A. Pressure equation for the annulus

The order of magnitude of the terms in the continuity
equation for the annulus are

1

r

�

�r
�ru2� +

1

r

�v2

��
+

�w2

�x
= 0

O�U2

h2
� O�V2

R
� O�W2

l
� , �1�

in which r, �, and x are the cylindrical coordinates in the
radial, circumferential, and axial direction, respectively. �
=0 at the top of the pipe and increases in the clockwise
direction. u2, v2, and w2 are the velocity components of the
liquid in the annulus in the radial, circumferential, and axial
direction and U2, V2, and W2 are the velocity scales for u2,
v2, and w2. This means that

U2 � V2 � W2 �2�

when

h2 � R � l . �3�

The time scales in the r-direction �h2 /U2�, in the �-direction
�R /V2� and in the x-direction �l /W2� are of the same order of
magnitude.

To estimate the order of magnitude of the terms in the
equations of motion for the annulus it is first assumed that
the Reynolds number of the flow is so small that the inertial
terms may be neglected. So both the time-derivative terms
and the convective terms in the equations of motion will be
neglected in our model. The time dependency of the flow
will be taken into account by means of the kinematic bound-
ary condition, as will be explained later. The flow is laminar.
The order of magnitude of the remaining terms in the equa-
tions of motion are given by

1
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1

r2

�2u2

��2 +
�2u2

�x2 −
2

r2

�v2

��
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1
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1

r2
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2
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��
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R2 � ,

�5�

1

�2

��2

�x
= �1

r

�

�r
�r

�w2

�r
�	 +

1

r2

�2w2

��2 +
�2w2

�x2

O�W2

h2
2 � O�W2

R2 � O�W2

l2 � , �6�

in which

�2 = p2 + �2gr cos � , �7�

where p2 represents the hydrodynamic pressure in the annu-
lus, �2 is the density of the liquid in the annulus and g is the
acceleration due to gravity. �2 is the dynamic viscosity of the
liquid. Using Eqs. �2� and �3�, Eqs. �4�–�6� can be simplified
by keeping only the largest terms in the set of equations �not
in each equation separately�. This leads to

��2

�r
= 0, �8�

1

r

��2

��
= �2

�

�r
�1

r

�

�r
�v2r�	 , �9�

��2

�x
= ��2

r

�

�r
�r

�w2

�r
�	 . �10�

So in this approximation �2 is independent of r, and the
r-dependence of p2 is given by Eq. �7�. Integration of Eqs.
�9� and �10� in the r-direction gives

v2 =
1

2�2

��2

��
r�−

1

2
+ ln r� + K1r +

K2

r
, �11�

w2 =
1

4�2

��2

�x
r2 + K3 ln r + K4, �12�

in which K1−K4 are functions of � and x only. The boundary
conditions are

for r = hi = �R − h2�: v2 = vi and w2 = wi, �13�

in which ui, vi, and wi are the liquid velocities at the interface
between the annulus and the core layer, and

for r = R: v2 = 0 and w2 = ww, �14�

where ww is the velocity of the pipe wall. Applying Eqs. �13�
and �14� to Eqs. �11� and �12� yields
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v2 =
1

2�2

��2

��
�r ln r −
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2�r2 − R2�ln hi
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2 − R2�

−
R2�r2 − hi
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 . �16�

Integration of the continuity equation �1� for the annulus
between its two boundaries gives the following expression:

�
hi

R �

�r
�ru2�dr = − hiui = − �

hi

R �v2

��
dr − �

hi

R

r
�w2

�x
dr . �17�

Substitution of Eqs. �15� and �16� in Eq. �17� and using hi

=R−h2 with h2�R, we find the following pressure equation
for the annulus:

�

R � �
�h2

3 ��2

R � �
� +

�

�x
�h2

3��2

�x
�

= − 12�2ui − 6�2vi
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+ 6�2h2

�vi

R � �

+ 6�2�ww − wi�
�h2

�x
+ 6�2h2

�wi

�x
. �18�

This equation can be considered as an extended version of
the Reynolds equation of lubrication theory �for a detailed
derivation of this equation for the case of a flow of two
liquids between infinite plates, see Ooms et al.19�.

B. Pressure equation for the core layer

The starting point for the pressure equation for the core
layer are the equations of motion for the liquid in the core
layer
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in which

�1 = p1 + �1gr cos � , �22�

where p1 represents the hydrodynamic pressure in the core
layer and �1 is the density of the liquid in the core layer. �1

is the dynamic viscosity of the liquid, u1, v1, and w1 are the
velocity components in the core layer in the radial, circum-
ferential, and axial direction, respectively. Using the same
simplification as in the preceding paragraph the equations of
motion reduce to

��1

�r
= 0, �23�
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Integration of Eqs. �24� and �25� yields
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1

2�1

��1

��
r�−

1

2
+ ln r� + K5r +

K6

r
, �26�

w1 =
1

4�1

��1

�x
r2 + K7 ln r + K8, �27�

in which K5−K8 are functions of � and x only. The boundary
conditions are

for r = h3: v1 = 0 and w1 = 0, �28�

for r = hi: v1 = vi and w1 = wi, �29�

in which h3 is the distance from the interface between the
solid center and the core layer to the center line of the pipe.
It is important to point out, that for the case of an eccentric
core h3 is not a constant as the solid center becomes eccen-
tric also. Applying Eqs. �28� and �29� to Eqs. �26� and �27�
we find
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The equation of continuity reads

1

r

�

�r
�ru1� +

1

r

�v1
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+
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= 0, �32�

or after integration
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�
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�ru1�dr = − hiUi = − �
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dr − �
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hi

r
�w1

�x
dr .

�33�

After substitution of Eqs. �30� and �31� in Eq. �33� and using
h3=hi−h1 with h1�R, we finally find the pressure equation
for the core layer

�
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+ 6�1h1
�wi

�x
. �34�

C. Boundary conditions at the interface
between the core layer and the annulus

At the interface between the core layer and the annulus
the kinematic boundary condition holds. This condition can
be written as

DF

Dt
= 0, �35�

in which

D

Dt

represents the material derivative and F the equation for the
interface

F = r − hi��,x,t� , �36�

where t represents time. Substitution of Eq. �36� in Eq. �35�
gives
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or using hi=R−h2
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At the interface of the liquids also the dynamic boundary
condition holds. This condition can be written as

�ni�1,ik�r=hi
= �ni�2,ik�r=hi

, �39�

in which �1,ik and �2,ik represent the stress tensors for the
liquid in the core layer and in the annulus, respectively. n is
the unit vector normal to the interface. By using the basic
assumptions that the thicknesses of the annulus and the core
layer are small relative to the radius of the pipe and to the
wavelength of a possible wave at the interface �and by ap-
plying an order of magnitude estimate for the terms as done
for the derivation of the pressure equations�, Eq. �39� leads
to the following three conditions:
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in which � is the interfacial tension and R1 and R2 are the
principal radii of curvature of the interface, to be taken as
negative when the respective center of curvature falls on the
side of the annular layer. Substitution of Eqs. �22� and �7� in
Eq. �40� gives

�2 = �1 + ��ghi cos � − �� 1

R1
+

1

R2
� , �43�

in which ��=�2−�1. Substitution of Eqs. �15�, �16�, �30�,
and �31� in Eqs. �41� and �42� yields �using �2 /�1�h2 /h1�

vi = −
1

2�1

h1
2

h3

��1

��
−

1

2�1

h1h2

R

��2

��
, �44�

wi = −
1

2�1
h1

2��1

�x
−

1

2�1
h1h2

��2

�x
+

�2

�1

h1

h2
ww. �45�

D. Relation between pressure drop
over the pipe and wall velocity

For the problem studied in this publication concerning
the flow of two liquids between a solid center and a pipe wall
it is of course possible to choose the pressure drop over the
liquids and pipe wall velocity independent of each other.
However, for a real core-annular flow with a fully liquid core
surrounded by a liquid annulus a relation exists between the
pressure drop and the velocity. In order to simulate a real
core-annular flow as much as possible we will derive a simi-
lar relation also for the problem studied here. For that pur-
pose we calculate first the total force Fx in the axial direction
on the pipe wall �for one wavelength�

Fx = �
0

2	 �
0

l

��xRd� dx , �46�

in which ��x is the shear stress at the pipe wall

��x = �2� �w2

�r
�

r=R

. �47�

We now define the pressure drop �per wavelength� over the
pipe in the following way:

�p = Fx/�	R2� , �48�

in which �p is the difference between the pressure at x=0
and at x= l. Substitution of Eq. �16� gives
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�p =
1

	R2�
0

2	 �
0

l �1

4

��2

�x
�2R2 +

R2 − hi
2

ln hi/R
�

+
�2�wi − ww�

ln hi/R
	d�dx . �49�

Substituting the expressions for hi and wi in Eq. �49� yields
the relation between �p and ww.

E. Solution of the equations

The pressure equations for the annular layer �Eq. �18��
and for the core �Eq. �34�� together with the boundary con-
ditions at the interface between the liquids, as formulated by
Eqs. �38� and �43�–�45�, form a complete description of the
flow system from which in principle all possible flow pat-
terns can be found. In our further calculations we omit the
effect of the interfacial tension. So the third term on the
right-hand side of Eq. �43� is neglected. We keep, of course,
the buoyancy effect, as we hope to understand how this ef-
fect is counterbalanced by hydrodynamic forces. We write
the relevant equations in dimensionless form. To that purpose
we introduce as length scale R, as time scale �1R2 /�1 and
�hence� as the velocity scale �1 /�1R. The force scale is
�1

2 /�1. The following dimensionless quantities are now intro-
duced: H1=h1 /R, H2=h2 /R, H3=h3 /R, Hi=hi /R, X=x /R,
T= t�1 /�1R2, Ui=ui�1R /�1, Vi=vi�1R /�1, Wi=wi�1R /�1,
Ww=ww�1R /�1, 
1=�1�1R2 /�1

2, and 
2=�2�1R2 /�1
2. Also

the following dimensionless constants are introduced: C1

=�2 /�1, C2=��gR3�1 /�1
2, and C3=�p�1R2 /�1

2. The six
equations can then be written as

�

��
�H2

3�
2

��
� +

�

�X
�H2

3�
2

�X
�

= − 12C1Ui − 6C1Vi
�H2

��
+ 6C1H2

�Vi

��

− 6C1�Wi − Ww�
�H2

�X
+ 6C1H2

�Wi

�X
, �50�

�

��
�H1

3�
1

��
� +

�

�X
�H1

3�
1

�X
�

= + 12Ui − 6Vi
�H1

��
+ 6H1

�Vi

��
− 6Wi

�H1

�X
+ 6H1

�Wi

�X
,

�51�

Ui = −
Vi

1 − H2

�H2

��
− Wi

�H2

�X
−

�H2

�T
, �52�


1 = 
2 − C2Hi cos � , �53�

Vi =
1

�1/H1 + C1/H2��−
1

2

H1

H3

�
1

��
−

1

2
H2

�
2

��
� , �54�

Wi =
1

�1/H1 + C1/H2��−
1

2
H1

�
1

�X
−

1

2
H2

�
2

�X
+

C1

H2
Ww� ,

�55�

in which

Hi = 1 − H2 �56�

and

H1 = 1 − H3 − H2. �57�

This set of equations is very similar to the one derived by
Ooms et al.19 for the flow of two liquids between infinite
plates. It is an extended version of it. The quantities are
periodic in � with periodicity 2	. The axial pressure drop
over a wavelength in the pipe is given by �
2�� ,X�
−
2�� ,X+L�=C3�, in which L is the ratio of the wavelength
and the pipe radius. For practical applications the relevant
parameters have the following values: R�10−1 m, h3

�10−1 m, h2�10−2 m, �1�103 kg/m3, ���10 kg/m3, �2

�10−3 kg/ms, �1�103−1 and �p�10−1 kg/ms2. So the
constants have values of the following order of magnitude:
C1�10−6−10−3, C2�10−4−101, and C3�10−5−101.

To eliminate Ui from the pressure equations we multiply
Eq. �51� by C1 and add it to Eq. �50�. A new pressure equa-
tion is then found without Ui. Next we use Eq. �53� to elimi-
nate 
1 from the new pressure equation and from Eqs. �54�
and �55�. The new equations for Vi and Wi �without 
1� are
then substituted in the new pressure equation, and again an-
other pressure equation is found. Restricting ourselves to the
largest terms this last pressure equation is given by

�

��
��H2

3 + C1H1
3�

�
2

��
� +

�

�X
��H2

3 + C1H1
3�

�
2

�X
�

= 6C1Ww
�H2

�X
− C1C2Hi��3H1

2 + 6
H1�H1 + H2�

H3
	

�
�H1

��
sin � + �H1

3 + 3
�H1 + H2�H1

2

H3
	cos �� . �58�

The relation �49� between the wall velocity and the pressure
drop over a wavelength of the pipe becomes in dimension-
less form

Ww =

C3 −
1

2	
�

0

2	 �
0

L

H2
�
2

�X
d�dX

C1

	
�

0

2	 �
0

L 1

H2
d�dX

. �59�

The solution procedure is now as follows:

�A� Start with a given function H2�� ,X�=H2
�0�−� cos �

+AH2
�1��X�, in which H2

�0� represents the constant part
of the dimensionless thickness of the annulus when
there is no eccentricity, ���H2

�0�� is the eccentricity and
AH2

�1��X�=A cos�2	X /L� is the periodic part of the
thickness of the annulus with amplitude A��H2−��
and dimensionless wavelength L�=l /R�.

�B� Calculate H3���=H3
�0�−� cos �, in which H3

�0� repre-
sents the �constant� dimensionless radius of the solid
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center. The eccentricity is the same as for the annulus.
So the distances between the solid center centerline and
the interface �between the annulus and the core layer�
at the top of the pipe and at the bottom are equal �see
Fig. 1�.

�C� Calculate Hi=1−H2 and H1=1−H2−H3.
�D� Choose values for C1, C2, and C3.
�E� Choose an initial value for wall velocity Ww

=−�C3 /8C1L� �based on a Poiseuille flow of liquid 2
through the pipe�.

�F� Calculate �H2 /�� and �H2 /�X and also �H1 /�� and
�H1 /�X.

�G� Solve

�

��
��H2

3 + C1H1
3�

�
2

��
� +

�

�X
��H2

3 + C1H1
3�

�
2

�X
�

= f��,X� ,

with

f��,X� = 6C1Ww
�H2

�X

− C1C2Hi��3H1
2 + 6

H1�H1 + H2�
H3

	 �H1

��
sin �

+ �H1
3 + 3

�H1 + H2�H1
2

H3
	cos �� .


2 is a periodic function of � with periodicity 2	. 
2

is also a periodic function of X with periodicity L and
�
2�� ,X�−
2�� ,X+L�=C3�.

�H� Calculate 
1�� ,X�=
2�� ,X�−C2Hi cos �.
�I� Calculate �
2 /�� and �
2 /�X and also �
1 /�� and

�
1 /�X.
�J� Calculate

Vi =
1

�1/H1 + C1/H2��−
1

2

H1

H3

�
1

��
−

1

2
H2

�
2

��
�

and

Wi =
1

�1/H1 + C1/H2��−
1

2
H1

�
1

�X
−

1

2
H2

�
2

�X

+
C1

H2
Ww� .

�K� Calculate

Ui =
1

12
� �

��
�H1

3�
1

��
� +

�

�X
�H1

3�
1

�X
�	

+
1

12
�+ 6Vi

�H1

��
− 6H1

�Vi

��
+ 6Wi

�H1

�X

− 6H1
�Wi

�X
	 .

�L� Calculate

�H2

�T
= − Ui −

Vi

1 − H2

�H2

��
− Wi

�H2

�X
.

�M� Calculate the new annular thickness

H2 = H2
old +

�H2

�T
�T ,

in which �T is a time step.
�N� Calculate the new wall velocity based on Eq. �59�,

Ww =

C3 −
1

2	
�

0

2	 �
0

L

H2
�
2

�X
d�dX

C1

	
�

0

2	 �
0

L 1

H2
d�dX

.

�O� Calculate the vertical force Fup on the core �solid center
and liquid core layer� due to buoyancy and hydrody-
namic forces. The derivation of Fup is given in the Ap-
pendix and the result is

Fup = − �
0

2	

d��
0

L

dX�
2 cos ��

− �
0

2	

d��
0

L

dX��+
1

2

�
2

��
H2 − C1

Vi

H2
	sin ��

+
1

2
C2�

0

2	

d��
0

L

dX��1 − H2�2� . �60�

�P� Calculate the new eccentricity � because of the vertical
movement of the core due to the vertical force.

�Q� Calculate the new position of the surface of the solid
center H3=H3

�0�−� cos �. Assuming that the distances
between the solid center centerline and the interface
�between the annulus and the core layer� at the top of
the pipe and at the bottom are equal, calculate also the
new values for H2, H1, and Hi.

�R� Go back to �F�.

III. NUMERICAL SOLUTION METHOD

In order to obtain the solution of the problem posed in
Sec. II, it appears that the most challenging part is to find the
solution of Eq. �58� together with the boundary conditions.
For a general function H2 it is impossible to find an analytic
expression for the pressure 
2.

For the solution of the flow problem we use the solution
procedure given in the preceding section. For the discretiza-
tion we use nt grid points in the �-direction and nx grid points
in the X-direction. This leads to the following step sizes: ht

=2	 /nt and hx=L /nx. The grid points are located at �i= �i
−1�ht and Xj = �j−1�hx. Furthermore, 
2�t ,X� is approxi-
mated by the grid function 
2h, such that


2�ti,Xj� � 
2h�i, j� .

All functions are periodic in � and X, except 
1 and 
2,
which are periodic in �, but periodic up to a constant in X:


2�0,X� = 
2�2	,X�, X � �0,L�

and
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2��,0� = 
2��,L� + C3, � � �0,2	� .

Numerically, this is implemented as


2h�1, j� = 
2h�nt + 1, j�, for j � �0,nx + 1� , �61�


2h�i,1� = 
2h�i,nx + 1� + C3, for i � �0,nt + 1� . �62�

In order to approximate the first and second order deriva-
tives, we use central differences. For points on the bound-
aries the central differences are combined with the periodical
boundary conditions.

As already said the most important part of the calcula-
tion procedure is the solution of Eq. �58� together with the
boundary conditions. It is easy to see that a pressure function

2 satisfying this problem is determined up to a constant. So,
if 
2�� ,X� is a solution, then 
2�� ,X�+C is also a solution
for an arbitrary constant C�R. This means that the continu-
ous problem does not have a unique solution. Furthermore,
the solution only exists if the right-hand-side function f6 sat-

isfies a compatibility equation. After integration of Eq. �58�
with respect to � and X it can easily be proved that the
left-hand side is equal to zero. So this must also hold for the
right-hand side and therefore as compatibility condition the
following expression is chosen:

�
0

2	

d��
0

L

dX�f��,X�� = 0. �63�

The same problem exists for the discretized equations.
After discretization of Eq. �58� one has to solve the linear
system

Ax = b , �64�

where x�RN, with N= �nt+1� · �nx+1�. Grid function 
2h

and x are related by

FIG. 2. �Color online� Movement of wave at the interface �at the top of the pipe� as a function of time. Concentric core at T=0. No density difference between
core and annulus. Pressure gradient over pipe. �a� After 0 time steps; �b� after 30 time steps; �c� after 60 time steps; and �d� after 90 time steps. C1=10−4,
C2=0, C3=10−2, �T=10−2, H2

�0�=0.1, H3
�0�=0.8, A=0.02, �=0, L=3, nx=26 and nt=20. The pipe wall is at rest according to the chosen reference system.
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2h�i, j� = x�i + �j − 1�nt� .

It appears that det�A�=0, so the matrix is singular. If function
f satisfies the compatibility condition, the linear system
should also have a solution, which is determined up to a
constant. Due to discretization and rounding errors it is pos-
sible that b does not satisfy the following discrete compat-
ibility condition exactly:

bTy = 0 for y such that ATy = 0 , �65�

�see p. 139 of Strang20 and Sec. 8.3.4 of Elman et al.21�. For
this reason we solve Eq. �64� as follows:

• Determine the left eigenvector y of A corresponding to the
zero eigenvalue, so

ATy = 0 .

• Adapt b:

b = b −
bTy

yTy
y ,

such that it satisfies the compatibility equation �65�.
• Solve the resulting linear system by the GMRES method

�for more details, see Refs. 22 and 23�.

We use GMRES instead of Gaussian elimination for the fol-
lowing reasons:

• GMRES is a more efficient method than Gaussian elimi-
nation for large sparse matrices.

• The GMRES method can be applied to a singular system
�see Ref. 24�, whereas Gaussian elimination can only be
used for a nonsingular system.

Another idea is to regularize matrix A. A possibility is to
replace A by �A−uuT�, where u is the unit eigenvector cor-

FIG. 3. �Color online� Movement of wave at the interface at the top of the pipe as a function of time. Eccentric core at T=0. No density difference between
core and annulus. Pressure gradient over pipe. �a� After 0 time steps; �b� after 45 time steps; �c� after 135 time steps; and �d� after 1500 time steps. C1

=10−4, C2=0, C3=10−2, �T=10−2, H2
�0�=0.1, H3

�0�=0.8, A=0.02, �=0.06, L=3, nx=26, and nt=20. The pipe wall is at rest according to the chosen reference
system.
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responding to the zero eigenvalue. It is easy to see that the
zero eigenvalue of A is replaced by an eigenvalue equal to 1.
Now Gaussian elimination can be applied to �A−uuT�. A
drawback of this approach is that �A−uuT� is a full matrix,
whereas A is a sparse matrix. This leads to very high
memory and CPU time costs for this approach.

The other parts of the solution procedure are straightfor-
ward to discretize. For the postprocessing we have to com-
pute the upward vertical force on the core. This is done by
applying the trapezoidal integration method to Eq. �60�.

IV. RESULTS

A. No density difference between core and annulus

We begin by investigating the development of the wave
at the interface between the core layer and the annulus for
the case that the densities of the liquids in the core layer and
annulus are the same �C2=0�. The ratio of the viscosity of

the liquid in the annulus and in the core is assumed to be
10−4 �so C1=10−4�. The pressure drop in the X-direction is
chosen to be C3=10−2. For the thickness of the annular layer
we choose H2

�0�=0.1, for the thickness of the solid center
H3

�0�=0.8, for the amplitude A=0.02, and for the wavelength
L=3. We start with a concentric position of the core ��=0�.
In Fig. 2 we show the position and the shape of the wave at
four different values of dimensionless time T. A reference
system is chosen as the one, according to which the pipe wall
is at rest �and so according to which the solid center moves�.
As expected the wave propagates in the downstream direc-
tion with the flow of the core layer. We found that the wave
shape does not change in this case. At the small viscosity
ratio of 10−4 the interfacial wave tends to a standing wave
convected with the velocity of the flow at the interface be-
tween the core layer and the annular layer and the growth
rate is zero. This is in agreement with the results of Hu
et al.25

FIG. 4. �Color online� Thickness of annular layer at the top of the pipe �full line� and at the bottom �dotted line� as a function of time. Eccentric core at T=0.
No density difference between core and annulus. Pressure gradient over pipe. �a� After 0 time steps; �b� after 45 time steps; �c� after 135 time steps; and �d�
after 1500 time steps. C1=10−4, C2=0, C3=10−2, �T=10−2, H2

�0�=0.1, H3
�0�=0.8, A=0.02, �=0.06, L=3, nx=26, and nt=20. The solid center is at rest according

to the chosen reference system.
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FIG. 5. �Color online� Vertical force on core as a func-
tion of time.

FIG. 6. �Color online� Position of wave at the interface �at top of the pipe� as a function of time. Concentric core at T=0. Density difference between core
and annulus. No pressure gradient over pipe. �a� After 0 time steps; �b� after 9 time steps; �c� after 18 time steps; and �d� after 27 time steps. C1=10−4, C2

=10−3, C3=0, �T=10−3, H2
�0�=0.1, H3

�0�=0.8, A=0.02, �=0, L=3, nx=26, and nt=20. The pipe wall and solid center are at rest according to the chosen
reference system.
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Next we change the initial eccentricity of the core, keep-
ing all other parameters the same as for the concentric case.
For the initial eccentricity the following value was chosen:
�=0.06. After the start of the calculation the hydrodynamic
force on the core pushed it back into a concentric position. In
Fig. 3 the position of the interfacial wave is given for four
values of time. A reference system is chosen as the one,
according to which the pipe wall is at rest. It is clear that the
interface is moving away from the wall toward a concentric
position. The interfacial wave moves forward and changes
only slightly. In Fig. 4 we show the thickness of the annular
layer at the top of the pipe ��=0� and at the bottom ��=	�.
For this figure the reference system is the one according to
which the solid center is at rest. As can be seen the thickness
at the top and at the bottom become equal after some time.
They are also not shifted with respect to each other in the
axial direction. So the interfacial wave remains cylindrically
symmetric. In Fig. 5 the vertical force on the core is shown
as a function of time. It quickly becomes negative, thus

pushing the core downward. When the core gets into a con-
centric position �there is no buoyancy� the force disappears.
In the next paragraph we will discuss in more detail the
reason for the vertical force.

B. Density difference between core and annulus

In the following step we investigate the interesting case
of core-annular flow with a density difference between the
core and the annular layer. We start our calculation for the
case, that there is no pressure gradient over the pipe �C3

=0�. For the buoyancy parameter we choose a value of C2

=10−3. All other parameters are the same as for the case of a
concentric core without density difference and with pressure
gradient. The result is shown in Fig. 6. In this figure the
position of the wave at the top of the pipe is given as a
function of time. The curved line represents again the wave
at the interface between the core layer and the annular layer;
the horizontal top line represents the pipe surface. So the

FIG. 7. �Color online� Movement of wave at the interface �at top of the pipe� as a function of time. Concentric core at T=0. Density difference between core
and annulus. Pressure gradient over pipe. �a� After 0 time steps; �b� after 70 time steps; �c� after 150 time steps; and �d� after 500 time steps. C1=10−4, C2

=10−3, C3=10−2, �T=10−3, H2
�0�=0.1, H3

�0�=0.8, A=0.02, �=0, L=3, nx=26, and nt=20. The solid center is at rest according to the chosen reference system.
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distance between these two lines represents the annular
thickness. As expected the core rises in the pipe due to the
buoyancy force and touches the top of the pipe.

Next we treat the complete problem: core-annular flow
with a density difference between the core and the annular
layer and with a pressure gradient over the pipe. To that
purpose the �dimensionless� pressure gradient is increased
from C3=0 to C3=10−2 and all other parameters are kept the
same. In practice it is found that for this case an eccentric
core-annular flow �rather than a stratified flow� develops in
time, and it is interesting to see whether this observation also
results from our calculation. The results are given in Fig. 7.
Again in this figure the curved line represents the interface
between the core layer and the annular layer; the horizontal
top line is the pipe surface. So the distance between these
two lines represents the annular thickness. As can be seen
this thickness remains finite as a function of time; the core
does not touch the upper pipe wall. A balance develops be-
tween the buoyancy force and the hydrodynamic force, that
makes a steady eccentric core-annular flow possible. This
can also be seen from Fig. 8, which gives the vertical force
on the core as a function of time for the case of Fig. 7. At
first it is positive because of the buoyancy. However, the
hydrodynamic force develops due to a change in the wave
profile �see Fig. 7� and the total vertical force on the core
decreases. After a certain time it becomes zero, which means
that a steady core-annular flow is achieved.

As mentioned the development of the hydrodynamic
force is due to a change in the wave profile, in particular at
the top of the pipe where the annular thickness is small. As
can be seen from Fig. 7 the wave develops in such a manner,
that it is no longer symmetric in the axial direction. On the
right-hand side of the wave top the wave shape becomes
wedge-shaped. This is not the case on the left-hand side of
the wave top. Due to the wave velocity in the �positive� axial
direction a strong pressure built-up takes place at the wedge-
shaped part of the wave, which is larger than the pressure on

the left-hand side. So a net downward vertical force on the
core is generated, which balances the buoyancy force when
steady state has been reached. The important point is, that
this wedged-shaped wave part develops automatically.

We have repeated this calculation many times for differ-
ent values of the parameters and always found the same type
of result. Another example is given in Fig. 9 with Fig. 10 for
the vertical force. In this case the viscosity ratio is lower,
C1=10−3; the density difference is larger C2=2 ·10−3; and the
pressure gradient is larger C3=7 ·100. The development of
the nonsymmetrical wave shape in the axial direction can
again be observed. After some time it has developed so
much, that the buoyancy force is counterbalanced and a
steady core-annular flow is present. The final average thick-
ness of the annular layer at the top of the pipe depends on the
value of the relevant parameters. For instance, the core ec-
centricity decreases with increasing pressure gradient and
with decreasing density difference.

We have compared predictions made with the model
with an oil-water core-annular flow experiment described by
Oliemans and Ooms2 in their review paper. The experiment
was performed in a 9 m long horizontal perspex pipe of 2 in.
diam. The difference in density between water and oil was
about 30 kg/m3. The amount of water was 20%. The oil
viscosity was 3300 cP, and the oil velocity was 1 m/s. Oil
and water were introduced into the pipe via an inlet device
that consisted of a central tube surrounded by an annular slit.
The oil was supplied via the tube, and the water via the slit.
Immediately after the inlet device a wave appeared at the
oil-water interface. Its wavelength was of the same order of
magnitude as the radius of the pipe. For this set of conditions
stable core-annular flow was found to be possible. However,
the position of the oil core was very eccentric. So the thick-
ness of the annular layer at the top of the pipe was much
smaller than the annular thickness at the bottom. �Most of the
water was at the lower part of the pipe.� We have simulated
this experiment with our model by using the values of the

FIG. 8. �Color online� Vertical force on core as a func-
tion of time.
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relevant parameters given above. We paid special attention to
the levitation capacity of core-annular flow. To that purpose
we started the calculation with a flow without density differ-
ence between water and oil ���=0 kg/m3�. Thereafter we
gradually increased the value of �� and studied its influence
on the distance �d between the top of the wave �at the in-
terface between the water layer and the oil layer� and the
pipe wall at the top of the pipe. The result of the calculation
is given in Fig. 11. Without a density difference �d
=1.5 mm. However with increasing value of �� the value of
�d decreases rather quickly. At ��=30 kg/m3 we calculated
�d=0.42 mm. So according to our model core-annular flow
still exists at ��=30 kg/m3, although the annular water
layer has become very thin at the top of the pipe. Consider-
ing the approximations made in our theoretical model we
feel encouraged by this result.

V. CONCLUSION

Our calculation has confirmed the experimental observa-
tion, that core-annular flow �with a density difference be-
tween the high-viscosity core and the low-viscosity annulus�
through a horizontal pipe is possible. When the pressure gra-
dient over the pipe is large enough, a balance develops be-
tween the buoyancy force and the hydrodynamic force on the
core that makes eccentric core-annular flow possible. With
decreasing pressure gradient or increasing buoyancy force
the eccentricity of the core increases.

In this publication the core is assumed to consist of a
solid center surrounded by a high-viscosity liquid layer. The
reason is, as mentioned before, that we cannot solve the
problem in which the complete core has a finite viscosity by
means of the partly analytical and partly numerical method
that we applied in this publication. To the best of our knowl-

FIG. 9. �Color online� Movement of the wave at the interface �at top of the pipe� as a function of time. Concentric core at T=0. Density difference between
core and annulus. Pressure gradient over pipe. �a� After 0 time steps; �b� after 240 time steps; �c� after 690 time steps; and �d� after 900 time steps. C1

=10−3, C2=2 .10−3, C3=7 .100, �T=10−4, H2
�0�=0.1, H3

�0�=0.8, A=0.02, �=0, L=3, nx=26, and nt=20. The solid center is at rest according to the chosen
reference system.
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edge the problem of a �lubricating� low-viscosity liquid layer
on the outside of a high-viscosity core �single core fluid
without solid center� with a density difference between the
two liquids moving through a horizontal pipe has also not
been solved numerically. In a recent publication by Kang,
Shim, and Osher26 level set based simulations of a two-phase
oil-water flow through a pipe is made. For the case of an
upward or downward core-annular flow through a vertical
pipe they incorporate the buoyancy force due to a density
difference between water and oil in their simulations. How-
ever, for the case of a horizontal pipe the buoyancy force is
neglected, as Kang, Shim, and Osher solve an axisymmetric
flow problem.
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APPENDIX: DERIVATION OF THE VERTICAL FORCE
ON THE CORE

The total force on the core �solid center and core layer�
in the i-direction is given by

FIG. 10. �Color online� Vertical force
on the core as a function of time.

FIG. 11. Distance between the wave top at the oil-water
interface and pipe wall.
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Fi
core = �

S1

�p2
ik − �2,ik
�v� �S1

n1,kdS1 + �
S5

p1
ixdS5

− �
S6

p1
ixdS6 + �1gQ1
i,z, �A1�

in which x is the axial direction, z is the downward vertical
direction, S1 is the side surface of the core as shown in Fig.
12, S5 and S6 are the cross-sectional surface areas of the core
at x and x+ l, n1,k is the normal on the core as shown in the
figure, �2,ik

�v� is the viscous part of the stress tensor, and Q1 is
the core volume inside the surfaces S1, S5, and S6. As the
integral at S1 are difficult to evaluate, we will express the
force on the core in terms of integrals at the pipe surface S2.
To that purpose we first calculate the total force exerted on
the annular layer, which is equal to

Fi
ann = − �
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�p2
ik − �2,ik
�v� �S1

n1,kdS1
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�p2
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where n2,k is the normal on the pipe wall as shown in the
figure, S3 and S4 are the cross-sectional surface areas of the
annulus at x and x+ l and Q2 is the annular volume inside the
surfaces S1, S2, S3, and S4. At equilibrium the forces on the
annulus balance each other, so Fi

ann=0. This yields the fol-
lowing relation:

�
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Substitution of Eq. �A3� in Eq. �A1� gives
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Consequently, for i=z Eq. �A4� reduces to
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or using Eq. �7�,
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Substitution of Eq. �15� in Eq. �A6�, keeping only the largest
terms and making the result dimensionless yields after some
calculations the following expression for the upward vertical
force on the core:
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