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Variational Principles for Electromagnetic Systems with Memory (*). 

ELENA VUg 

Abstract. - ~,Saddle point~ or r principles are set up for first order integrodifferential systems 
arising in the hereditary electromagnetic theory. Variational formulations are obtained directly in 
terms of electric and magnetic field vectors. In particular, these principles are shown to hold as a con- 
sequence of thermodynamic restrictions, when the quasi-static case and the linear evolution problem 
are considered. 

1.-In~oducfion.  

Variational formulations in the electromagnetic theory has been investigated in many pa- 
pers (see [1, 3, 10, 18, 19]). Concerning evolution problems, these methods often use time- 
convolution bilinear forms and lead to a stationary principle, not necessarily to a minimum 
one. They become extremum principles for the Laplace transform of the functionals and are 
still valid in the transform, but not in the original domain. 

A new technique to obtain stationary and minimum principles for linear evolution equa- 
tions was earlier introduced by Reiss [13] and a specific application to electromagnetism has 
been developed by Reiss & Haug [14]. This method rests upon the introduction of bilinear 
forms of convolution type with a suitable weight function involving Laplace transformation 
with respect to time, in such a way that the functionals could be transformed back to the 
time domain, while preserving their extremum characteristic. 

This result has been extended in [11] to electromagnetic materials whose dissipativity is 
due to the memory in the constitutive relations. There, minimum principles are obtained by 
transforming Maxwell's equations system into a second order integrodifferential equation in 
terms of the electric field. 

We notice that Reiss' approach, unfortunately, can be applied to initial boundary value 
problems, only. Neverthless, as observed in [7], this method can be modified for the treate- 
ment of quasi-static problems. Actually, the appropriate class of convolution type function- 
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als is taken in terms of bilinear forms with a weight function invoMng the Fourier 
transform. 

Recently, using a different technique, extremum principles are formulated for time-har- 
monic and quasi-static problems for lossy systems (subject to impedance-like boundary con- 
ditions) in terms of both electric and magnetic field [8]. Actually, if dissipation is involved, 
variational expressions achieve the extremum property. Moreover, extremum principles 
(minimum or ~mini-max)~), if avalaible allow numerical approximations to be applied and 
may be regarded as a contribution to optimization theory [16]. 

In this work we formulate some ~mini-max~ principles for materials subject to conserva- 
tive and hereditary impedance-like dissipative boundary conditions, which describe the be- 
haviour of a well (but not perfectly) conducting surface. In this framework, we exhibit varia- 
tional expressions concerning the quasi-static and evolution problems in terms of E and H, 
such that the stationary property yields both Maxwell equations and mixed boundary 
conditions. 

After introducing proper bilinear forms and making use of an appropriate decomposi- 
tion of the electromagnetic field, we show that every (unique) solution of first order Maxwell 
equations can be characterized as a ,saddle point, of the corresponding functional. 

2. - Setting of  the problem. 

Let s r R 3 be an open bounded domain with smooth boundary Ot2 and let t ~ R be the 
time. In absence of free charge density, the evolution of the electromagnetic field in the 
space-time domain Q = Q • R + is ruled by the well-known Maxwell equations 

(2.1) 

I V  • E(x, t) + ~tB(x, t) = Ii(x, t) 
8 

V.B(x, t) = 0 

V x H(x, t) - ~tD(x, t) =](x, t) +Ji(x, t) 

V.D(x, t) = 0. 

Vectors fields B, E, H, D and J represent the magnetic flux density, the electric field, the 
magnetic intensity, the electric displacement and the induced electric current density, re- 
spectively. Ii and ]i denote the forced magnetic and electric current densities and are known 
vector functions on Q. 

Assuming the free charge density to be zero we have as a consequence 

V'(J(x, t )+  Ji(x, t)) = 0. 

In spite of this, later on we take into account this constraint by introducing suitable spaces 
for the field E and for the forced current densities. 
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For later convenience, for any f u n c t i o n / e L i ( R )  A L2(R), we denote by 

oo 

f ( c o ) =  f f (~:)exp(- ic~r)dr,  co~R 
- 0 o  

its Fourier transform. If f is a causal function, i.e. f(s) = 0, s < 0, then 

)7(o9/=fc(tO) - if~(o)), 7(o9) = f<(to) + if~(o)), 

where fc, f~ are the half-range cosine and sine Fourier transforms o f f  and <<->) stands for the 
complex conjugation. Similarly, for any z ~ C + = {z = s + ico ~ C,  s I> 0 }, we denote by 

oo 

f ( z )  = f f ( r )  e x p ( - z r )  dr 
0 

the Laplace transform of f and 

oa oo 

iA~) = ff(r) exp(-sr)cos~r&, ?,(~)= ff(r) exp(-s~)sincordr 
0 0 

represent its cosine and sine Laplace transforms. In particular, we denote by 

oo 

f(~) = ff (v)  e x p ( - ~ )  & ,  s ~ R  + 
0 

the real Laplace transform of f .  
Now, we consider a conducting material modelled by the following constitutive 

equations 

[ D(x, t) = e(x) E(x, t) 

(2.2) ~ B(x, t) = lax) H(x, t) 
I 

[ ](x, t) = o(x) E(x, t) 

where e,/~, o are symmetric, positive definite second-order tensors called permittivity, per- 
meability and conductivity, respectively. 

Regarding to (2.1) we will scrutinize different boundary conditions. So, the boundary 
8/2 is taken to consist of two disjoint subsets, namely 392 = 8/21 U 8g2 2, with 8Q 1 ('] 8ff~ 2 = 

= 0; 0s consists of a perfect conductor, namely 

(2.3) n(x) • E(x, t) = 0, Vx ~ 8s 

where n is the unit outnormal, whereas 8g2 2 is a good (non perfect) conductor ruled by the 
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hereditary impedance-like constitutive relation proposed by Fabrizio and Morro [5] 
oo 

(2.4) E~(x, t) =ri0(x) H(x, t) x n(x) + Iri(x,  s) Ht (x ,  s) • n(x) ds, xE312 2 
0 

where E~ is the tangential component of E,/30 and/5 are symmetric second-order tensors act- 
ing at the tangent bundle rx of 01"22 in x, with(1) 

r io (x )>O,  r i ( x , . ) ~ L I ( R + ) N L 2 ( R + ) ,  Vx~12. 

In (2.4) H t represents the history of the magnetic field up to time t, namely 

H t ( x , s ) = H ( x , t - s ) ,  xe12 ,  s ~ R  +. 

The last equation (2.4) turns out to be an appropriate generalization to time-dependent 
fields of the relation proposed by Graffi and Schelkunoff [9, 15] for time-harmonic 
fields 

(2.5) E~(x, o)) = 2(x, o)) H(x, o)) x n(x). 

Here the surface impedance 2 is given by 

2(x, o)) = 2 ' (x ,  o))+i,U'(x, o0) 

where 4'  and 4" are called surface resistance and reactance, respectively. Actually, if time- 
harmonic fields are considered, namely 

E(x, t) = E(x, o)) e i~ H(x, t) = H(x, o9) e '~~ 

then (2.4) reduces to (2.5) and 

2(x, o0) =ri0(x) +~(x, o~). 

The local dissipativity of the boundary medium 0122 follows from the inequality 

d 

(2.6) ~ E~(x, t) x H(x, t)'n(x) dt > 0 ,  x ~ 812 2 

0 

which must hold for any non trivial cycle of duration d. This condition implies the following 
thermodynamic restriction: 

(2.7) rio(X) +rio(x, co) > 0 ,  Vx~  8122, Vo)~R +. 

In the sequel, whenever no ambiguity arises, the dependence on x is understood and not 
written. [a It is worth noting that if there exist two real functions a, b such that/3 0 = - b  ' 

(1) For any tensor A, the notation A > 0 (A I> 0) means that A is positive definite (semi-definite) 
on the space of the symmetric tensors Sym. 
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then 3 0 commutes with the operator <<n x >>, namely 

n X ( 3 o V ) = 3 o ( n •  Vv~Tx .  

Of course, if the tensor 3 satisfies a similar assumption, then condition (2.4) can also be ex- 
pressed in the form 

o o  

(2 .8)  n x E ( t )  = - 3 o n  x n x H ( t )  - f3(s) n x n x Ht(s) ds . 
0 

With the same arguments presented in [2] it is possible to invert the boundary condition 
(2.8). This problem is connected to a Wiener-Hopf integral equation [17], whose solution is 
achieved by the crucial thermodynamic request 30 + fl(o)) ;~ 0, Vo)~ R. 

tion 

(2.9) 

where 

LEMMA 2.1. -- I f 3  satisfies (2.7) and 30 > O, then it is possible to invert the boundary rela- 
(2.8), i.e. there exists a symmetric, causal, tensor valued function a such that 

o o  

n x H(t) = aon x n x E(t) + fa ( s )  n x n • Et(s) ds 
0 

1 ~ ( o ) )  
(2.10) a o -  3o a(o~) 3o[30 +/~(co)] ~oeR 

As a consequence of previous thermodynamic restrictions on 3 and 3 o, it holds 

(2.11) a o > 0 ,  ao+ac(~o)>O, V~oeR +. 

Besides, in force of condition (2.7), we prove the following 

LEMMA 2.2. -- I f 3 0  > 0 and 30 + 3 c(o0) > 0 for any o) ~ O, then 

(2.12) 3 o + [ 3 0 ) > 0 ,  s > 0 .  

PROOF. - By definition of real Laplace transform and Plancherel's theorem we 
have: 

o o  

-I 30 +~(s) =30 + ~0" (e-~)c(~ 3c(~o) do) 

o o  

2 j  sa~2fl =30+ ~ s2+ c(o))d~o. 
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Taking into account the identities 

s(r) __ _2 is,(~,) coso, rao, , s (o )  = _2 f s < ( o ) d ~  

and choosing f i r ) =  e x p ( - s r ) ,  we obtain 

oo 

0 

so that 
0 0  

S 2 + (.0 2 

Therefore, in view of (2.12), we achieve 

- -  [B0 + BAo)) ]  d o  > 0 .  

(2.13) a 0 + 8 ( s ) > 0 ,  s > 0 .  

In order to give an accurate formulation to the problem, we introduce suitable functional 
spaces. Let 

Q 

The space O~(D) is a closed subspace of L 2 (D) and can be defined also as the closure of the 
set of the solenoidal vectors u �9 Co ~ (D). 

Q 

89,((2) = {EeL2(g2), le (x)  E(x).Vq)(x) dx = g2 o v~, e c~ (.o)}, 

(Do(~2)={E~L2(~2),lo(x)E(x)'Vq)(x)dx=O W)~Cj~ 

.9C(f2) = {(E, H) ~ (D,, o(.Q) x d~,(~9) : VEEL2(~2), VH~L2(f2)} ,  

M Q ) =  2 + 1 + L~or , 8s ~ o(g2) x H,or (R , ~ , ,  (79a (g2)), 

~(Q) = L 2 (R + , 3C(g2)) A H 1 (R + , 09~, o(s x 6D~(s 
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3. - A saddle-point principle for a quasi-static problem. 

In this section we give a mini-max principle for conducting materials subject to conser- 
vative and dissipative boundary conditions. First we observe that Reiss' technique, properly 
modified, can be also applied to quasi-static problems by introducing fitting bilinear forms 
in terms of full-range Fourier transforms. 

Moving along the lines of [7], let Y be a real function belonging to L I(R + ) and Ye be its 
even extension, i.e.: 

Y(s),  s E R + 

Y~(s) = s e R - .  

Y ( - s ) ,  
We define the function y on R as 

(3.1) 

0o 0o 

y ( t ) =  Ye(t) = f Ye(s) e x p ( - i s t ) d s = 2  fY(s>cos.a,.  
- - 0 o  0 

It is a real, even, absolutely continuous function which vanishes as t tends to infinite. For any 
pair (p, q) of vector- or tensor-valued functions on Q • R or 892 • R we introduce the fol- 
lowing bilinear forms 

(3.2) 

0o o0 

<p, q>~ = f f y(~ + ~> f p(x, t).q(~, ~> dx atd~, 
- o o  - 0 0  

(3.3) 

0o 

Cp, qa~= f f y(t + ~>fp(~, t>.q(~, ~1 dadtd~. 
- 0 o  - o o  8 ~  

Substituting (3.1) into (3.2) it follows that: 

0o 

- 0 o  Q 

(3.4) = i Y,(o)) Re (,D(o)), ~(~))~ de) 
- o o  

oo 

= 2 I Y(~176 qc(o)))~-  (ps(o)), qs(o)))s~] dco 
o 

where Re z denotes the real part of the complex number z and (., .)~, (., .)0n represent the 
inner products of L 2. The bilinear form (3.4) is well-defined on L I(R, L2(g2)) whenever 
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y e L I ( R  +) as well as on LZ(R, L2(g2)) whenever YeC0=(R+).  Analogously, we 
have: 

(3.5) 
o o  

[p, q]y = 2 f Y(o))[(Pc(o)), qc(o)))a~- (P~(O)), q~(o)))as~] do). 
0 

It is easy to check that (., .)y and [., .]y are symmetric. Letting 

o o  

p * q(t) = f p(s) q(t - s) ds 

we observe that 

o o  

( p , q ,  r)y= f f y(t  + r) p ( r -  o) q(o) do, r(t) drd t  
- o o  - o o  f f ~  

o o  

= f Ye(o)) Re(~(o)) ~(o)), ~(o)))~ do) 

and 

o o  

[ p ' q ,  r]y = ~ Ye(o)) Re(iv(o)) q(o)), r(o)))aa do). 

Now, we consider the quasi-static approximation of system (2.1), by assuming 8--D = 0, 
Ot 

LB=O 
8t 

(3.6) { V x E(x,  t) = Ii(x,  t) 

V x H(x ,  t) =J(x ,  t) +Ji(x ,  t).  

The solenoidal condition on the electric current, namely V-J = V- (erE) = 0 is inherent into 
the quasi-static approximation. Actually, it follows taking the divergence of the second 
equation of (3.6) and recalling Jie O)(y2). 

We associate the mixed boundary conditions: 

(3.7)1 n(x) x E(x,  t) = O , xeag21 

n(x) x E(x,  t) = - [fio(X)6(x) + fl(x,  .)] *n(x) x n(x) x H(x ,  t) 

(3.7)2 n(x) x H(x ,  t) = [a 0(x)6(x) + a(x, .)] * n(x) x n(x) x E(x,  t) ' x e 8122 

where 6 is the Dirac distribution and * denotes the convolution. 
Let <<V x >> denote the curl differential operator and <<n x >> the skew tensor F ,  related to 
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the unit outnormal n, namely: 

F.=n• = 

0 - n  3 n@ ] 

n3 0 1 

- -  n2 Hi 

so that F ,  v = n x v, F2, v = n x n x v. If we introduce the operators: 

I ~ [0 I0 nx] R =  ; N =  ; P =  , 
Vx nx 0 nX 0 

A =  [ 0 - ( f l o O + f l ) * F J  
( a o d + a )  * F .  0 

a straightforward calculation proves the following properties: 

N r = - N ;  p r = p ;  N l t = - A r N ,  

where the superscript T stands for the transposition. Then, letting 

~ [0 ~ [;l; ': [,i] ' Ii 

system (3.6), (3.7) takes the form 

(3.8) 

R U = D U + F  in s  

(8'1) NU = - PU on 8~r21 x R.  

N U = N A * U  on 8 Q 2 x R  

DEVlNmON 3.1. -- A function U = (E, H) is called a strong solution of the quasi-static 
problem 8~i with source term F belonging to L2(R,  0)(Y2)x 6~(Y2)) if U belongs to 
L2(R,  8C(Y2)) and satisfies almost everywhere (3.8). 

As to the solvability of (3.8), we recall the existence and uniqueness results proved by 
Nibbi [12] under more general conditions. 

THEO~M 3.1. - Under thermodynamic restrictions (2.7), (2.11), for any positive function 
YE Co ~ (R + ), Uf is a strong solution of problem 8'1 if  and only if  U! is a saddle-point on 
L 2(R, 8C(32)) of the functional 
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PROOF. -- Let U/EL2(R, 8C(~2)) be a strong solution of ~P1 with F~ L 2(R ,  (D(~2)x 
x 0~(~2)). For all o) e R, the Fourier transform Uf(o)) e 8C(s satisfies almost everywhere the 
problem 

(3.9) { R U = D U + F  in ~ 2 x R  

NU = - P U  o n  8~'~ 1X R .  

NU = N A U  on 8fd2 x R 

A 

Because U = U~ - iU,, the pair (U~, U~) must satisfy a.e. the coupled systems 

{ RU~=DU~+ Fc 

(a) NU~= -PU~ ; (b) 

NU~ = NA ~ U~ - NA , U~ 

{ RU, = DU~ + F~ 
NU~ = -PUs 

NU~ = NA ~ U~ + NA , U~ 

where 

N . d  = N A  ~ -  i N A ,  

= [(a0 +0ac)F2" o 1 [ ~  
-(r + r r~ 

0] 
o F 2 

- - [ ' ) $  n 

Using (3.4)-(3.5), we obtain: 

(3.1o) s = I Y(o)) (U~, RU~)a- (U,, R U , ) a -  (U~, DU~)a + (U,, DU, )a -  
o 

1 1 -2(U~, Fc)a + 2(U,, F,)a- ~--(U~, PU~)sa, + ~-(U,, PU,)aa, + 

1 1 ] 
+--(Uc,2 N A c U c - N A , U , ) o a 2 -  -~(U,, NA,Uc+ NA~U,)oa2 do) 

where the dependence on o) is understood and all quantities considered are real valued. Tak- 
ing into account that for any pair of real vectors U, V, the following properties hold 

(Q1) (U, NV)sa = - (NU, V)sa 

(Q2) (U, A V ) s a  = (A  T U, V)oa 

(Q3) (NU, AV)sa = (AU, NV)sa 

(Q4) (u,  RV)a = (V, RU)a + (U, NV)sa 



ELENA VUK: Variational principles, etc. 105 

the first variation of .ey can be expressed by 

o~ 

= [ Y ( O ) ) [ 2 ( d U c , ( R - D ) U c - F c ) a - 2 ( d U , , ( R - D )  U , - F , ) Q -  d2y(U) 
0 

- (dUe, (N + P) Uc)aal + (6U,, (N + P) U,)sal - (dUe, NUc - N A  ~ Uc + N A ,  Us)aa2 + 

+ (6U,, NUs - NA~ Uc - NAc  U,)aa2] do) 

and it vanishes provided that, for any Ye Co ~ (R + ), Uf satisfies (3.9). 
The second variation of ~y at U/ is  given by 

o o  

62G(U/) = I Y(o))[2(dG,  (R - D) 6U~)a - 2(6U,, (R - D) 6U,)a - 
0 

- (dUe, PdU~)aQ, + (6U,, PdU,)oal + (dUe, NA cdUc)oa2 - (6Us, NA ~dU,)sa2 - 

- 2 ( 6 G ,  NA,dU,)sa~] do). 

Letting W =  L2(R, 8C(s we can represent the space W as 

W = W a e W ~  

so that, for any U e W, its Fourier transform U e W and can be written as U = Ua + Ub 
where Ua ~ W~, Ub ~ Wb are as follows 

As a consequence 

U,= - i l l ,  [ H c J "  

Then, if dE, = 6Hc = O, we obtain 

(3.11) 

while, if dEc = 6H, = O, we have 

(3.12) 

c o  

d23~y(U~) = - f Y(o))[2(dEc, adEc)a + (n x dEc, (ao + ar n x 6Ec)aa~ + 
0 

+ (n x 6H,, (fl0 + tic) n x 6H,)~a2] do) < 0 ,  

o o  

d2,1~y(Ub) = f Y(O))[2(dE,, adE,)a + (n • dEs, (a o + a~) n x 6E,)sa~ + 
0 

+ (n x 6H~,(fio + fl~) n x 6H~)sa~] do) > 0 .  

Finally, using the bijectivity of the Fourier transform from L 2 into itself, we deduce that 

[0] [~ 6Ua= ~ - i  dUb= - i  " . 
6H, ' 6Hc 



106 ELENA VUK: Variational principles, etc. 

Ufe W is a strong solution of 8'1 if and only if Ufis a saddle-point of .r on W, for every posi- 
tive Y~ Co ~ (R + ). The saddle-point exists and is unique in W under thermodynamic restric- 
tions (2.7), (2.11) by virtue of [12]. 

REMARK 3.1. - The previous theorem is still valid for dielectric materials (i.e. when the 
conductivity cr = 0), provided that the whole boundary 8/2 satisfies the dissipative condi- 
tions (3.7)2 only. 

4. - Saddle-point principles for an initial-value problem. 

In this section we are dealing with two variational formulations related to the evolution 
of materials described by the constitutive equations (2.2), and subject to mixed boundary 
conditions (3.7). The first is set up through the Laplace transform; other, by means of Reiss' 
method, through a specific bilinear form with a weight function. 

In the space-time domain Q, the Maxwell equations become 

(4.1) 

V x E(x, t) +It(x) ~ t H ( x ,  t) = Ii(x, t) 

V x H(x,  t) - e(x) ~ t E ( x ,  t) = o(x)  E(x, t) +],.(x, t) 

with initial data 

(4.2) 
E(x, O)=Eo(x ) ,  H(x,  O ) = H o ( x )  x e f 2  

E~(x, t) = O , H~(x, t) = O t < 0 ,  x ~ 8/2 2 
o 

Taking advantage of previous differential operators and setting 

[o 0] C= ; U(x,O)=Uo(x);  G ( x , t ) = o ,  t < o  
It 

system (4.1) becomes 

(4.3) (8'2) 

8 
RU(t) + C ~ t  U(t) = DU(t) + F(t) 

NU(t) = - PU(t) 

NU(t) = NA(t )  * U(t) 

u(o) = Uo 

G ( t )  = 0 

in / 2 x R  + 

on 8/21 x R + 

on 8/2 2 x R + 

in /2 

on 8/2 2 x R -  

DEFINITION 4.1. -- A function U = (E, H) ~ ~z(Q) is called a strong solution to the evolu- 
tion problem 8'2, with initial data U0 e ~ (/2) • 0~ l, (/2) and source F e L~c (R +, ~ (/2) x 
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x (I)(s if U satisfies (4.3) almost everywhere and 

lira I lU(x ,  t)  - Uo(X)llL~ = O.  
t--~O + 

As to the solvability of (4.3), we recall the existence and uniqueness results proved in [5, 6]. 
The application of the Laplace transform to problem 8~2 leads 

(4.4) 

where 

{ R ~ I + M U = G  in f2 

N O  = - p~r on 8[2 1 

N L/= N.d 0 on 8s 2 

[(7~ 0] M = zC - D = ; G = t: - CUo = . 
[/ i-eEo] 

The solution Uf(z) of (4.4) is obviously a stationary point of the functional 

(4.5) 1 4 ~z(U) = ~ ( U ,  RU)sa+ (U, MU)sa-  (U, G)sa- (U, PU)asa,- 1(NU,-71U)asa2. 
4 

On the other hand, by setting F~(U) = ~ (0 (z ) ) ,  the functional (4.5) may be considered as 
parameterized by the complex number z. Therefore the solution U/e  ~l(Q) to problem 8'2 is 
a stationary point for Ie~(U), VzEC + + -- { z ~ C ;  Re z > 0}. 

THEOREM 4.1. - Let gT= { U ~ ~(Q): 0 ~ 3c(f2), Vz e C + + }. Under the thermodynamic 
restrictions (2.12), (2.13), Ufe ggis a strong solution of  problem 8'2 i f  and only if [If is a saddle- 
point of the functional 1", on ~,, for any s > O. 

PROOF. - -  a) If U/e  8~is a solution of 8~2, then ~Jf(z) satisfies (4.4) and is a stationary point 
for ~ ,  Vs > 0. 

Letting z be real, i.e. z = s > 0, the second variation of ~, is given by 

(4.6) ~2G~ = f r ,~.v x , ~  + , ~ . v  x , ~ -  ~ . (s~  + ~) ,~ + ~ . s ~ 6 ~  d~ 
Q 

f ~ 
- n x 6E.OH da 

+ [ ( n x 6 H ) . ( f l o + f l ) ( n x 6 F I ) - ( n x 6 E ) . ( a o + ~ ) ( n X 6 E , ) ] d a .  
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If 6 H  = 0, then 

(4.7) 62~s'~=-f6E'(se+~189 (nx6F-')'(a~ 

while, if 6E  = 0, 

f 1 [ (nX 61~). (flo +/3)(n x 6 i~)da  > 0 .  (4.8) 6 2 ~ . ~ =  6Ft.s/~6H dx + -2o 
6z ~2 

b) As a consequence of thermodynamic restrictions and definition of rz(U), ~J/(s) is a 
saddle-point for ~s, i.e. 6 ~ = 0, Vs > 0 and conditions (4.7), (4.8) hold. Then, for any s > 0, 
~J/(s) satisfies (4.4) almost everywhere and this is the unique solution in force of (2.12), 
(2.13). In addition, by virtue of (2.12)-(2.13), the complex operator L~ = R + M(z) is strongly 
elliptic V z ~ C  ++ [5, 6] and system (4.4) has a unique solution V(z) ~ 3s which is ana- 
lyric in z on C + + and equals to Uf on the real positive half-line. Then, V and Uf must coin- 
cide on the whole C + + [4]. Uniqueness of the Laplace transform implies that Uf is the 
unique solution of (4.3) in ~. 

With regard to the second extremum principle, it is convenient to introduce further 
functional spaces, namely 

L~(R +, ~9) = {u~Ll2oc(R +, V): ~(z) ~ V, z ~ C  + + } 

with ~9 a suitable Hilbert space contained in L2(Q),  and 

1 + HL (R , L2(g2)) = {u e H{oc(R + , L2(f2)):  h(z)~ L2(g2), z ~ C + + } ,  

S(Q) = L~(R + , OC(~)) A H ~ ( R  + , LZ(g2))}. 

Consider a non negative function Y belonging to C(R + ) such that 
o o  

(4.9) y(t) = ~ Y(s) exp(-ist)  ds 
0 

exists for any t e R + and define the bilinear forms (., .)y and ((-, -))y on L{ (R + , L 2 (f2)) and 
L{ (R +, L 2 (Of2) ), respectively, as 

c o  o o  

(p, q)y= f fy(t  + r ) f p ( x ,  t).q(x, r ) d x d t d r  
0 0 Q 

o o  

= ~Y(s)([)(s), ~(s))~ ds 
0 

o o  oo 

((p, f fyo + f ,).q(x,  )dadtd  
0 0 Og2 

0 0  

= fY(s)(~(s), ~(s))vQ ds. 
0 
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They are both positive definite if Y does not vanish identically, and well-defined on L~ when 

Ye Co ~ (R + ). 

THeOrEM 4.2. -- Under thermodynamic restrictions (2.12), (2.13), Ufe 8(Q) is a strong sol- 
ution to problem 8'2 with source F e L ~ ( R  + , O(f2) • (D(12)) if and only if, for every 
Ye  C~ (R + ), U/is a saddle-point on 8(Q) of the functional 

( 4 . 1 0 )  ~ ( U )  = (W, NU)y -I- -~ ~ t  U, C U  - (W, DU)y - (U ,  F)y - 

y 

o o  

11y(t)ICU.[U(O) 2Uo]dxdt. _ I((U,  pu))r_ 1 ((NU, AU))y+ 
4 -4 0 ~2 

PROOF. - It is easy to check that the first variation of ~ vanishes if U/satisfies (4.4), for 
every Ye  Co = (R + ). The second variation of the functional (4.10) at U/is  given by 

o0 

f) = f + 
0 

- -~ (~u, P~ ~)~1 + ! ( ~  ~r, N26~)at22]  ds 
2 2 

so that if 6 H  = 0 yields 

f [ I  X ~ ( n x d E ) ' ( a ~  ds<O d2~,~ = _ Y(s) 6E.(se + o) fiE, dx + -~s 
0 1~2 

while, if ~E = 0, it follows 

f I f  1J2(nx6H)'( f l~ 
0 1.82 

The viceversa parallels the procedure of Theorem 4.1. 
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