
Z. angew. Math. Phys. 54 (2003) 224–234
0044-2275/03/020224-11
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Abstract. Some nonlinear evolution problems arising in the theory of elastic beams with linear
memory are considered. Under proper assumptions on the memory kernel the existence of uniform
absorbing sets and of a global attractor is achieved.

Mathematics Subject Classification (2000). 35B41, 74K10.

Keywords. Attractors, elastic beams, equations with memory.

1. Introduction

This paper is concerned with long time behavior of solutions to evolution problems
of viscoelastic bars. This model can be derived, for example, from a homogeniza-
tion of a material with viscoelastic microstructure (see [5], [9]).

We thus consider an equation of the type

utt +α0uxxxx +
∫ ∞

0
α′(s)uxxxx(t−s) ds+ δuxxxxt−

(
β +

∫ 1

0
u2

x(ξ, t) dξ

)
uxx = 0

(1.1)
where α0, δ > 0, α′ ≤ 0, β ∈ R together with initial and boundary conditions.

Eq. (1.1) with δ = 0 and α′ = 0 was proposed by Woinowsky-Krieger [13]
in order to describe the transversal vibrations of an extensible beam subject to
an axial internal force, and later studied, in a more general form, by Ball [1].
The problem was successively studied by Bianchi and Marzocchi in [2]-[3], but
always when the memory effects are neglected.

In this work we show that the dynamical system generated by eq. (1.1) has
an absorbing set in the space of solutions, i.e. a bounded set into which all
trajectories eventually enter, and a global attractor, that is a uniformly compact
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set which attracts all bounded sets in the space of solutions. Here a strong damping
term, also appearing in other physical models, appears to be useful in achieving
compactness properties needed for the attractor (see for example [10] for a similar
behavior and [11] for a general treatment).

Finally, the memory kernel is required to have exponential decay, as in several
other results, like, e.g. [6], [7], [8], [9].

2. Position of the problem, preliminaries

We associate to (1.1) the following initial and boundary conditions{
u(0, t) = ux(0, t) = uxx(1, t) = uxxx(1, t) = 0
u(x, 0) = u0(x), ut(x, 0) = u1(x).

(2.1)

The first condition corresponds to the case when the left end point x = 0 is clamped
and the right end point x = 1 is not subject to transversal force or bending torque.
Of course several other conditions are possible, namely those which lead to the
abstract problem given below.

We introduce in the Hilbert space H = L2(0, 1) with the usual scalar product
the linear operator A : D(A) → H such that Aφ = φxxxx on regular functions
with

D(A) = V = Ĥ4(0, 1) = {φ ∈ H4(0, 1) : φ(0) = φ′(0) = φ′′(1) = φ′′′(1) = 0}.
It is not difficult to verify that A is self-adjoint, positive definite, with dense domain
in H, and that, in weak sense,

A1/2φ = −φxx D(A1/2) = D(A) in H2(0, 1)

A1/4φ = |φx| D(A1/4) = D(A) in H1(0, 1).

In this way system (1.1)–(2.1) can be seen as an abstract evolution equation in
the space H whose expression becomes


utt + α0Au +

∫ ∞

0
α′(s)Au(t− s) ds + δAut +

(
β + ‖A1/4u‖2

)
A1/2u = 0

u(0) = u0

ut(0) = u1

(2.2)
where the initial data u0, u1 belong to V and H respectively. If α′ = 0, then (2.2)
reduces to the corresponding system considered in [2], [3].

Exploiting an idea of Dafermos [4], introduce the new variable

w(t, s) = u(t)− u(t− s), s ≥ 0.
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Differentiation of the above relation yields

wt(t, s) = ut(t)− ws(t, s),

and setting now for simplicity µ(s) = −α′(s) we obtain

∫ ∞

0
α′(s)Au(t− s) ds = Au

∫ ∞

0
α′(s) ds +

∫ ∞

0
µ(s)Aw(t, s) ds

so that the problem in the two variables u,w becomes


 utt + δAut + αAu +

∫ ∞

0
µ(s)Aw(s) ds +

(
β + ‖A1/4u‖2

)
A1/2u = 0

wt = ut − ws

(2.3)

where

α = α0 +
∫ ∞

0
α′(s) ds (1)

and the initial conditions are translated into


u(0) = u0

ut(0) = u1

w(0, s) = w0(s) (s ≥ 0)
(2.4)

and where we have assumed the initial history

u(−s) = u0 + w0(s) (s ≥ 0)

to be given.
Equations (2.3)–(2.4) can also be seen as

zt = Az + F(z)

where z = (u, v, w) and

A =




0 1 0

−αA −δA −
∫ ∞

0
µ(s)A(·) ds

0 1 − ∂

∂s


 , F =




0

−(β + ‖A1/4u‖2)A1/2

0




(1)The condition for the integral to be convergent is accomplished in the re-
quirement (h1) on the memory kernel.
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We will throughout the paper suppose that the memory kernel satisfies the
following hypotheses:

µ ∈ C1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0 ∀s ≥ 0(h1)
∃γ > 0 : µ′(s) + γµ(s) ≤ 0 ∀s ≥ 0.(h2)

Classical existence and uniqueness theory for the system (2.3) consists in look-
ing for a triple (u, v, w) solution of the system


ut = v

vt = −δAv − αAu−
∫ ∞

0
µ(s)Aw(s) ds−

(
β + ‖A1/4u‖2

)
A1/2u

wt = v − ws

belonging to the space

H := L∞(0, T ;H2
0 )× L∞(0, T ;L2) ∩ L2(0, T ;H2

0 )× L2(0, T ;L2
µ(R+;H2

0 )),

where M := L2
µ(R+;H2

0 ) is just the Hilbert space of functions with values in H2
0

with weighted scalar product

< φ,ψ >µ=
∫ ∞

0
µ(s)(φ, ψ)H2

0
ds.

This can be done exploiting a Faedo-Galerkin scheme following e.g. the lines
of [1] and [6], the key ingredient being the energy inequality that we are going to
prove in the following section. We omit the details for the sake of brevity.

Furthermore, if u0 ∈ H2
0 ∩H4 := K, u1 ∈ H2

0 and w0 ∈ L2
µ(K), then the solu-

tion is regular in the sense that u ∈ L∞(0, T ;K), ut ∈ L∞(0, T ;H2
0 )∩L2(0, T ;K),

∂2u
∂t2

∈ L2(0, T ;L2) and finally w ∈ L2(0, T ;L2
µ(R+;K)).

We recall that Poincaré inequality

‖u‖2 ≤ λ0‖∇u‖2 (2.5)

holds in our case, as well as

‖∇u‖2 ≤ λ1‖∆u‖2 (2.6)

and analogous inequalities for higher derivatives.
We finish this section with a simple lemma.

(2.7) Lemma. Suppose z : R+ → R+ is a positive integrable function and C, t∗ ≥
0 are two constants such that for t ≥ t∗ the inequality z(t) ≤ C holds. Suppose
moreover that y : R+ → R+ verifies

y′(t) + εy(t) ≤ z(t).
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Then for every η > 0 there exists tη ≥ 0 such that

y(t) ≤ C

ε
+ η.

Proof. Let t ≥ t∗ and integrate; it is easy to deduce

y(t) ≤
(

y(0) +
∫ t∗

0
z(s) eεs ds

)
e−εt + e−εt

∫ t

t∗
z(s) eεs ds

whence it follows

y(t) ≤
(

y(0) +
∫ t∗

0
z(s) eεs ds

)
e−εt +

C

ε
e−εt∗ .

Since now the quantity in brackets is bounded and independent on t, the claim
follows. ¤

3. Uniform estimates

In this section we establish the existence of a so-called absorbing set for the flow
generated by problem (2.3).

(3.1) Theorem. There exists R > 0 such that for every initial condition (u0, u1, w0)
in a bounded set of H × V × L2

µ there is a T ≥ 0 with the property that

∀t ≥ T : u(t) ∈ BH(0, R)

where B(0, R) denotes the unit ball in H.

Proof. Set v = ut + εu, where ε > 0 is to be determined. Then

vt = utt + εut = utt + ε(v − εu)

and using equation (1.1) we get

vt + δA(v − εu) + αAu− ε(v − εu)+

+
∫ ∞

0
µ(s)Aw(t, s) ds +

(
β + ‖A1/4u‖2

)
A1/2u = 0

wt = ut − ws.

(3.2)

Multiplying the first equation by v in H, the second by w in L2
µ and adding the

results, it is not difficult to get
1
2

d

dt

[
‖v‖2 + (α− δε)‖A1/2u‖2 + ε2‖u‖2 + ‖A1/2w‖2µ

]
+

+ ε
[δ

ε
‖A1/2v‖2 + (α− δε)‖A1/2u‖2

− ‖v‖2 + ε2‖u‖2 + 〈Aw, u〉µ +
1
ε
〈ws, Aw〉µ

]
+

+
1
2
(β + ‖A1/4u‖2) d

dt
‖A1/4u‖2 + ε(β + ‖A1/4u‖2)‖A1/4u‖2 = 0.

(3.3)
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Now, using Poincaré inequality (2.6) and choosing ε such that

ε <
δ

3λ0λ1

we find
δ‖A1/2v‖2 − ε‖v‖2 ≥ δ

2
‖A1/2v‖2 +

ε

2
‖v‖2;

next, using (h2) after an integration by parts, we get

1
ε
〈ws, Aw〉µ = − 1

2ε

∫ ∞

0
µ′(s)‖A1/2w‖2 ds ≥ γ

2ε
‖A1/2w‖2µ.

Finally, by virtue of (h1), we set

µ0 =
∫ ∞

0
µ(s) ds

and we find with the help of Young inequality

〈Aw, u〉µ ≥ −α

4
‖A1/2u‖2 − 2µ2

0

α
‖A1/2w‖2µ.

Using the previous inequalities, we infer from (3.3)

1
2

d

dt

[
‖v‖2 + (α− δε)‖A1/2u‖2 + ε2‖u‖2 + ‖A1/2w‖2µ +

1
2
(β + ‖A1/4u‖2)2

]

+ ε
[ δ

2ε
‖A1/2v‖2 +

(
3
4
α− δε

)
‖A1/2u‖2 +

1
2
‖v‖2 + ε2‖u‖2

+
(

γ

2ε
− 2µ2

0

α

)
‖A1/2w‖2µ

]
+

+
ε

2

(
β + ‖A1/4u‖2

)2
≤ β2

2
.

(3.4)
At this point we set

F (t) = ‖v(t)‖2 + (α− δε)‖A1/2u(t)‖2 + ε2‖u(t)‖2

+ ‖A1/2w(t)‖2µ +
1
2
(β + ‖A1/4u(t)‖2)2

and taking

ε ≤ min
{

α

2δ
,

δ

3λ1
,

γ

1 + 4µ2
0/α

}
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we find
d

dt
F (t) + εF (t) ≤ β2

2
.

Remembering that F is positive with the given choice of ε (also when β < 0) and
using the Gronwall lemma it follows that

F (t) ≤ F (0)e−εt +
β2

2ε
.

From this it is clear that every ball BH(0, R) with R > β2/2ε verifies the statement
of the theorem. Finally, this result is true for every initial condition in D(A) and,
by the density of this set in H and the continuous dependence on the initial data,
it holds for every initial condition in H. ¤
(3.5) Remark. From the expression of F , it is also apparent that

lim sup
t→+∞

|ut|(t) < +∞.

(3.6) Remark. In the linear case, it is immediate to see that (3.4) holds with
β = 0, and so u tends to zero strongly in H.

(3.7) Remark. A similar result holds true also when the nonlinear term is of the
type

g(A1/4u)A1/2u

and g is subjected to suitable growth conditions (see [2]).

4. Construction of the attractor

In this section we prove the existence of a global attractor in the space H for the
solution u. First, we need a preliminary lemma.

(4.1) Lemma. Let B be a bounded set in D(A). Then, for any initial data in B
there exists a finite constant KB such that

lim sup
t→+∞

‖A3/4u‖2(t) ≤ KB .

Proof. Multiply the first equation in (3.2) with A1/2v in H and the second with
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A3/2w in M . In this way we easily come to the inequality

1
2

d

dt

[
‖A1/4v‖2 + (α− δε)‖A3/4u‖2 + ε2‖A1/4u‖2

+‖A1/4u‖2‖A1/2u‖2 + ‖A3/4w‖2µ
]
+

+ ε

[
(α− δε)‖A3/4u‖2 + ε2‖A1/4u‖2 +

δ

ε
‖A3/4v‖2 − ‖A1/4v‖2+

+‖A1/4u‖2‖A1/2u‖2 +
〈
Aw,A1/2u

〉
µ

+
1
ε

〈
ws, A

3/2w
〉

µ

]

= −β
〈
A1/2u,A1/2v

〉
+ ‖A1/2u‖2

〈
A1/4u,A1/4ut

〉
.

By Cauchy inequality the right-hand side is bounded by

δ

2
‖A3/4v‖2 +

β2

2δ
‖A1/4u‖2 + ‖A1/2u‖2

〈
A1/4u,A1/4ut

〉
.

With an appropriate choice of ε we can have

δ‖A3/4v‖2 − ε‖A1/4v‖2 ≥ δ

2
‖A3/4v‖2 +

ε

2
‖A1/4v‖2

so that, if the initial data belong to a certain ball B in H, then from Poincaré
inequality, Theorem (3.1) and Remark (3.5) it follows that there exist a t∗ such
that for t ≥ t∗

q(t) :=
β2

2δ
‖A1/4u‖2 + ‖A1/2u‖2|

〈
A1/4u,A1/4ut

〉
|

≤ β2

2δ
‖A1/4u‖2 + ‖A1/2u‖3|ut| ≤ kB

1

where kB
1 is a constant dependent on B. We can now proceed similarly as in

Theorem (3.1), putting

Z(t) = ‖A1/4v‖2 + (α− δε)‖A3/4u‖2
+ ε2‖A1/4u‖2 + ‖A1/4u‖2‖A1/2u‖2 + ‖A3/4w‖2µ

and getting
Z(t). t + εZ(t) ≤ q(t)

by which, using Lemma (2.7) the desired estimate for Z(t), that is for ‖A3/4u(t)‖2.
¤
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Remark. This kind of procedure is slightly different from the case of the uniform
estimates since β may be large and negative. In this way the presence of the
damping term is necessary in our estimates.

(4.2) Lemma. There exists R > 0 such that for every initial condition (u0, u1, w0)
in a bounded set of D(A) there is a T ≥ 0 with the property that

∀t ≥ T : z(t) ∈ BD(A)(0, R)

Proof. Take this time the scalar product of the first equation in (3.2) with Av in
H and the second with A2w in M . We obtain, in a similar way to the previous
lemma,

1
2

d

dt

[
‖A1/2v‖2 + (α− δε)‖Au‖2 + ε2‖A1/2u‖2

+‖Aw‖2µ + ‖A1/4u‖2‖A3/4u‖2
]
+

+ ε

[
(α− δε)‖Au‖2 + ε2‖A1/2u‖2 +

δ

ε
‖Av‖2 − ‖A1/2v‖2+

‖A1/4u‖2‖A3/4u‖2 + 〈Aw,Au〉µ +
1
ε
〈Aw,Aws〉µ

]

= −β
〈
A1/2u,Av

〉
+ ‖A3/4u‖2

〈
A1/4u,A1/4ut

〉
.

Now, the right-hand side is bounded by

δ

2
‖Av‖2 +

β2

2δ
‖A1/2u‖2 + ‖A3/4u‖2

〈
A1/4u,A1/4ut

〉
and, thanks to the previous lemma, the last two terms are bounded for t large.
From now on the proof parallels that of Lemma (4.1). ¤

Now we are in position to prove our main result.

(4.3) Theorem. The dynamical system generated by (2.3) has a global attractor
in the solution space.

Proof. We decompose (u,w) = (û, ŵ) + (ũ, w̃) where


ûtt + δAût + αAû +
∫ ∞

0
µ(s)Aŵ(s) ds = 0

ŵt = ût − ŵs

û(0) = u0, ût(0) = u1, ŵ0(s) = w0(s), s ≥ 0

and 


ũtt + δAũt + αAũ +
∫ ∞

0
µ(s)Aw̃(s) ds = ϕ(t)

w̃t = ũt − w̃s

ũ(0) = 0, ũt(0) = 0, w̃0(s) = 0

(4.4)
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with ϕ(t) = −(β + ‖A1/4u‖2)A1/2u. It is clear that (û, ŵ) tends to zero uniformly
in H. Now set ṽ = ũt + εũ, multiply (4.4)1 with Aṽ in H and (4.4)2 with A2w̃ in
M . From lemma (4.2) we have then

|(β + ‖A1/4u‖2)‖A1/2u‖| ≤ kB
2

so that
|(β + ‖A1/4u‖2)

〈
A1/2u,Aṽ

〉
| ≤ 1

2η
kB
2 +

η

2
‖A1/2ṽ‖2

with an arbitrary fixed positive η. Now, following the same reasoning as in lemma
(4.2) we find that (ũ, w̃) eventually enter in a bounded set of D(A), which, by the
Rellich compactness embedding, is relatively compact in H. This corresponds to
say that the semigroup associated with (ũ, w̃) is uniformly compact for t large. It
is now sufficient to apply [12, Theorem I.1.1] to get the desired result. ¤
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