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We scrutinize both from the physical and the analytical viewpoint the equations ruling the
paramagnetic-ferromagnetic phase transition in a rigid three-dimensional body. Starting
from the order structure balance, we propose a non-isothermal phase-field model which is
thermodynamically consistent and accounts for variations in space and time of all fields
(the temperature θ , the magnetic field vector H and the magnetization vector M). In
particular, we are able to establish a well-posedness result for the resulting coupled system.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Ferromagnetism is a typical phenomenon occurring in metals like iron, cobalt, nickel and many alloys containing these
elements. The phenomenon appears when a small external magnetic field yields a large magnetization inside the material,
due to the alignment of the spin magnetic moments. Below a particular value of the temperature θc , called Curie temper-
ature, the spin magnetic moments stay aligned even if the external magnetic field is removed. On the contrary, when the
temperature overcomes the critical value θc , the residual alignment disappears and the material reverts to the paramagnetic
phase.

Usually, the passage from the paramagnetic to the ferromagnetic “state” is modeled as a second order phase transition
(see, for instance [5,15]). Indeed, no latent heat is released or absorbed during the change at the Curie temperature. Within
this approach, we suggest and scrutinize here a phase-field model that sets the phenomenon in the general framework of
the Ginzburg–Landau theory of second-order phase transitions.

Unlike some previous phase-transition models in ferromagnetics (e.g. [5,11,15]), the point of view we will adopt here
identifies the components of the magnetization M with the set of parameters able to characterize the “amount of order” of
the internal structure of the material. Since the order parameter M is a vector, our model takes into account not only the
number of the oriented spin, but also their direction. Accordingly, the phase-field M(x, t) is a vector-valued rather than a
scalar-valued field.

We follow here the same procedure proposed in [2,6], but accounting for phase-transition phenomena in a different
setting. That is to say, the kinetic equation governing the evolution of the phase-field M(x, t) is deduced from a local balance
law concerning the organization of the structure at (x, t). Within this scheme, the relation between the magnetization M
and the magnetic field H takes the form of a vector-valued Ginzburg–Landau equation, namely

γ Ṁ = ν�M − θc F ′(M) − θG ′(M) + H, (1.1)
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where γ , ν are positive constants, and F , G are scalar-valued (possibly anisotropic) functions. In particular, γ is responsible
of the dissipation (as apparent from (6.3)) and, at the same time, it is in inverse proportion to the gyroscopic inertia, as
we shall show later in this section. Exploiting the formal similarity of (1.1) with the much more well-known second-order
phase transition model of superconductivity (see e.g. [1,18]), we assume that

(i) at saturation |M| = 1;
(ii) F and G are even polynomial forms involving M;

(iii) the sum F + G has a global minimum at M = 0.

The first item simply means that we identify M with the rescaled dimensionless field M/Ms , where Ms is the saturation
magnetization. According to conditions (ii) and (iii), in anisotropic ferromagnetic transitions we are allowed to choose

F (M) = 1

4
(F M ⊗ M) · M ⊗ M − 1

2
F · (M ⊗ M), G(M) = 1

2
F · (M ⊗ M),

where F and F are fourth-order and second-order positive definite tensors, respectively, and the dot denotes a scalar
product between both vector and second-order tensors. A similar expression has been introduced in [9], where a dyadic
order parameter is used in order to model the isotropic-nematic phase transition occurring in liquid crystals.

As we shall see later, the magnetic potential W = θc F + θG enters the free energy functional, and its critical points
represent the magnetization (phase) equilibria at H = 0.

When isotropic materials are concerned, as well as it is assumed throughout the paper, then F and F reduce (to within
a constant factor) to the identity tensor of the corresponding order. Accordingly

F (M) = 1

4
|M|4 − 1

2
|M|2, G(M) = 1

2
|M|2 (1.2)

so that

F ′(M) = (|M|2 − 1
)
M, G ′(M) = M. (1.3)

Therefore (1.1) becomes

γ Ṁ = ν�M − θc |M|2M − (θ − θc)M + H. (1.4)

In order to complete the dynamical system, this equation needs to be coupled with a suitable local representation of the
heat equation ruling the evolution of the absolute temperature field θ(x, t) and Maxwell’s equations governing the changes
of H(x, t).

Under assumptions (1.2), it is worth noting that

W = W
(|M|, θ) = 1

4
θc |M|4 + 1

2
(θ − θc)|M|2.

This expression of the magnetic potential, which leads to (1.4), traces back to Landau and coworkers (see [15, p. 137]) and
has a global minimum at M = 0 for all θ � θc , but, due to the vector character of M, it has infinitely many minima at any
fixed temperature θ < θc , that is all vectors M such that

|M| = θc − θ

θc
< 1.

This occurs in isotropic ferromagnets since the magnetization vector M has no preferred (easy) direction at equilibrium.
A typical such material is an amorphous (non-crystalline) ferromagnetic-metallic alloy. On the contrary, the general case
accounting for anisotropy exhibits a finite set of minima. Although isotropy is a crude assumption, in that most of the
ferromagnetic materials have a crystalline structure, here we confine our attention to Eq. (1.4). The more general (and
realistic) anisotropic case will be addressed in a forthcoming work.

The main goal of this paper consists in describing the three-dimensional evolution of both thermodynamic and elec-
tromagnetic properties of the material as a whole. Allowing both spatial nonuniform behavior and diffusion, the resulting
differential system provided by our model allows to account for temperature induced transitions from paramagnetic to
ferromagnetic regime, and vice versa. In the following, we show the well-posedness of the related initial–boundary value
problem, by proving both the existence and the uniqueness theorem for weak solutions in the same functional class.

To the best of our knowledge, this approach to the paramagnetic–ferromagnetic transition is a novelty. Indeed, most of
the works in the literature scrutinize either the turning movement of M at saturation, that is when |M| = 1 (see, for instance
[12,15,17] and references therein), or the evolution of its component M along a fixed axis r, which occurs when both M and
H point in the same direction r at all times t > 0 (see, for instance [13,19] and references therein). In spite of its general
vector form, Eq. (1.1) works better in the latter occurrence, for instance when the material is uniaxial and the magnetic field
H is aligned with the axis of easy magnetization r, namely M = Mr and H = Hr. If this is the case,we can replace vectors
by components. From (1.1), the evolution equation for the (scalar) magnetization field M(x, t) takes then the form

γ Ṁ = ν�M − θc F ′(M) − θG ′(M) + H .
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This is a widely accepted expression for the kinetics of M . The Weiss model, for instance, can be easily recovered from this
equation by letting

F ′(M) = − β

θc
M, G ′(M) = αL−1(M),

where L is the so-called Langevin function (see e.g. [13,19]). On the other hand, in the saturation occurrence, the model we
suggest here looks very poor if compared with well-known theories on micromagnetics. As apparent, neither the Landau
and Lifshitz [14] nor Gilbert [12] models can be recovered directly from (1.4). In fact, when |M| = 1 it reads

γ Ṁ = ν�M − θM + H. (1.5)

Actually, this vector equation contains much more informations than the corresponding scalar one. Under quite restrictive
assumptions, indeed, an equivalent evolution equation, which looks like the Gilbert one, can be derived. By applying τM×,
τ > 0, to (1.5) and then adding the result to (1.5) itself, after a division by τγ we obtain

1

τ
Ṁ = − θ

τγ
M + 1

τγ
(H + ν�M) + 1

γ
M × (H + ν�M) − M × Ṁ.

The parameter τ is dimensionless and some possible meaning will be proposed in a while. Now, assuming that 1/γ and
1/τ are of the same order with respect to a small parameter ε, all terms containing the factor 1/τγ are negligible, so that
we recover the approximate equation

Ṁ = τ

γ
M × (H + ν�M) − τM × Ṁ.

Now, if we compare it with the Gilbert equation (remember that Ms = 1)

Ṁ = λM × Heff − αM × Ṁ,

we can establish a strong similarity by letting Heff = H + ν�M (as usual in isotropic materials), λ = τ/γ and α = τ , which
is the (dimensionless) Gilbert damping constant. In addition, by this comparison we may infer that

γ = α

1 + α2

1

δ
,

where δ is the gyromagnetic ratio. As a consequence, γ is proportional to α and vanishes with it.
The plan of the paper is the following. In Section 2, we introduce the differential equations governing the evolution of

the ferromagnetic material and prove the thermodynamic consistence of the model. Since the differential system involves a
logarithmic non-linearity, in Section 3, we regularize the problem with the technique of the Yosida approximation, obtaining
a family of differential problems (Pε). Such a regularization allows to prove, in Section 4, existence of solutions to problem
(Pε) for every ε > 0. Then, by means of uniform estimates in ε, in Section 5 the solutions to (Pε) are proved to converge
to solutions of the original differential system as ε → 0. Finally, uniqueness of solutions is proved in Section 6, by means of
a continuous dependence result.

2. The model

Let us consider a rigid ferromagnetic conductor occupying a domain Ω ⊂ R
3 with boundary ∂Ω and unit outward

normal n. Moreover we suppose that its mass density is constant and we let ρ = 1, for simplicity. Denoting by E,H,D,B
the electric field, the magnetic field, the electric displacement and the magnetic induction, the behavior of the material is
ruled by Maxwell’s equations

∇ × E = −Ḃ, ∇ × H = Ḋ + J, (2.1a)

∇ · B = 0, ∇ · D = ρe, (2.1b)

where J is the current density and ρe is the free charge density. Throughout the paper, we assume the electromagnetic
isotropy of the material and the following constitutive equations

D = εE, B = μH + M, J = σE, (2.2)

where ε,μ,σ are respectively the dielectric constant, the magnetic permeability and the conductivity, and M is the mag-
netization vector.

As well-known, in paramagnetic materials M is a function of H. On the contrary, in a ferromagnetic body M is uniquely
determined by H only for large values of this field, namely |H| > Hc , where Hc is named coercive field. Here, our goal is to
specify the law relating the variation of the magnetization M to the magnetic field H, in such a way that the thermally-
induced change between the paramagnetic and the ferromagnetic state is captured.
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First, we observe that the order of the internal structure for a ferromagnetic material is characterized by both the position
and the direction of the magnetic spins. Thus, we are allowed to define the internal structure order Ki(A) of a sub-body
A ⊂ Ω as the vector-valued measure whose representation is

Ki(A) =
∫

A

k dx,

where the vector k, called specific internal structure order, accounts for the internal order of the spins determined by their
orientation. On the other hand, we assume the external structure order vector Ke(A) to have the form

Ke(A) =
∫

∂A

PnA ds +
∫

A

σ dx,

where ∂A denotes the boundary of A and nA is its unit outward normal vector. Here P is a second order tensor such
that Pn provides the specific flux of the structure order through the boundary and σ is the structure order supply. In other
words, the tensor P(x, t) describes the distribution of the internal order in a neighborhood of x at the instant t , while σ
represents a source of internal order inside the domain Ω . In the sequel we let σ = 0.

The structure order balance on every sub-body A ⊂ Ω states Ki(A) = Ke(A) and then∫
A

k dx =
∫

∂A

PnA ds,

from which we obtain a.e. in Ω the local equation

k = ∇ · P. (2.3)

Since the transition between paramagnetism and ferromagnetism is a typical second order phase transition, we suggest the
following constitutive equations for k and P

k = γ Ṁ + θc F ′(M) + θG ′(M) − H, (2.4a)

P = ν∇M, (2.4b)

where γ , ν are positive constants, θ > 0 is the absolute temperature, and θc is the (critical) Curie temperature.
As suggested in the previous section, functions F , G are defined by (1.2). Accordingly (2.3) reduces to

γ Ṁ = ν�M − θc
(|M|2 − 1

)
M − θM + H. (2.5)

By following the general scheme proposed in [2,6], Eq. (2.3) has to be regarded as a field equation which is able to yield a
power (and then an energy variation) accounting for the internal structure order of the material. Indeed, in view of (2.4b),
by multiplying (2.3) by Ṁ, we obtain

k · Ṁ + ν∇M · ∇Ṁ = ν∇ · (∇MT Ṁ
)
,

where the superscript T denotes the transpose of a tensor and we have denoted with the same symbol · the scalar product
between vectors and tensors. The latter is defined as A · B = ∑

i, j Ai j Bi j .
The previous identity suggests to split the power into the internal and external contributions as follows

P i
M = k · Ṁ + ν∇M · ∇Ṁ,

P e
M = ν∇ · (∇MT Ṁ

)
.

By means of (2.4a) and (1.3) the internal power takes the form

P i
M = γ |Ṁ|2 + ν∇M · ∇Ṁ + [

θc
(|M|2 − 1

) + θ
]
M · Ṁ − H · Ṁ. (2.6)

In order to provide a coherent model which is able to include both thermal and electromagnetic effects, it is essential to
obtain the representation of the heat equation pertinent to this context. As known, the thermal balance law is expressed by
the following equation

h = −∇ · q + r, (2.7)

where h is the rate at which heat is absorbed, q is the heat flux vector and r is the heat source.
By introducing the internal energy e, from the first law of thermodynamics, we deduce

ė = Pel + P i
M + h, (2.8)

where Pel is the electromagnetic power defined as

Pel = Ḋ · E + Ḃ · H + J · E = εĖ · E + μḢ · H + Ṁ · H + σ |E|2. (2.9)
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Now, we choose the following expression of the internal energy

e = c(θ) + 1

2
ε|E|2 + 1

2
μ|H|2 + θc

4

(|M|2 − 1
)2 + ν

2
|∇M|2. (2.10)

It takes into account the purely thermal contribution, c(θ), the purely electromagnetic part, (ε|E|2 + μ|H|2)/2, and the
energy interface density, ν|∇M|2/2. Substitution into (2.8) yields

h = c′(θ)θ̇ − σ |E|2 − γ |Ṁ|2 − θM · Ṁ,

from which the evolution equation for the temperature can be obtained by means of (2.7) and the constitutive equation

q = −k(θ)∇θ, (2.11)

where k(θ) > 0 is the thermal conductivity. Hence we deduce

c′(θ)θ̇ − σ |E|2 − γ |Ṁ|2 − θM · Ṁ = ∇ · (k(θ)∇θ
) + r. (2.12)

We are in a position to prove that our model is consistent with the second law of thermodynamics written in the Clausius–
Duhem form, namely

η̇ � −∇ ·
(

q

θ

)
+ r

θ
,

where η is the entropy density. Since the thermal balance law (2.7) yields

θη̇ � q

θ
· ∇θ + h,

after introducing the free energy ψ = e − θη, the previous inequality and (2.8) lead to

ψ̇ + ηθ̇ + q

θ
· ∇θ − Pel − P i

M � 0,

and substituting the expressions of the powers given by (2.6) and (2.9) we obtain

ψ̇ + ηθ̇ + q

θ
· ∇θ − εĖ · E − μḢ · H − σ |E|2 − γ |Ṁ|2 − ν∇M · ∇Ṁ − [

θc
(|M|2 − 1

) + θ
]
M · Ṁ � 0. (2.13)

This inequality enforces the following choices

ψ = μ

2
|H|2 + ε

2
|E|2 + ν

2
|∇M|2 + θc

4

(|M|2 − 1
)2 + 1

2
θ |M|2 + α(θ), (2.14a)

η = −∂ψ

∂θ
= −1

2
|M|2 − α′(θ), (2.14b)

which agree with (2.10) if α satisfies the relation

α(θ) − θα′(θ) = c(θ).

Substitution of (2.11), (2.14a), (2.14b) into (2.13) provides the reduced inequality

−k(θ)

θ
|∇θ |2 − σ |E|2 − γ |Ṁ|2 � 0,

which holds along any process in view of the assumption k(θ) � 0 and of the positiveness of the absolute temperature.
Then the thermodynamical consistence of the model is proved.

In the wide mathematical literature related to phase transition phenomena, a great variety of assumptions about heat
conductivity and specific heat is depicted (see, for instance, [2,3,5,7,10]). In this model, we suppose that heat conductivity
and specific heat depend on the absolute temperature according the polynomial laws

k(θ) = k0 + k1θ, c(θ) = c1θ + c2

2
θ2, (2.15)

with k0,k1, c1, c2 > 0. In addition, we restrict our attention to processes for which the fields E, Ṁ, ∇θ are small enough so
that the quadratic terms

−σ |E|2 − γ |Ṁ|2 − k1|∇θ |2

are negligible if compared to other contributions in (2.12). Within this approximation scheme, the energy balance reduces
to

(c1 + c2θ)θ̇ − θM · Ṁ = (k0 + k1θ)�θ + r.
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After dividing by θ , we obtain

c1∂t(ln θ) + c2θ̇ − M · Ṁ = k0

θ
�θ + k1�θ + r̂,

where r̂ = r/θ . Therefore, by ignoring once more the term proportional to |∇θ |2, we obtain

c1∂t(ln θ) + c2θ̇ − M · Ṁ = k0�(ln θ) + k1�θ + r̂. (2.16)

A further simplification can be introduced if we neglect the displacement current εĖ. This is a customary assumption in
describing ferromagnetic phenomena. As a consequence, from (2.1a)–(2.2) we deduce

μḢ + Ṁ = − 1

σ
∇ × ∇ × H, (2.17a)

∇ · (μH + M) = 0. (2.17b)

3. The differential system

According to the previous section, the system governing the evolution of the ferromagnetic material reads

γ Ṁ = ν�M − θc
(|M|2 − 1

)
M − θM + H, (3.1a)

c1∂t(ln θ) + c2θ̇ − M · Ṁ = k0�(ln θ) + k1�θ + r̂, (3.1b)

μḢ + Ṁ = − 1

σ
∇ × ∇ × H, (3.1c)

∇ · (μH + M) = 0. (3.1d)

For the sake of simplicity, we assume here that r̂ is a known function of x, t .
In order to prove existence and uniqueness results, Eqs. (3.1a)–(3.1d) have to be fulfilled with initial and boundary

conditions. Concerning the boundary conditions of the magnetization, we assume

∇Mn
∣∣
∂Ω

= 0, (3.2a)

which is a typical condition in phase transitions. The same Neumann boundary condition is assumed for the temperature,
i.e.

∇θ · n
∣∣
∂Ω

= 0, (3.2b)

and the magnetic field is required to satisfy

(∇ × H) × n
∣∣
∂Ω

= 0. (3.2c)

Finally, let the initial data

M(x,0) = M0(x), θ(x,0) = θ0(x), H(x,0) = H0(x) (3.3)

be given functions in Ω . We now recall the following result

Remark. (See [8].) In view of (2.1a)1 and (3.1d), if we impose the following constraints on the initial data

(μH0 + M0) · n
∣∣
∂Ω

= 0, ∇ · (μH0 + M0) = 0, (3.4)

then at any subsequent t > 0

(μH + M) · n
∣∣
∂Ω

= 0, (3.5)

∇ · (μH + M) = 0, a.e. in Ω. (3.6)

Here we introduce some notation. For any Hilbert space X let 〈·,·〉X and ‖ · ‖X denote the X-inner product and X-norm,
respectively. In particular, 〈·,·〉 and ‖ · ‖ stand for the inner product and norm in L2(Ω). Moreover we let X ′ be the dual
space of X .

Then the functional formulation of the problem is the following

Problem (P ). To find a triplet (M, θ,H) such that

M ∈ L2(0, T , H2(Ω)
) ∩ H1(0, T , L2(Ω)

)
,

θ ∈ L2(0, T , H1(Ω)
)
, θ > 0, ln θ ∈ L2(0, T , H1(Ω)

)
,

c1 ln θ + c2θ ∈ H1(0, T , H1(Ω)′
)
,

H ∈ L2(0, T , H1(Ω)
) ∩ H1(0, T , H1(Ω)′

)
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satisfying (3.2a)–(3.5) and

γ Ṁ − ν�M + [
θc

(|M|2 − 1
) + θ

]
M − H = 0, a.e. in Ω, (3.7a)∫

Ω

[
c1∂t(ln θ)ω + c2θ̇ω − M · Ṁω + k0∇(ln θ) · ∇ω + k1∇θ · ∇ω − r̂ω

]
dx = 0, (3.7b)

∫
Ω

[
μḢ · w + Ṁ · w + 1

σ
(∇ × H) · (∇ × w)

]
dx = 0, (3.7c)

μ∇ · H + ∇ · M = 0, a.e. in Ω (3.7d)

for any ω,w ∈ H1(Ω), a.e. t ∈ (0, T ).

Well-posedness of problem (P ) is ensured by the following theorems, whose proof will be performed in Sections 5
and 6.

Theorem 3.1. Let r̂ ∈ L2(0, T , H1(Ω)′) and M0 ∈ H1(Ω), θ0,H0 ∈ L2(Ω), such that (3.4) hold. For every T > 0, problem (P ) admits
a solution (M, θ,H) satisfying (3.7a)–(3.7c).

Theorem 3.2. Let (M1, θ1,H1) and (M2, θ2,H2) be two solutions of problem (P ), with sources r̂1 , r̂2 ∈ L2(0, T , H1(Ω)′) and initial
data (M01, θ01,H01), (M02, θ02,H02) ∈ H1(Ω)× L2(Ω)× L2(Ω) satisfying (3.4). Then, for each T > 0, there exists a positive constant
C(T ) such that

T∫
0

(‖M1 − M2‖2
H1 + ‖ ln θ1 − ln θ2‖2 + ‖θ1 − θ2‖2 + ‖H1 − H2‖2)dτ

� C(T )

[
‖M01 − M02‖2

H1 + ‖ ln θ01 − ln θ02‖2 + ‖θ01 − θ02‖2 + ‖H01 − H02‖2 +
T∫

0

‖r̂1 − r̂2‖2 dτ

]
.

In particular, the solution of problem (P ) is unique.

Existence of solutions to problem (P ) is proved by introducing a suitable approximation of the logarithmic nonlinearities.
More precisely, we denote by lnε the Yosida approximation of the logarithm function (see e.g. [4]) and consider the following
problem:

Problem (Pε). To find a triplet (Mε, θε,Hε) such that

Mε ∈ L2(0, T , H2(Ω)
) ∩ H1(0, T , L2(Ω)

)
,

θε ∈ L2(0, T , H1(Ω)
)
, lnε θε ∈ L2(0, T , H1(Ω)

)
,

c1 lnε θε + c2θε ∈ H1(0, T , H1(Ω)′
)
,

Hε ∈ L2(0, T , H1(Ω)
) ∩ H1(0, T , H1(Ω)′

)
,

satisfying (3.2a)–(3.2c) and (3.5), the equations

γ Ṁε − ν�Mε + [
θc

(|Mε|2 − 1
) + θ

]
Mε − Hε = 0, a.e. in Ω, (3.8a)∫

Ω

[
c1∂t(lnε θε)ω + c2θ̇εω − Mε · Ṁεω + k0∇(lnε θε) · ∇ω + k1∇θε · ∇ω − r̂ω

]
dx = 0, (3.8b)

∫
Ω

[
μḢε · w + Ṁε · w + 1

σ
(∇ × Hε) · (∇ × w)

]
dx = 0, (3.8c)

μ∇ · Hε + ∇ · Mε = 0, a.e. in Ω (3.8d)

for any ω,w ∈ H1(Ω), a.e. t ∈ (0, T ), and the initial conditions

Mε(x,0) = M0(x), θε(x,0) = θ0(x), Hε(x,0) = H0(x), (3.8e)

a.e. in Ω .
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The advantage of this procedure stands in the regularizing properties of the Yosida approximation, which we recall here
for convenience. The Yosida regularization of the logarithm function is defined as

lnε τ = τ − ρε(τ )

ε
, τ ∈ R,

where ρε(τ ) is the unique solution of equation

ρε(τ ) + ε lnρε(τ ) = τ .

The function lnε is Lipschitz continuous with constant 1/ε [4, Proposition 2.6]. Moreover it is easy to check that lnε is C∞
and it satisfies

0 < ln′
ε τ � 2

ε
, τ ∈ R, (3.9a)

| lnε τ | � | lnτ |, τ > 0. (3.9b)

For later convenience, we introduce the function

Iε(τ ) =
τ∫

0

s ln′
ε(s)ds. (3.10)

In view of (3.9a), Iε satisfies

Iε(τ ) � 0, τ ∈ R.

4. Existence of solutions to (Pε)

In order to establish the existence of solutions to problem (Pε) for every ε > 0, we prove the following

Theorem 4.1. Let r̂ ∈ L2(0, T , H1(Ω)′) and M0 ∈ H1(Ω), θ0,H0 ∈ L2(Ω), such that (3.4) hold. For every ε > 0 and T > 0, prob-
lem (Pε) admits a solution (Mε, θε,Hε) satisfying (3.8a)–(3.8e).

Proof. The proof is based on the Galerkin procedure. For every fixed n ∈ N, let us consider the increasing sequences V 1
n ,

V 2
n , V 3

n of n-dimensional subspaces of H1(Ω) such that each set
⋃

n∈N
V k

n , k = 1,2,3, is dense in H1(Ω) and

V 1
n ⊂ V 1 = {

v ∈ H2(Ω), ∇vn|∂Ω = 0
}
,

V 2
n ⊂ V 2 = {

φ ∈ H2(Ω), ∇φ · n|∂Ω = 0
}
,

V 3
n ⊂ V 3 = {

u ∈ H2(Ω), (∇ × v) × n|∂Ω = 0
}
.

Let {v1, . . . ,vn}, {φ1, . . . , φn}, {u1, . . . ,un} be the orthogonal bases of V 1
n , V 2

n , V 3
n , respectively, and define the approximated

solution (Mn, θn,Hn) ∈ V 1
n × V 2

n × V 3
n as

Mn(x, t) =
n∑

i=1

αin(t)vi(x),

θn(x, t) =
n∑

i=1

βin(t)φi(x),

Hn(x, t) =
n∑

i=1

γin(t)ui(x),

a.e. in Ω × (0, T ), where αin, βin, γin satisfy∫
Ω

{
γ Ṁn · vi + ν∇Mn · ∇vi + [

θc
(|Mn|2 − 1

) + θn
]
Mn · vi − Hn · vi

}
dx = 0, (4.1a)

∫
Ω

[(
c1 ln′

ε θn + c2
)
θ̇nφi − Mn · Ṁnφi + (

k0 ln′
ε θn + k1

)∇θn · ∇φi − r̂φi
]

dx = 0, (4.1b)

∫
Ω

(
μḢn · ui + Ṁn · ui + 1

σ
∇ × Hn · ∇ × ui

)
dx = 0, (4.1c)

for any i = 1, . . . ,n. Moreover, as n → ∞ the initial data are supposed to verify
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Mn(·,0) → M0 in H1(Ω),

θn(·,0) → θ0 in L2(Ω),

Hn(·,0) → H0 in L2(Ω).

Inequality (3.9a) leads to

c1 ln′
ε θn + c2 > c2 > 0.

Hence (4.1a)–(4.1c) is a system of ordinary differential equations which can be put into normal form. Accordingly, there
exists a unique local solution (Mn, θn,Hn) for every n ∈ N.

We prove now that a suitable subsequence of (Mn, θn,Hn) approaches a solution (Mε, θε,Hε) to problem (Pε) as n → ∞.
To do this we perform some a priori uniform (with respect to n) estimates which allow the passage to the limit into
(4.1a)–(4.1c) via a compactness argument. The same estimates prove that the maximal solution to problem (Pε) is a global
solution defined in the time interval (0, T ) for every T > 0.

First, let us multiply (4.1a), (4.1b), (4.1c) respectively by α̇in, βin, γin and sum for i = 1, . . . ,n the resulting equations. We
obtain

1

2

d

dt

(
ν‖∇Mn‖2 + θc

2
‖Mn‖4

4 + c2‖θn‖2 + μ‖Hn‖2
)

+ γ ‖Ṁn‖2 + c1

∫
Ω

θ̇nθn ln′
ε θn dx + k1‖∇θn‖2 + 1

σ
‖∇ × Hn‖2

+ k0

∫
Ω

ln′
ε θn|∇θn|2 dx =

∫
Ω

(θcMn · Ṁn + r̂θn)dx. (4.2)

By recalling the definition (3.10), the first integral can be written as∫
Ω

θ̇nθn ln′
ε θn dx = d

dt

∫
Ω

Iε(θn)dx.

Moreover, by means of the Young inequality, the right-hand side of (4.2) can be estimated as∫
Ω

(θcMn · Ṁn + r̂θn)dx � γ

2
‖Ṁn‖2 + θ2

c

2γ
‖Mn‖2 + 1

2k1
‖r̂‖2

H1(Ω)′ + k1

2
‖θn‖2

H1

� γ

2
‖Ṁn‖2 + k1

2
‖∇θn‖2 + C

(
1 + ‖Mn‖4

4 + ‖r̂‖2
H1(Ω)′ + ‖θn‖2), (4.3)

where C is a suitable positive constant.
By substituting into (4.2) and using (3.9a), we obtain

1

2

d

dt

(
ν‖∇Mn‖2 + θc

2
‖Mn‖4

4 + c2‖θn‖2 + μ‖Hn‖2 + c1

∫
Ω

Iε(θn)dx

)
+ γ

2
‖Ṁn‖2 + k1

2
‖∇θn‖2 + 1

σ
‖∇ × Hn‖2

� C
(
1 + ‖Mn‖4

4 + ‖r̂‖2
H1(Ω)′ + ‖θn‖2). (4.4)

Therefore, Gronwall’s inequality yields

‖Mn‖2
H1 + ‖θn‖2 + ‖Hn‖2 � C0 (4.5)

and
t∫

0

(‖Ṁn‖2 + ‖∇θn‖2 + ‖∇ × Hn‖2)dτ � C0, (4.6)

where C0 is a positive constant depending on the norms ‖M0‖H1 , ‖θ0‖, ‖H0‖, ‖r̂‖L2(0,T ,H1(Ω)′) and on ε, T . Moreover, from
(4.1a)-(4.1c), we deduce

t∫
0

‖�Mn‖2 dτ � C

t∫
0

[‖Ṁn‖2 + ‖Mn‖2
H1

(‖Mn‖4
H1 + 1 + ‖θn‖2

H1

) + ‖Hn‖2]dτ ,

t∫
0

∥∥∂t(c1 lnε θn + c2θn)
∥∥2

H1(Ω)′ dτ � Cε

t∫
0

(‖Mn‖2
H1‖Ṁn‖2 + ‖∇θn‖2 + ‖r̂‖2

H1(Ω)′
)

dτ ,

t∫
‖Ḣn‖2

H1(Ω)′ � C

t∫ (‖Ṁn‖2 + ‖∇ × Hn‖2)dτ .
0 0
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Therefore, in view of (4.5)–(4.6), we obtain the estimate

t∫
0

[‖�Mn‖2 + ‖∂t(c1 lnε θn + c2θn)‖2
H1(Ω)′ + ‖Ḣn‖2

H1(Ω)′
]

dτ � C0. (4.7)

Inequalities (4.5)–(4.7) ensure the existence of a subsequence, denoted also (Mn, θn,Hn) such that

Mn → Mε weakly in L2(0, t, H2(Ω)
) ∩ H1(0, t, L2(Ω)

)
, (4.8a)

θn → θε weakly in L2(0, t, H1(Ω)
)
, (4.8b)

Hn → Hε weakly in L2(0, t, L2(Ω)
) ∩ H1(0, t, H1(Ω)′

)
, (4.8c)

∇ × Hn → ∇ × Hε weakly in L2(0, t, L2(Ω)
)
. (4.8d)

In particular, owing to (3.9a), (4.8b) yields

lnε θn → �ε weakly in L2(0, t, H1(Ω)
)
,

which in view of (4.7) implies

c1 lnε θn + c2θn → c1�ε + c2θε weakly in L2(0, t, H1(Ω)
) ∩ H1(0, t, H1(Ω)′

)
. (4.9)

By means of a compactness argument, from (4.6), (4.7), we deduce

Mn → Mε strongly in L2(0, t, H1(Ω)
) ∩ C

(
0, t, L2(Ω)

)
,

c1 lnε θn + c2θn → c1�ε + c2θε strongly in L2(0, t, L2(Ω)
)
.

Accordingly∫
Ω

(c1 lnε θn + c2θn)θn dx →
∫
Ω

(c1�ε + c2θε)θε dx,

which proves that (see [4, Proposition 2.5])

�ε = lnε θε.

Moreover (see [16, p. 12])(
M2

n − 1
)
Mn → (

M2
ε − 1

)
Mε weakly in L2(0, T , L2(Ω)

)
.

The previous convergences allow to take the limit as n → ∞ into (4.1a)–(4.1c) and to prove that (Mε, θε,Hε) satisfies
(3.8a)–(3.8c).

By integrating (3.8c) over (0, t) we obtain

∫
Ω

(μHε + Mε) · w dx +
t∫

0

∫
Ω

∇ × Hε · ∇ × w dx dτ =
∫
Ω

(μH0 + M0) · w dx.

Letting w = ∇χ , χ ∈ H2(Ω), an integration by parts yields∫
∂Ω

χ(μHε + Mε) · n ds −
∫
Ω

χ∇ · (μHε + Mε)dx =
∫

∂Ω

χ(μH0 + M0) · n ds −
∫
Ω

χ∇ · (μH0 + M0)dx.

In view of (3.4) and the arbitrariness of χ , we prove (3.8d) and (3.5).
Finally, relations (3.8d), (4.8c) and (4.8d) imply that

Hn → Hε weakly in L2(0, t, H1(Ω)
) ∩ H1(0, t, H1(Ω)′

)
.

Therefore (Mε, θε,Hε) is a solution to problem (Pε). �
5. Proof of Theorem 3.1

In this section we prove that a solution (Mε, θε,Hε) of problem (Pε) converges to a solution (M, θ,H) of problem (P )

as ε → 0. In order to pass to the limit we need some uniform estimates in ε. To this aim, we test (3.8a) with Ṁε , (3.8b)
with θε , (3.8c) with Hε . Adding the resulting equation we obtain
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1

2

d

dt

[
ν‖∇Mε‖2 + c1

∫
Ω

Iε(θε)dx + c2‖θε‖2 + μ‖Hε‖2 + θc

2
‖Mε‖4

4

]

+ γ ‖Ṁε‖2 + k1‖∇θε‖2 + 1

σ
‖∇ × Hε‖2 + k0

∫
Ω

ln′
ε(θε)|∇θε|2 dx

=
∫
Ω

(θcMε · Ṁε + r̂θε)dx. (5.1)

Using the same argument of the previous section (see Eq. (4.3)), but emphasizing the dependence on ε, we prove

‖Mε‖2
H1 + ‖θε‖2 + ‖Hε‖2 +

t∫
0

(‖Ṁε‖2 + ‖∇θε‖2 + ‖∇ × Hε‖2)dτ � C0 +
∫
Ω

∣∣Iε(θ0)
∣∣dx.

In order to obtain an estimate independent on ε, we consider the identity

Iε(τ ) = τ lnε(τ ) −
τ∫

0

lnε(s)ds, τ ∈ R.

Hence (3.9b) leads to

∣∣Iε(θ0)
∣∣ � θ0 lnε θ0 +

θ0∫
0

| lnε s|ds � 2θ2
0 ,

which implies∫
Ω

∣∣Iε(θ0)
∣∣dx � 2‖θ0‖2.

Thus

‖Mε‖2
H1 + ‖θε‖2 + ‖Hε‖2 +

t∫
0

(‖Ṁε‖2 + ‖∇θε‖2 + ‖∇ × Hε‖2)dτ � C0. (5.2)

Now let us test (3.8b) by c1 lnε(θε) + c2θε and integrate over Ω . We deduce

1

2

d

dt
‖c1 lnε θε + c2θε‖2 + k0c1

∥∥∇(lnε θε)
∥∥2 + k1c2‖∇θε‖2

=
∫
Ω

[
(c1 lnε θε + c2θε)(Mε · Ṁε + r̂) − (k0c2 + k1c1)∇(lnε θε) · ∇θε

]
dx.

By means of Hölder’s and Young’s inequalities, we obtain

1

2

d

dt
‖c1 lnε θε + c2θε‖2 + k0c1

2

∥∥∇(lnε θε)
∥∥2 + k1c2‖∇θε‖2

� λ
(‖c1 lnε(θε) + c2θε‖2 + ‖Mε‖2

H1‖Ṁε‖2 + ‖r̂‖2
H1(Ω)′ + ‖∇θε‖2), (5.3)

where λ is a positive constant.
Moreover, in view of (3.9b), we have

‖c1 lnε θ0 + c2θ0‖ � c1‖ ln θ0‖ + c2‖θ0‖.
By recalling (5.2), from Gronwall’s inequality, we obtain

‖c1 lnε θε + c2θε‖ � C0.

Finally, from (5.3) we deduce

t∫ ∥∥∇(lnε θε)
∥∥2

dt � C0
0
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and comparison with (3.8b) yields

t∫
0

‖c1∂t lnε θε + c2θ̇ε‖2
H1(Ω)′ dt � C0.

The a priori estimates proved in the previous section allow to pass to the limit as ε → 0 and to obtain existence of a
solution to problem (P ). Thus, the proof of Theorem 3.1 is complete.

Remark. The a priori estimate (5.2) holds true even for the solutions (M, θ,H) to problem (P ). Accordingly (M, θ,H) satisfies

‖M‖2
H1 + ‖θ‖2 + ‖H‖2 +

t∫
0

(‖Ṁ‖2 + ‖∇θ‖2 + ‖∇ × H‖2)dτ � C0. (5.4)

6. Proof of Theorem 3.2

In order to prove uniqueness of solutions to problem (P ), let (Mi, θi,Hi), i = 1,2, be two solutions corresponding to the
data r̂i,M0i, θ0i,H0i , i = 1,2, satisfying (3.4), respectively. We introduce the differences

M = M1 − M2, θ = θ1 − θ2, ξ = ln θ1 − ln θ2, H = H1 − H2, r̂ = r̂1 − r̂2,

which solve the differential problem

γ Ṁ = ν�M − θc
(|M1|2 − 1

)
M1 + θc

(|M2|2 − 1
)
M2 − θ1M1 + θ2M2 + H, (6.1a)

c1ξ̇ + c2θ̇ = M1 · Ṁ1 − M2 · Ṁ2 + k0�ξ + k1�θ + r̂, (6.1b)

μḢ + Ṁ = − 1

σ
∇ × ∇ × H (6.1c)

with boundary conditions

∇M n
∣∣
∂Ω

= 0, ∇θ · n
∣∣
∂Ω

= 0, (∇ × H) × n
∣∣
∂Ω

= 0, (6.1d)

and initial data

M(x,0) = M01(x) − M02(x) = M0(x),

θ(x,0) = θ01(x) − θ02(x) = θ0(x),

H(x,0) = H01(x) − H02(x) = H0(x)

satisfying (3.4).
By integrating (6.1b) and (6.1c) over (0, t), we obtain

c1ξ + c2θ = 1

2

(|M1|2 − |M2|2
) +

t∫
0

[k0�ξ + k1�θ + r̂]dτ + c1ξ0 + c2θ0 − 1

2

(|M01|2 − |M02|2
)
, (6.2a)

μH + M + 1

σ

t∫
0

∇ × ∇ × H dτ = μH0 + M0. (6.2b)

Let us multiply (6.1a) by M and (6.2b) by H. Adding the resulting equations and integrating over Ω , we deduce

1

2

d

dt

(
γ ‖M‖2 + 1

σ

∥∥∥∥∥
t∫

0

∇ × H dτ

∥∥∥∥∥
2)

+ ν‖∇M‖2 + μ‖H‖2 �
(
μ‖H0‖ + ‖M0‖

)‖H‖ + I1, (6.3)

where

I1 =
∫
Ω

[−θc
(|M1|2 − 1

)
M1 + θc

(|M2|2 − 1
)
M2 − θ1M1 + θ2M2

] · M dx.

The terms in I1 can be arranged as

I1 =
∫ {[

θc
(
1 − |M1|2

) − θ1
]
M − θc

[
(M1 + M2) · M

]
M2 − M2θ

} · M dx.
Ω
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Hence, owing to (5.4), and the embedding inequality

‖w‖∞ � C‖w‖H2 , w ∈ H2(Ω),

we have

I1 � C
[(

1 + ‖θ1‖H1(Ω)

)‖M‖H1 + ‖M2‖H2‖θ‖]‖M‖
� δ‖M‖2

H1 + C
(
1 + ‖θ1‖2

H1 + ‖M2‖2
H2

)‖M‖2 + δ‖θ‖2, (6.4)

for every δ > 0.
Then, by multiplying (6.2a) by k0ξ + k1θ and integrating over Ω , we obtain

∫
Ω

(c1ξ + c2θ)(k0ξ + k1θ)dx + 1

2

d

dt

∥∥∥∥∥
t∫

0

(k0∇ξ + k1∇θ)dτ

∥∥∥∥∥
2

= I2, (6.5)

where

I2 =
∫
Ω

[
1

2
M · (M1 + M2) +

t∫
0

r̂ dτ + c1ξ0 + c2θ0 − 1

2

(|M01|2 − |M02|2
)]

(k0ξ + k1θ)dx.

The integral I2 can be estimated as

I2 � C

[(‖M1‖H2 + ‖M2‖H2

)‖M‖ +
∥∥∥∥∥

t∫
0

r̂ dτ

∥∥∥∥∥ + ‖ξ0‖ + ‖θ0‖ + ‖M0‖
]
‖k0ξ + k1θ‖.

Therefore, by applying the Young inequality, we prove

I2 � 1

2

(
k0c1‖ξ‖2 + k1c2‖θ‖2) + C

[(‖M1‖2
H2 + ‖M2‖2

H2

)‖M‖2 +
t∫

0

‖r̂‖2 dτ + ‖ξ0‖2 + ‖θ0‖2 + ‖M0‖2

]
. (6.6)

By substituting (6.4), (6.6) into (6.3), (6.5), adding the resulting equations and choosing properly δ, we obtain

1

2

d

dt

(
γ ‖M‖2 + 1

σ

∥∥∥∥∥
t∫

0

∇ × H dτ

∥∥∥∥∥
2

+
∥∥∥∥∥

t∫
0

(k0∇ξ + k1∇θ)dτ

∥∥∥∥∥
2)

+ 1

2

(
ν‖∇M‖2 + μ‖H‖2 + c1k0‖ξ‖2 + c2k1‖θ‖2) +

∫
Ω

(c1k1 + c2k0)ξθ dx

� ζ(t)‖M‖2 + C
(‖M0‖2 + ‖H0‖2 + ‖ξ0‖2 + ‖θ0‖2) + C

t∫
0

‖r̂‖2 dτ , (6.7)

where ζ ∈ L1(0, t).
Accordingly, Gronwall’s inequality yields

‖M‖2 � C(T )

[
‖M0‖2 + ‖H0‖2 + ‖ξ0‖2 + ‖θ0‖2 +

T∫
0

‖r̂‖2 dτ

]

and

T∫
0

(‖H‖2 + ‖M‖2
H1 + ‖ξ‖2 + ‖θ‖2)dτ � C(T )

[
‖M0‖2 + ‖H0‖2 + ‖ξ0‖2 + ‖θ0‖2 +

T∫
0

‖r̂‖2 dτ

]
.

This completes the proof of Theorem 3.2.
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