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Abstract

Phase transitions between two phases are modelled as space regions where an order parameter, or phase field, changes smoothly. A
thermodynamic approach is developed by allowing for the nonlocal character of the continuum. The phase field is regarded as an internal variable
and the kinetic or evolution equation is viewed as a constitutive equation. Along with the other constitutive equations, the unknown evolution
equation is required to satisfy the second law of thermodynamics. Necessary and sufficient restrictions placed by thermodynamics are derived for
the constitutive equations and, furthermore, a general form of the evolution equation for the order parameter is obtained within the schemes of
a non-conserved or a conserved phase field. Based on the thermodynamic restrictions, a model for the ice–water transition is established which
allows for superheating and undercooling. A model is also provided for the transition in superconducting materials.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is fourfold. First, to establish a
general thermodynamical setting for phase transition models
in conserved and non-conserved two-phase systems. Secondly,
to contrast the thermodynamic scheme with others appearing
in the literature. Thirdly, to develop a general model for the
ice–water transition, at constant pressure, which allows also
for superheating and undercooling. Fourthly, to show that the
thermodynamic scheme is appropriate also for phase transitions
in superconductors.

The physical framework for a phase transition in two-phase
systems is a continuum in which two phases may coexist. The
transition between the two phases is taken to occur smoothly,
within an appropriate layer or diffuse interface. The use of
diffuse interface models to describe phase transitions traces
back to van der Waals [1], Landau and Ginzburg [2] and Cahn
and Hilliard [3]. To describe the phase transition it is necessary
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to select a quantity, say ϕ, which differs in the two phases.
Since Landau, such a quantity is called an order parameter. The
term phase field for the order parameter emphasizes the smooth
variation of ϕ in the pertinent region.

Concerning the liquid–solid transition, the phase field was
introduced by Langer [4], Fix [5] and Caginalp [6]. To remedy
the lack of a proper thermodynamic setting, in the 1990s
a number of so-called thermodynamically consistent models
were proposed (see Penrose and Fife [7,8], Alt and Pawlow [9]
and Wang et al. [10]).

In essence, the phase-field model consists of a modified
heat or energy equation and a supplementary Ginzburg–Landau
equation. The heat equation involves the time derivative of ϕ
as a consequence of the dependence of the internal energy on
ϕ. In isothermal conditions, the Ginzburg–Landau equation is
obtained as the relaxation law

bϕ̇ = −δF/δϕ

where b is a function of ϕ and δF/δϕ is the variational
derivative of a free-energy functional F whose minimizers are
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equilibrium states. It is an assumption that −δF/δϕ is the
generalized force field that tends to decrease the total free
energy and governs the evolution of the order parameter. This
view, along with arguments given by [9], suggest that in non-
isothermal conditions the integrand of F be modified through a
rescaling factor 1/θ , θ being the absolute temperature [11].

To obtain more information regarding the theoretical status
of phase-field models within continuum physics, Fried and
Gurtin [12,13] introduce a balance law for microforces which
are viewed as forces that expend power over changes in the
order parameter. A similar but independent approach was set
up by Frémond [14] (cf. [15]). Their common feature consists
in the modification of the energy balance to account for the
mechanical power of microforces. In essence, both theories
set phase transitions in a continuum with an internal structure
subject to the vanishing of the power expended by microforces
at the boundary of the body.

Here we regard the order parameter ϕ as an internal
variable. The evolution equation for ϕ is then regarded as
a constitutive equation. Along with the other constitutive
equations, the unknown evolution function is required to satisfy
the second law of thermodynamics. Here the second law is
expressed by the Clausius–Duhem inequality but we account
for the entropy production due to phase transition via an
extra entropy flux. This in turn gives a nonlocal character
to the second law which, owing to a boundary condition for
the extra flux, takes the classical form for the whole body.
In this way we derive necessary and sufficient conditions on
the constitutive equations such that they represent physically-
admissible models. It is remarkable that, because of the
thermodynamic analysis, we find a general form of evolution
equation, for the order parameter, which is determined by
the bulk and the interface free energy densities. In special
cases, the evolution equation reduces to the equations obtained
by Alt and Pawlow [9] and Penrose and Fife [8]. Next we
specialize the thermodynamic requirements and establish a
model for the ice–water transition such that a set of known
properties hold, namely the positivity of the specific heat
and of the latent heat. In addition, the model allows for
superheating and undercooling. Superheating means that, when
the temperature is increased smoothly above the transition
temperature θ0, the solid phase continues to hold though a
small perturbation makes the transition occur. Undercooling is
the analogous behaviour when the temperature is decreased.
Finally, a model is provided for thermally-induced phase
transitions in superconducting materials. This shows how the
thermodynamic scheme is flexible and profitable in describing
phase transitions in continuum physics.

Notation. The symbol ρ denotes the mass density, x the
position vector, v the velocity, T the Cauchy stress tensor, b the
body force (per unit mass), e the internal energy density (per
unit mass), q the heat flux vector, L the velocity gradient, r the
heat supply, θ the absolute temperature, η the entropy density
and ψ the free energy density. Also, ∇ is the gradient operator,
∂t is the partial time derivative and the superposed dot denotes
the total time derivative. Hence, for any function g(x, t),

ġ = ∂t g + v · ∇g,

where · denotes the inner product. In addition, ∇· denotes the
divergence and1 the Laplacian. The symbols tr and dev denote
the trace and the deviatoric part, e.g.

dev∇∇φ = ∇∇φ −
1
3

tr ∇∇φ = ∇∇φ −
1
3
1φ. (1.1)

For any functional F on φ of the form

F(φ) =

∫
Ω
ψ(φ,∇φ, . . .)dv

the variational derivative δF/δφ is defined by

lim
λ→0

F(φ + λω)− F(φ)
λ

=

∫
Ω

δF
δφ
(φ)ω dv ∀ω ∈ C∞

0 (Ω).

Partial differentiations are denoted by subscripts; for example,
ψθ stands for ∂ψ/∂θ .

2. Thermodynamic approach

To describe a phase transition we allow for a material to
occur in two phases. The interface between the two phases is
diffuse (not sharp) in that the pertinent fields do not jump across
a surface but change smoothly on a transition layer. The order
parameter or phase field ϕ varies smoothly across the transition
layer. In a solid–fluid phase transition ϕ ∈ [−1, 1] and ϕ = −1
in the fluid and ϕ = 1 in the solid so that χ = (1 + ϕ)/2 is the
concentration of the solid phase. In a superconducting–normal
phase transition |ϕ| is the concentration of the superconducting
phase. In general we regard ϕ as an order parameter in the
sense that the maximum value of ϕ is associated with the
most ordered phase. Though ϕ, or a function of ϕ, is the
concentration of one phase – viewed as a component of a
mixture – we model the material, at any point x of the body,
as a continuum without any internal structure.

Let Ω ⊂ R3 be the region occupied by the body and x ∈ Ω .
The balance equations for mass, momentum and energy are
taken in the classical form of continuum mechanics, namely

ρ̇ + ρ∇ · v = 0,

ρv̇ = ∇ · T + ρb,

ρė = T · L − ∇ · q + ρr.

Consistent with the absence of internal structure, we let the
Cauchy stress tensor T be symmetric.

The second law of thermodynamics, or entropy principle, is
considered in differential form. Let 8 be the entropy flux we
adhere to, e.g., [16] and [17] and write the following statement.

Entropy principle. The inequality

ρη̇ ≥ −∇ · 8 +
ρr

θ
(2.1)

must hold, at each point x ∈ Ω and time t ∈ R, for all fields
Λ = (ρ, v,T, e,q, θ,8,b, r), of x and t, compatible with the
balance equations.
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In simple models 8 = q/θ . Generally, nonlocal theories
result in 8 6= q/θ . Such is the case for nonlocal fluid
mechanics [18], phase-field models for solidification [10] and
superconductivity [19], Chapter 11.

The transition layer, rather than a sharp interface, accounts
for nonlocal effects in that the constitutive properties are
modelled through a dependence on ∇ϕ. Hence we expect that
here the entropy flux 8 is not merely the ratio q/θ . Accordingly
we find it convenient to let

8 =
q
θ

+ k

and write (2.1) as

ρη̇ = −∇ ·

(q
θ

+ k
)

+
ρr

θ
. (2.2)

We then regard k as an unknown field to be determined so that
the second law holds.

Integration of (2.2) over the whole region Ω provides

d
dt

∫
Ω
ρηdv ≥ −

∫
∂Ω

q
θ

· n da −

∫
∂Ω

k · n da +

∫
Ω

ρr

θ
dv.

The second law for the whole body takes the standard form if∫
∂Ω

k · n da = 0.

We then assume the boundary condition

k · n |∂Ω = 0. (2.3)

This view is consistent with the approach of [20,21]. The
condition (2.3) will result in the classical Neumann condition
on ϕ.

Letting ψ = e − θη we can write the inequality (2.1) in the
form

−ρ(ψ̇ + ηθ̇)+ T · L −
1
θ

q · ∇θ + θ∇ · k ≥ 0. (2.4)

The literature on the modelling of phase transitions through
the phase field is mainly restricted to a constant mass density
or a constant volume. This is made apparent by constitutive
properties which disregard the dependence on the mass density
ρ ([11]; [7], Section 7). In this paper we let ρ depend on
the position and time variables and hence, because of the
continuity equation, we have to allow for a velocity field with a
nonzero divergence. Rather, we find it of interest to look at the
transitions at constant pressure and hence, later on, we account
explicitly for this constraint. Accordingly, the modelling deals
with thermally-induced phase transitions, namely transitions
in which the order parameter changes as a consequence of
temperature variations around a temperature value, θ0, called
transition temperature.

The constitutive properties of the material are expressed by
choosing

Γ = (ρ, θ, ϕ,∇ρ,∇θ,∇ϕ,1ρ,1θ,1ϕ)

as the set of independent variables. Hence we let T,q, ψ, η, k
be functions of Γ . Moreover, we describe the evolution of the
phase field ϕ by assuming that there is a function f such that

ϕ̇ = f (Γ ). (2.5)

The validity of the second law results in appropriate restrictions
on the constitutive functions f and T,q, ψ, η, k. As shown in
the next section, the following statement holds.

Theorem 1. The functions f,T,q, ψ, η, k, of Γ , are compati-
ble with the second law of thermodynamics, in the form (2.4), if
and only if

ψ∇ρ = 0, ψ∇θ = 0, ψ1ρ = 0,
ψ1θ = 0, ψ1ϕ = 0, (2.6)

η = −ψθ , T = −ρ2ψρ1 − ρ sym(∇ϕ ⊗ ψ∇ϕ) (2.7)

−ρψϕ f −
1
θ

q · ∇θ + θ∇ · k − ρψ∇ϕ · ∇ f ≥ 0. (2.8)

2.1. Thermodynamic restrictions

To prove Theorem 1 we preliminarily establish the following
result (see [22]).

Lemma 1. For any C2 function g(x, t) the derivatives ˙
∇g and

∇ ġ are related by the identity

˙
∇g = ∇ ġ − LT

∇g.

Proof. By definition

˙
∇g = ∂t∇g + (v · ∇)∇g.

Use of the identity

(v · ∇)∇g = ∇(v · ∇g)− LT
∇g

and interchanging the order of differentiation give

˙
∇g = ∇(∂t g + v · ∇g)− LT

∇g

whence the result. �

Lemma 1 applied to the phase field ϕ and use of (2.5) yield

˙
∇ϕ = ∇ f − LT

∇ϕ. (2.9)

Proof of Theorem 1. Since ψ is a function of Γ , we evaluate
the time derivative ψ̇ through the chain rule. Substitution in
(2.4) and use of (2.9) give

−ρ[(ψθ + η)θ̇ + ψϕ f + ψ∇ρ ·
˙

∇ρ + ψ∇θ ·
˙

∇θ

+ψ1ρ ·
˙1ρ + ψ1θ ·

˙1θ + ψ1ϕ ·
˙1ϕ]

+ (T + ρ2ψρ1 + ρ∇ϕ ⊗ ψ∇ϕ) · L

−
1
θ

q · ∇θ + θ∇ · k − ρψ∇ϕ · ∇ f ≥ 0. (2.10)

The dependence on ˙
∇ρ, ˙

∇θ, ˙1ρ, ˙1θ, ˙1ϕ, θ̇ and L is linear.
Moreover, at any point x and time t , such quantities can
be given arbitrary values. Consequently, (2.10) holds only
if (2.6) and (2.7) hold. Hence the inequality (2.10) reduces
to (2.8). Conversely, the validity of (2.6)–(2.8) implies that
of (2.10). �
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Further restrictions on the constitutive equations follow by
observing that, upon evaluation of ∇ · k and ∇ f through the
chain rule and use of (1.1), the inequality (2.8) takes the form

−ρψϕ f +

(
θkθ −

1
θ

q · ∇θ − ρψ∇ϕ fθ

)
· ∇θ

+ (θkρ − ρψ∇ϕ fρ) · ∇ρ + (θkϕ − ρψ∇ϕ fϕ) · ∇ϕ

+ (θk∇ρ − ρψ∇ϕ f∇ρ) · ∇∇ρ + (θk∇θ − ρψ∇ϕ f∇θ ) · ∇∇θ

+ (θk∇ϕ − ρψ∇ϕ f∇ϕ) · ∇∇ϕ + (θk1ρ − ρψ∇ϕ f1ρ) · ∇1ρ

+ (θk1θ − ρψ∇ϕ f1θ ) · ∇1θ + (θk1ϕ − ρψ∇ϕ f1ϕ)

·∇1ϕ ≥ 0. (2.11)

The left-hand side of (2.11) is linear in ∇1ρ, ∇1θ ,
∇1ϕ and the deviatoric parts dev∇∇ρ, dev∇∇θ , dev∇∇ϕ.
As a consequence the inequality (2.11) holds only if the
corresponding coefficients are zero. Hence we find that k, ψ
and f are required to satisfy the conditions

θk1ρ − ρψ∇ϕ f1ρ = 0, θk1θ − ρψ∇ϕ f1θ = 0,

θk1ϕ − ρψ∇ϕ f1ϕ = 0, (2.12)

sym dev(θk∇ρ − ρψ∇ϕ ⊗ f∇ρ) = 0,

sym dev(θk∇θ − ρψ∇ϕ ⊗ f∇θ ) = 0, (2.13)

sym dev(θk∇ϕ − ρψ∇ϕ ⊗ f∇ϕ) = 0. (2.14)

The inequality (2.11) then becomes

−ρψϕ f + (θkρ − ρψ∇ϕ fρ) · ∇ρ

+

(
θkθ − ρψ∇ϕ fθ −

1
θ

q
)

· ∇θ + (θkϕ − ρψ∇ϕ fϕ)

· ∇ϕ +
1
3

1 · [(k∇ρ − ψ∇ϕ ⊗ f∇ρ)1ρ

+ (k∇θ − ψ∇ϕ ⊗ f∇θ )1θ + (k∇ϕ − ψ∇ϕ ⊗ f∇ϕ)1ϕ] ≥ 0.

(2.15)

Along with Theorem 1, these conditions allow us to state the
following result.

Theorem 2. The functions f,T,q, ψ, η, k, of Γ , are compati-
ble with the second law of thermodynamics, in the form (2.4),
if and only if (2.6), (2.7) and (2.12)–(2.14) and the inequality
(2.15) hold.

Theorems 1 and 2 give equivalent forms, of necessary
and sufficient conditions, for the compatibility of constitutive
equations with the second law of thermodynamics. For practical
purposes, it may be of interest to set up simpler models which
still satisfy the second law. In this regard we observe that (2.8)
can be written in the form
1
θ

q · ∇θ − ∇ · [θk − ρψ∇ϕ f ] + k · ∇θ

+ f [ρψϕ − ∇ · (ρψ∇ϕ)] ≤ 0. (2.16)

By (2.12)–(2.14) and (2.6) it follows that

θk − ρψ∇ϕ f

can depend at most on ρ, θ, ϕ,∇ϕ. We make the assumption
that such a dependence does not hold and let

θk − ρψ∇ϕ f = 0. (2.17)
This position is consistent with the observation that the fluxes
are linear in ϕ̇ [9].

Henceforth, for ease in writing, we let

ξ := ρψϕ/θ − ∇ · (ρψ∇ϕ/θ). (2.18)

Theorem 3. If (2.17) holds then (2.1) is satisfied if and only if

1

θ2 q · ∇θ + f ξ ≤ 0 (2.19)

and (2.6) and (2.7) hold.

Proof. As to necessity, observe that (2.6) and (2.7) follow as in
Theorems 1 and 2 and we are left with (2.16). By (2.17),

∇ · [θk − ρψ∇ϕ f ] = 0.

In addition, replacing k with ρψ∇ϕ f/θ in (2.16) and
multiplication by 1/θ (> 0) provide (2.19). Conversely, it is
apparent that (2.6), (2.7) and (2.19) imply (2.10) and hence
(2.4). �

Remark. By (2.17) and (2.3) it follows that the boundary
condition

ψ∇ϕ · n|∂Ω = 0 (2.20)

is required to hold.

3. Non-conserved phase field

A simple case for the validity of (2.19) occurs if both
contributions, q · ∇θ and f ξ , are nonpositive,

q · ∇θ ≤ 0, f ξ ≤ 0.

The first condition is just Fourier’s inequality though here q
is a function of Γ . The second one is a restriction on the
evolution function f . The most natural model of f satisfying
the inequality is

f = − f̂ (Γ )ξ, f̂ (Γ ) ≥ 0. (3.1)

Of course the simplest example is given by letting f̂ be a
positive constant.

Some comments are in order. First, the thermodynamic
restrictions on k are given by (2.12)–(2.15). The condition
(2.17) is not strictly necessary. However it looks quite
natural and allows a simple scheme which is compatible
with thermodynamics. Secondly, differentiation of (2.17) with
respect to ∇ϕ provides

θk∇ϕ − ρψ∇ϕ∇ϕ − ρψ∇ϕ ⊗ f∇ϕ = 0.

Comparison with the third relation in (2.14) shows that

devψ∇ϕ∇ϕ = 0.
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As a consequence, if ψ depends on ∇ϕ quadratically then the
dependence is merely through |∇ϕ|

2 and not more generally
through a bilinear form ∇ϕ · A∇ϕ, where A is a symmetric
matrix.

So far we know that, because of thermodynamics, the free
energy ψ can depend on Γ only through ρ, θ, ϕ and |∇ϕ| but
such dependence is arbitrary. An interesting class of general
models is obtained by assuming that the free energy density ψ
(per unit mass) has the additive form

ψ(ρ, θ, ϕ, |∇ϕ|)=Ψ(ρ, θ, ϕ)+ ψ̂(θ, ϕ)+
1
ρ
µ(θ, ϕ)|∇ϕ|

2.

(3.2)

The choice (3.2) yields

η = −Ψθ − ψ̂θ − µθ |∇ϕ|
2,

T = −ρ2(Ψρ + µ|∇ϕ|
2)1 − 2µ∇ϕ ⊗ ∇ϕ

and

ξ =
1
θ
(ρΨϕ + ρψ̂ϕ +µϕ |∇ϕ|

2)− 2∇ · (µ∇ϕ)+ 2
µ

θ
∇θ · ∇ϕ.

In addition, the free energy (3.2) and the boundary condition
(2.20) require that

∇ϕ · n |∂Ω = 0.

In most cases, phase transitions occur at constant pressure.
This suggests that we elaborate a general scheme where the
constraint of constant pressure is incorporated. If the pressure
p is identified with the contribution of the isotropic stress, free
from ∇ϕ, then we have

p = ρ2Ψρ .

As a consequence we can write

Ψ(ρ, θ, ϕ) = −

∫
∞

ρ

p(r, θ, ϕ)

r2 dr.

The constancy of p = p0 provides

Ψ(ρ, θ, ϕ) = −p0

∫
∞

ρ

1

r2 dr

whence

p0 = −ρΨ(ρ, θ, ϕ)

is constant. Accordingly, at constant pressure we have

ρψ = −p0 + ρψ̂(θ, ϕ)+ µ(θ, ϕ)|∇ϕ|
2

and

ξ =
1
θ
[ρψ̂ϕ + µϕ |∇ϕ|

2
] − 2∇ · (µ∇ϕ)+ 2

µ

θ
∇θ · ∇ϕ. (3.3)

Well-established models of non-conserved phase field separa-
tion can be obtained by choosing appropriate functions for ψ̂
and µ (see Section 5).

In addition, the dependence of ρ on ϕ follows from the
constancy condition

p(ρ, θ, ϕ) = p0.
If, further, p is independent of θ then we obtain the function
ρ = ρ̃(ϕ). Quite often the function ρ̃ is taken as linear namely

ρ̃(ϕ) =
1 − ϕ

2
ρ̃(−1)+

1 + ϕ

2
ρ̃(1).

Remark. In [7], Penrose and Fife argue about the phase
transitions at constant pressure and conclude that every formula
referring to the case of constant pressure is obtainable by
replacing the energy density e by the enthalpy e + p/ρ. Our
result is consistent in that the potential at constant pressure is

ρψ̂(θ, ϕ)+ µ(θ, ϕ)|∇ϕ|
2

= ρ(ψ + p0/ρ),

namely the Gibbs free energy.

Remark. The requirement (3.1) means that ϕ̇ is proportional to

ξ = ρψϕ/θ − ∇ · (ρψ∇ϕ/θ),

the right-hand side being the variational derivative of

J =

∫
Ω

1
θ
ρψ(ρ, θ, ϕ,∇ϕ)dv

with respect to ϕ. As a consequence ϕ̇ = 0 at the stationary
points of J subject to the boundary condition

ϕ(x, t) = g(x) ∀x ∈ ∂Ω1

(ψ∇ϕ · n)(x, t) = 0 ∀x ∈ ∂Ω2

where ∂Ω1 ∪ ∂Ω2 = ∂Ω , ∂Ω1 ∩ ∂Ω2 = ∅. The phase kinetics
is fully determined by the free energy density per unit volume,
ρψ , to within a negative factor − f̂ (Γ ). That is why we can
equivalently consider the functional in the form

J̃ (ϕ) =

∫
Ω

θ0

θ
ρψ(ρ, θ, ϕ,∇ϕ)dv

the integrand θ0ρψ/θ being named rescaled free energy
density [11]. Incidentally, the rescaled form of the free energy
functional traces back to Alt and Pawlow [9]. In isothermal
transitions, θ = θ0, the functional J̃ (ϕ) reduces to the
isothermal free energy functional. We then obtain the kinetic
equation in the form of the Ginzburg–Landau equation for
phase separation at the transition temperature.

In a spatially uniform phase change of an isotropic material
ψ∇ϕ = 0. In such a case, by (3.1)

ϕ̇ = −
1
θ

f̂ (Γ )ρψϕ .

4. Conserved phase field

Also for a useful connection with the literature, we look
for a different way of satisfying the thermodynamic restriction
f ξ ≤ 0, ξ being given by (2.18). Assume that f is given in the
divergence form

f = ν∇ · (m∇g)

where ν,m, g are appropriate scalar functions of Γ , so far
undetermined. Hence we have

f ξ = ∇ · (mνξ∇g)− m∇g · ∇(νξ).
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Let g = νξ so that

f ξ = ∇ · [mνξ∇(νξ)] − m|∇(νξ)|2.

Integration over the region Ω of the body and the divergence
theorem give∫
Ω

f ξdv =

∫
∂Ω

mνξn · ∇(νξ) da −

∫
Ω

m|∇(νξ)|2dv.

Provided the diffusive mobility m is positive and the normal
derivative n · ∇(νξ) vanish at the boundary, namely

n · ∇(νξ) = 0, at ∂Ω , (4.1)

we have∫
Ω

f ξdv ≤ 0. (4.2)

This means that f ξ need not be negative at every point but has a
negative value for the whole body. This feature might be framed
within a non-local theory of phase field evolution. It is worth
remarking that (4.2) holds irrespective of the value of ν.

Let ν = θ0. Hence

f = θ0∇ · (m∇g)

and, by (2.18),

g = ρθ0ψϕ/θ − ∇ · (ρθ0ψ∇ϕ/θ) =
δ J̃

δϕ
.

The boundary condition in (4.1) provides the phase conserva-
tion in that

d
dt

∫
Ω
ϕ dv =

∫
Ω
ϕ̇ dv = θ0

∫
Ω

∇ · (m∇g)dv = 0.

In addition, subject to the boundary conditions (4.1) and
(2.20), the phase evolution is found to be governed by

ϕ̇ = ∇ ·

[
m∇

(
δ J̃

δϕ

)]
, m(Γ ) > 0.

5. Comparison with other models

We now investigate some approaches and models, which
appeared in the literature, in which the dependence on the mass
density ρ is disregarded or is regarded as a constant (cf. [7]).

5.1. Ginzburg–Landau theory for isothermal models

Following [11], an equilibrium state of the system is
expected to be the stationary solution of a functional F(ϕ). The
phase-field ϕ(x) is the solution of the Euler–Lagrange equation

δF
δϕ
(x) = 0, ∀x ∈ Ω .

A nonzero value of δF/δϕ represents the departure from
equilibrium. Hence the quantity −δF/δϕ is regarded as
proportional to the appropriate generalized thermodynamic
force. In isothermal conditions, F is specialized as the
(Ginzburg–Landau) functional

F(ϕ) =

∫
Ω

[
F(ϕ, θ)+

1
2
γ (ϕ, θ)|∇ϕ|

2
]

dv

where γ is positive valued. The evolution equation for ϕ is then
taken in the form

ϕ̇ = −K (ϕ)
δF
δϕ
(ϕ) (5.1)

where K is positive valued. Hence we find that

ϕ̇ = K (ϕ)

{
∇ · [γ (ϕ)∇ϕ] −

1
2
γϕ(ϕ)|∇ϕ|

2
− Fϕ(ϕ)

}
. (5.2)

Eq. (5.2) is often referred to as the Cahn–Allen equation. Time
differentiation of F(ϕ(t)) and use of the divergence theorem
yield

d
dt
F(ϕ(t)) =

∫
Ω

δF
δϕ
ϕ̇dv +

∫
∂Ω
γ ϕ̇∇ϕ · n da.

The boundary condition n · ∇ϕ = 0 at ∂Ω and (5.1) imply that

d
dt
F(ϕ(t)) = −

∫
Ω

K (ϕ)

[
δF
δϕ

]2

dv ≤ 0

whence F(ϕ(t)) decays in time. The evolution equations (5.1)
and (5.2) can be obtained from (3.1) and (3.3) by letting ρ = 1,
θ = θ0, ψ̂ = F , µ = γ (ϕ)/2 and f̂ = θ0 K (ϕ).

A model for conserved dynamics, in which the integral of ϕ
on Ω is constant in time (see [11], p. 166), stems from the mass
balance equation

ϕ̇ = −∇ · j

and the generalized Fick’s law

j = −K̂ (ϕ)∇G

where K̂ is a positive parameter, which represents the diffusive
mobility, and G is the chemical potential. The vector j is viewed
as the driving force of the phase separation and G is defined by

G =
δF
δϕ
.

In the simple case that γ and K̂ are constants it follows that ϕ
is governed by the Cahn–Hilliard equation

ϕ̇ = K̂1(Fϕ − γ1ϕ). (5.3)

Subject to the boundary conditions

n · ∇ϕ = 0, n · ∇
δF
δϕ

= 0, at ∂Ω ,

it follows that the integral of ϕ is conserved and again F(ϕ(t))
decays in time. Letting ρ = 1, θ = θ0, ψ̂ = F , µ = γ (ϕ)/2,
ν = θ0 and m = K̂ we obtain from (3.1) and (3.3) the
Cahn–Hilliard equation (5.3) as a special case.
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5.2. Rescaled Ginzburg–Landau functional for non-isothermal
models

Let θ be variable in space and time. According to [7] and [9],
the Ginzburg–Landau functional approach can be maintained
by changing the integrand through a multiplication by 1/θ
(rescaling). In essence, for conserved phase dynamics, this view
is based on the definition of chemical potential G as

G

θ
=
δF̃
δϕ

where F̃ is the modified form of the Ginzburg–Landau
functional,

F(ϕ, θ) =

∫
Ω

(
F̃(ϕ, θ)+

1
2θ
γ (ϕ, θ)|∇ϕ|

2
)

dv

where F̃ = F/θ . Hence the thermodynamic force is assumed
to be proportional to −δF̃/δϕ, which corresponds to letting
−∇(G/θ) be (proportional to) the driving force. Again two
forms of evolution equations are established according as non-
conserving or conserving dynamics is considered. In both cases,
a functional of the Ginzburg–Landau type turns out to decay in
time and this feature is viewed as a proof of thermodynamic
consistency of the models.

The approaches based on the Ginzburg–Landau functional
assume that the variational derivative δF/δϕ is (the opposite
of ) the force which causes the evolution of ϕ. In our approach,
it is the restriction (3.1) which forces ϕ̇ to be proportional to
(2.18). This in turn shows that ξ involves the free energy times
1/θ as is assumed by Alt and Pawlow through the rescaled free
energy.

From a general point of view, if we let ρ = 1, ψ̂ = F and
µ = γ /2 then Alt and Pawlow equations follow as a special
case. In particular, if ϕ is conserved then letting g = G/θ
and m = l11 the equations of [9] for non-isothermal phase
separation are recovered provided only l12 = l21 = 0.

5.3. Penrose–Fife model

A model elaborated by Penrose and Fife is based essentially
on the relaxation law. A first version [7], in 1990, involves
the entropy potential instead of the Ginzburg–Landau free
energy. Consistent with what is expected from the second law
of thermodynamics, they prove that the value of the entropy
functional cannot decrease along solution paths. Next [8], with
the purpose of establishing a systematic connection with the
standard phase-field model, they review the scheme by starting
from a suitable choice of the free energy functional. The
Penrose–Fife model [8] is based on the following assumptions.

(1) At the transition temperature θ0, the free energy takes the
form

ψ(θ0, ϕ) =
1
4
(ϕ2

− 1)2.

(2) The energy density e depends on θ and ϕ in the form

e(θ, ϕ) = θ + (−aϕ2
+ bϕ + c)
where a, b and c are constants. The parameter b represents the
latent heat.

Thermodynamic consistency is then taken as the condition

e = F − θFθ = −θ2∂(F/θ)/∂θ.

Hence, by integration, it follows that

F(θ, ϕ) =
θ

4θ0
(ϕ2

− 1)2 +

(
1 −

θ

θ0

)
(−aϕ2

+ bϕ + c)

−
θ

θ0
ln(θ/θ0).

The energy balance equation is then written in the form

θ̇ + (−2aϕ + b)ϕ̇ = −∇ · (α3(θ)∇(1/θ)). (5.4)

The evolution equation for ϕ is then taken as a Cahn–Allen
equation, in the rescaled form,

ϕ̇ = K

[
−

1
θ

Fϕ + κ1ϕ

]
.

Substitution for F gives

ϕ̇ = α1[ϕ − ϕ3
+ (1 − θ0/θ)(b − 2aϕ)] + α21ϕ (5.5)

where α1 and α2 are constants.
Two comments are in order. First, the internal and the

free energies are restricted to the so-called bulk terms and
hence the dependence on ∇ϕ is not included. Consistency
with thermodynamics is then meant as the requirement that
the entropy η be related to the free energy F by the classical
relation η = −Fθ . Hence the internal energy is assumed
to be quadratic in ϕ whereas F is derived by integration.
Secondly, the evolution equation for the order parameter is not
framed within thermodynamics. It is assumed in the form of a
relaxation law through a rescaled Ginzburg–Landau functional.
However, we point out that (5.4) and (5.5) are a special case of
the model in Section 6.

5.4. Caginalp and Fix models

Langer [4], Fix [5] and Caginalp [6] elaborated the so-
called standard phase-field model which applies when the order
parameter ϕ is not conserved. The internal energy is allowed to
depend linearly on the phase field ϕ and the scaled temperature
deviation ϑ = (θ − θ0)/θ0 so that the energy balance equation
is taken in the form

cϑ̇ − λϕ̇ = κ1θ + r. (5.6)

By means of a relaxation law derived from a free energy at a
fixed temperature (in which phase interfaces are modelled as
surfaces of discontinuity), the phase-field evolution is written
in the form

αϕ̇ = 1ϕ − βϕ(ϕ
2
− 1)2 − λϑ. (5.7)

As first observed by Penrose and Fife [8] (see also [11],
p. 172), Eqs. (5.6) and (5.7) can be derived by linearizing
(5.4) and (5.5), respectively, relative to ϑ and ∇ϕ and selecting
appropriate functions K , γ and F .
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There are remarks about the loss of thermodynamic
consistency in that, because of linearization in the temperature
around the transition temperature, the right-hand side is no
longer a variational derivative (see [8] and [11], p. 172).

5.5. Fried–Gurtin model

The approach of Fried and Gurtin [12,13] models the
evolution of ϕ by a modified heat equation supplemented
by a Ginzburg–Landau equation. Both papers are based on
a systematic application of balance equations, as is the case
in continuum mechanics. Macroscopic forces are disregarded
and the new key idea is that the evolution is governed by
microforces, say a microstress vector ξ and a scalar microforce
π . In differential form, they are assumed to satisfy the balance
equation

∇ · ξ + π = 0. (5.8)

The balance of energy is modified by adding the contribution of
ϕ̇ξ · n as the expenditure of power per unit area with normal n.
Hence the balance of energy is written as

ė = −∇ · q + ∇ · (ϕ̇ξ)

whereas the second law inequality is taken in the standard form

η̇ + ∇ · (q/θ) ≥ 0.

It is worth remarking that the energy balance involves an extra
energy flux ϕ̇ξ whereas the energy balance for the whole
domain Ω holds in the classical form by virtue of the boundary
condition ϕ̇ξ · n = 0 at ∂Ω . Upon exploiting the consequences
of the entropy inequality, linearizing the constitutive equation
for π and disregarding coupling terms, so that

π = −ψϕ(ϕ,∇ϕ)− β(ϕ,∇ϕ, ϕ̇)ϕ̇, ξ = ψ∇ϕ

use of (5.8) yields (see (2.11) of [12])

β(ϕ,∇ϕ, ϕ̇)ϕ̇ = ∇ · ψ∇ϕ − ψϕ . (5.9)

The result (5.9) closely resembles our conclusion (3.1) about
the evolution equation. The similarity is in the right-hand side
being in the form of a variational derivative. Apart from the
occurrence of ρ, the quantity ξ in (3.1) involves the potential
ψ/θ . The presence of the factor 1/θ is a consequence of the
second law of thermodynamics through the non-zero entropy
extra flux k.

To our mind a material with internal structure, like the model
with the microforces ξ and π , should involve an entropy flux
different from q/θ .

5.6. Frémond model

Frémond [14,15] establishes a scheme for the phase change
by having recourse to a principle of virtual power. He considers
interior forces (through the stress tensor T, the interior
microscopic energy B, and the microscopic energy flux vector
H) and expresses the corresponding power Wint in Ω as

Wint(V, γ ) = −

∫
Ω

T · Ddv −

∫
Ω
(Bγ + H · ∇γ )dv
where v, γ are the macroscopic and microscopic virtual
velocities. Similarly, he expresses the virtual power Wext of
exterior forces including the power of the (scalar) volume and
surface exterior sources of microscopic work, A and a. Also he
lets the virtual power of acceleration forces take the form

Wacc(V, γ ) =

∫
Ω
ρv̇ · V dv +

∫
Ω
ρ0ϕ̈γ dv

where ρ0 is (proportional to) the density of microscopic links.
The principle of virtual power, namely

Wacc(V, γ ) = Wint(V, γ )+ Wext(V, γ )

for any vector field V and scalar field γ , produces the equation
of motion and the evolution equation

ρ0ϕ̈ − ∇ · H = A − B in Ω , H · n = a in ∂Ω . (5.10)

Compatibility with thermodynamics is then satisfied by letting
the interior production of entropy be positive and the interior
forces be defined by a pseudo-potential of dissipation.

Eq. (5.10) shows a large degree of arbitrariness in terms
of the fields H, A, B. The arbitrariness is mainly due to the
principle of virtual power, which is not considered in standard
thermodynamic approaches. Also, the fact that (5.10) is a
second order equation for the order parameter is a consequence
of the assumption on Wacc.

In the approach of Frémond, as well as in that of Fried and
Gurtin, the (nonlinear) evolution equation is not in a variational
form. Also, both approaches are based on a modification of the
standard energy balance.

6. A model for the solid–fluid transition

Here we look for a model of a first-order, solid–fluid,
reversible transition as is the case for the ice–water transition.
The model allows for two different equilibrium phases; below
the transition (or critical) temperature θ0 the equilibrium phase
is solid (ϕ = 1) and above θ0 is fluid (ϕ = −1). Around
the transition temperature both phases are equilibrium points.
As |ϕ| < 1 the continuum shows as a mushy region in which
spatial changes of ϕ may occur thus letting ∇ϕ be nonzero.

The general result (3.1) allows the evolution equation for the
phase field ϕ to be written as

ϕ̇ = − f̂ (Γ )[ρψϕ/θ − ∇ · (ρψ∇ϕ/θ)]. (6.1)

Special models are now recovered by appropriate choices of the
functions f̂ and ρψ .

First we take ν as a constant and set

f̂ (Γ ) =
1
ν

so that

ϕ̇ = −
1
ν
[ρψϕ/θ − ∇ · (ρψ∇ϕ/θ)]. (6.2)

By Theorem 1, Eq. (2.6), the free energy can depend only
on ρ, θ, ϕ,∇ϕ. Here we look for phase transitions at constant
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pressure. Accordingly, we take the Gibbs free energy function
per unit volume, F = ρψ , in the form

F(θ, ϕ,∇ϕ)

= −p0 + ρθ
[
c(ϕ)v(θ)+ b(ϕ)u(θ)+ G(ϕ)+

α

2
|∇ϕ|

2
]

where

v(θ) = ln(θ0/θ), u(θ) =
θ0 − θ

θ
.

The function

G(ϕ) =
β

4
(1 − ϕ2)2, β > 0,

has a double-well potential profile with two equal minima at
ϕ = −1 and ϕ = 1. The evolution equation then becomes

ϕ̇ = −
1
ν
[Fϕ/θ − ∇ · (F∇ϕ/θ)]

= −
1
ν
ρ[c′(ϕ)v(θ)+ b′(ϕ)u(θ)+ βϕ(ϕ2

− 1)− α1ϕ].

In spatially-homogeneous phase transitions, at θ = θ0, F is
given by

F(θ0, ϕ, 0) = −p0 + ρθ0G(ϕ).

As we show in a moment, the dependence on G(ϕ) implies that
both fluid and solid phases are stable, and hence observable, at
the transition temperature θ0.

Let S = ρη and E = ρe. As a consequence of the standard
restriction (2.7) for η we have

S = −Fθ .

Hence we obtain

η(θ, ϕ,∇ϕ) = −c(ϕ)v(θ)+ λ(ϕ)− G(ϕ)−
α

2
|∇ϕ|

2

where

λ(ϕ) = c(ϕ)+ b(ϕ).

Accordingly, the internal energy per unit volume E = F + θ S
is given by

E(θ, ϕ) = −p0 + ρc(ϕ)θ + ρb(ϕ)θ0.

Hence E is independent on ∇ϕ and

Eθ = ρc(ϕ)

is named specific heat function (per unit volume).
The jump of internal energy

L := h(θ0,−1)− h(θ0, 1)

is given by

L = θ0[λ(−1)− λ(1)]

and that is why λ(ϕ) is named the latent heat function (per unit
volume).

For the sake of simplicity, we now investigate the free energy
at uniform configurations and let the transition occur at constant
pressure. The free energy is given by

F(θ, ϕ) := F(θ, ϕ, 0)

= −p0 + ρθ [c(ϕ)v(θ)+ b(ϕ)u(θ)+ G(ϕ)]. (6.3)

As a consequence,

Fϕ(θ, ϕ) = ρθ [c′(ϕ)v(θ)+ b′(ϕ)u(θ)+ βϕ(ϕ2
− 1)].

The functions c(ϕ) and λ(ϕ) are specified by requiring that
F account for a first-order solid–fluid transition such that:

(1) The specific heat is strictly positive and, moreover, the
value in the solid (phase) is greater than that in the fluid,

c(ϕ) > 0, ϕ ∈ [−1, 1], c(−1) < c(1); (6.4)

(2) The total latent heat in the solid–fluid transition, L , is
positive whence

λ(−1) > λ(1); (6.5)

(3) The function F has relative minima at the pure phases
ϕ = −1, 1, at any temperature θ , and hence c′ and b′ vanish at
ϕ = −1, 1.

Owing to the occurrence of solid and fluid phases, we expect
that F assumes a strict minimum at ϕ = −1 when θ > θ0 and at
ϕ = 1 when θ < θ0. To this end we let b and c be fourth-degree
polynomials in ϕ such that

b′(ϕ) = b0(ϕ + 1)2(ϕ − 1), c′(ϕ) = c0(ϕ + 1)(ϕ − 1)2.

Hence the restriction (6.4) is satisfied by letting c0 < 0. Also
(6.5) holds provided

b0 − c0 > 0.

For formal convenience we let

c0 = γ b0, b0 > 0, 0 < γ < 1

and hence

c(1)− c(−1) =
4
3
γ b0, λ(−1)− λ(1) =

4
3
(1 − γ )b0. (6.6)

As a consequence, Fϕ can be written as

Fϕ = ρθ(ϕ2
− 1)[b0(ϕ+ 1)u(θ)+ γ b0(ϕ− 1)v(θ)+βϕ].

(6.7)

In addition we let b0 > β/2 and define

θ∗
=

2θ0

2 − β/b0
. (6.8)

It is apparent that

θ∗ > θ0.

We now show two remarkable properties of F .

Theorem 4. As θ ∈ (0, θ∗), the function F has two local
minima, at ϕ = −1 and ϕ = 1, such that

sgn [F(θ,−1)− F(θ, 1)] = sgn (θ0 − θ), (6.9)
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and a maximum at ϕ3 ∈ (−1, 1) such that

sgn ϕ3 = sgn (θ − θ0). (6.10)

Proof. Preliminarily we observe that the derivative Fϕ
vanishes at

ϕ = −1, 1, ϕ3,

where ϕ3 is a function of θ ,

ϕ3(θ) =
−u(θ)+ γ v(θ)

u(θ)+ γ v(θ)+ β/b0
.

Hence it follows that

ϕ3(θ
∗) = 1, ϕ3(θ0) = 0, lim

θ→0+

ϕ3(θ) = −1.

Differentiation of ϕ3 with respect to θ gives

ϕ′

3(θ)=
2γ [u(θ)v′(θ)− u′(θ)v(θ)] + (β/b0)[γ v

′(θ)− u′(θ)]

[u(θ)+ γ v(θ)+ β/b0]
2 ,

whence, upon substitution for u and v,

ϕ′

3(θ) =
2γ [θ − θ0 − θ0 ln(θ/θ0)] + (β/b0)[θ0 − γ θ ]

θ2[u(θ)+ γ v(θ)+ β/b0]
2 .

Now, θ − θ0 − θ0 ln(θ/θ0) has a minimum at θ = θ0 and hence
θ−θ0 −θ0 ln(θ/θ0) > 0 as θ 6= θ0. As a consequence, θ0 > γθ

is sufficient for ϕ′

3 > 0. Now, θ0 > γθ in (0, θ∗) if and only if
θ0 > γθ∗, which occurs if

γ < 1 −
β

2b0
. (6.11)

Hence we have

ϕ′

3 > 0, ϕ3(θ0) = 0

whence (6.10) holds in (0, θ∗).
To prove the assertion about the minima and the maximum

we evaluate Fϕϕ to obtain

Fϕϕ = ρθ [b0(3ϕ2
+ 2ϕ − 1)u

+ γ b0(3ϕ2
− 2ϕ − 1)v + β(3ϕ2

− 1)].

As a consequence,

Fϕϕ(θ, 1) = 2ρθ [2b0u(θ)+ β],

Fϕϕ(θ,−1) = 2ρθ [2γ b0v(θ)+ β].

Now,

2b0u(θ)+ β = 2b0
θ0

θ
− 2b0 + β > 2b0

θ0

θ
> 0

and hence

Fϕϕ(θ, 1) > 0 as θ ∈ (0, θ∗). (6.12)

Application of the inequality

ln(1 − x) >
−x

1 − x
, x > 0,

to x = (θ∗
− θ0)/θ

∗ and use of (6.8) and (6.11) yield

v(θ∗) > 1 −
θ∗

θ0
= −

β/b0

2(1 − β/2b0)
> −

β

2γ b0
.

Since v(θ) is strictly monotone decreasing then v(θ) > v(θ∗),
as θ ∈ (0, θ∗). Accordingly v(θ) > −β/2γ b0 and

Fϕϕ(θ,−1) > 0 as θ ∈ (0, θ∗). (6.13)

By (6.12) and (6.13) it follows that F has two minima at
ϕ = −1, 1. Moreover, by (6.3) and (6.6) we have

F(θ,−1)− F(θ, 1) =
4
3
ρb0θ [u(θ)− γ v(θ)].

To prove (6.9) consider the difference

DF (θ) = F(θ,−1)− F(θ, 1).

The vanishing of u(θ0), v(θ0) and the limits of u and v provide

DF (θ0) = 0, lim
θ→0+

DF (θ) = lim
θ→∞

DF (θ) = ∞.

The derivative

D′

F (θ) =
4
3
ρb0(γ − θ0/θ)

is negative as θ ∈ (0, θ0/γ ) and hence as θ ∈ (0, θ∗). Since
DF (θ) is continuous and strictly monotone decreasing and
vanishes at θ = θ0 then the property (6.9) follows. �

Remark. As a consequence of (6.9), if θ < θ0 then the
minimum at ϕ = 1 is lower and vice versa. This in turn
implies that, if θ < θ0 then ϕ = −1 is allowed, namely the
body can remain in the liquid phase (undercooling effect), but
a perturbation forces the body to attain the global minimum
at ϕ = 1, namely at the solid phase. The opposite occurs as
θ0 < θ < θ∗, which means the superheating effect.

6.1. A simpler model

The model simplifies significantly if the specific heat is
regarded as constant (independent of ϕ). In such a case, at
constant pressure, the free energy function (per unit volume)
F takes the form

F(θ, ϕ,∇ϕ)

= −p0 + ρθ

[
cv(θ)+ b(ϕ)u(θ)+ G(ϕ)+

1
2
α|∇ϕ|

2
]

;

(6.14)

as before, we let F(θ, ϕ) = F(θ, ϕ, 0). The boundary condition
(2.20) reads

∇ϕ · n |∂Ω = 0. (6.15)

Formally, the choice (6.14) amounts to letting γ = 0 in (6.7).
Partial differentiation of (6.14) gives

Fϕ = ρ(ϕ2
− 1)[b0(ϕ + 1)(θ0 − θ)+ βθϕ].

Accordingly, Fϕ vanishes at ϕ = −1, 1, ϕ̃3. The solution ϕ̃3
depends on the temperature and is given by

ϕ̃3(θ) =
θ − θ0

[(β/b0)− 1]θ + θ0
.

For definiteness we now let

β = 2b0

and establish the following properties.
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Proposition 1. For every temperature θ > 0, the function F
has two local minima at ϕ = −1, 1, a maximum at ϕ̃3 ∈ (−1, 1)
such that

sgn ϕ̃3 = sgn (θ − θ0), (6.16)

and satisfies

sgn [F(θ,−1)− F(θ, 1)] = sgn (θ0 − θ). (6.17)

Proof. Since β = 2b0, ϕ̃3 takes the form of a hyperbola

ϕ̃3(θ) =
θ − θ0

θ + θ0

which is increasing in (0,∞). Moreover,

lim
θ→0+

ϕ̃3(θ) = −1, ϕ̃3(θ0) = 0, lim
θ→∞

ϕ̃3(θ) = 1.

This proves (6.16).
Now,

Fϕϕ = b0ρθ [(3ϕ2
+ 2ϕ − 1)u + 2(3ϕ2

− 1)].

Hence we have

Fϕϕ(θ, 1) = 4b0ρθ0 > 0, ∀θ ≥ 0,

Fϕϕ(θ,−1) = 4b0ρθ > 0, ∀θ > 0,

and

Fϕϕ(θ, ϕ̃3) = −4b0ρθ0
θ

θ + θ0
< 0, ∀θ > 0.

Because b(−1) − b(1) = 4b0/3 and G(−1) = G(1) it follows
that

F(θ,−1)− F(θ, 1) =
4
3

b0ρ(θ0 − θ)

whence (6.17) is apparent. �

If the specific heat is constant, the evolution equation takes
the form

ϕ̇ =
α

ν
1ϕ +

b0

ν
(ϕ2

− 1)
[
(ϕ + 1)

θ0

θ
+ ϕ − 1

]
. (6.18)

The evolution equation (6.18) allow us to show that ϕ really
belongs to [−1, 1], which emphasizes the physical relevance of
the model.

Proposition 2. If the solution ϕ to (6.18), on Ω × R+, satisfies
the initial condition

ϕ2(x, 0) ≤ 1, ∀x ∈ Ω

and the boundary condition (6.15) then

ϕ2(x, t) ≤ 1, ∀x ∈ Ω , ∀t ∈ R+.

Proof. Let

(ϕ + 1)− = max{−(ϕ + 1), 0}.
Multiplication of (6.18) by (ϕ + 1)− gives

(ϕ + 1)−ϕ̇ =
α

ν
(ϕ + 1)−1ϕ −

b0

ν
(ϕ + 1)−(ϕ2

− 1)

×

[
(ϕ + 1)

θ0

θ
+ ϕ − 1

]
.

If ϕ + 1 ≥ 0 then (ϕ + 1)− = 0. If, instead, ϕ + 1 < 0 then
ϕ2

− 1 > 0 and ϕ − 1 < 0. Therefore, in both cases,

−
b0

ν
(ϕ + 1)−(ϕ2

− 1)
[
(ϕ + 1)

θ0

θ
+ ϕ − 1

]
≥ 0

and hence

(ϕ + 1)−ϕ̇ ≥
α

ν
(ϕ + 1)−1ϕ. (6.19)

Because

(ϕ + 1)−ϕ̇ = −
1
2

d
dt

[(ϕ + 1)−]
2,

(ϕ + 1)−1ϕ = ∇ · [(ϕ + 1)−∇ϕ] +
1
2
[∇(ϕ + 1)−]

2,

integration of (6.19) and account of the boundary condition
(6.15) provide

1
2

d
dt

∫
Ω

[(ϕ + 1)−]
2dv ≤ −

α

ν

∫
Ω

[∇(ϕ + 1)−]
2dv ≤ 0.

By the initial condition it follows that (ϕ + 1)− = 0 identically
and hence

ϕ(x, t) ≥ −1, ∀x ∈ Ω , ∀t ∈ R+.

Likewise, let

(ϕ − 1)+ = max{ϕ − 1, 0}

and multiply (6.18) to get

(ϕ − 1)+ϕ̇ =
α

ν
(ϕ − 1)+1ϕ −

b0

ν
(ϕ − 1)+ (ϕ2

− 1)

×

[
(ϕ + 1)

θ0

θ
+ ϕ − 1

]
.

Since

−
b0

ν
(ϕ − 1)+ (ϕ2

− 1)
[
(ϕ + 1)

θ0

θ
+ ϕ − 1

]
≤ 0

it follows that

(ϕ − 1)+ϕ̇ ≤
α

ν
(ϕ − 1)+1ϕ.

Hence we have

d
dt

1
2
[(ϕ − 1)+]

2
≤
α

ν
∇ · [(ϕ − 1)+∇ϕ] −

α

ν
[∇(ϕ − 1)+]

2.

Integration over Ω and account of the boundary condition
(6.15) and the initial condition we find that (ϕ − 1)+ = 0
identically and hence

ϕ(x, t) ≤ 1, ∀x ∈ Ω , ∀t ∈ R+.

In conclusion, ϕ2(x, t) ≤ 1, ∀x ∈ Ω , ∀t ∈ R+. �
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7. A model for phase transition in superconductivity

We now establish a model for phase transitions in
superconductivity. Though a complete scheme requires a
thermodynamic analysis for solids in magnetic fields, for the
sake of simplicity we restrict attention to superconductors in a
zero magnetic field and apply the thermodynamic restrictions of
Section 2. Accordingly we consider phase transitions induced
by temperature.

We look at the evolution equation in the form (2.5), let the
pressure be constant and hence take the free energy in the form

F = −p0 + ρψ̂(θ, ϕ)+ µ(θ, ϕ)|∇ϕ|
2.

For simplicity we choose

f̂ (Γ ) = 1, µ(θ, ϕ) =
1
2
αθ,

ψ̂(θ, ϕ) = θ [c(ϕ)v(θ)+ b(ϕ)u(θ)+ G(ϕ)]

where

α > 0, u(θ) =
θ0 − θ

θ
, v(θ) = ln

θ0

θ
.

According to Landau [2], the order parameter ϕ is complex
valued (see also [23]) and |ϕ|

2 is the relative density of the
superconducting electron pairs. Here, because of the vanishing
of the magnetic field, we can take ϕ ∈ [−1, 1] and characterize
by |ϕ|

2
= 0 and |ϕ|

2
= 1 the normal and the pure

superconducting states [19]. At the transition temperature, θ0,
the only stable state is the normal one (|ϕ|

2
= 0) and then we

take G in the form

G(ϕ) =
1
4

a|ϕ|
4.

Moreover we let

c = c0 > 0, b(ϕ) =
1
2

a|ϕ|
2
(

1
2
|ϕ|

2
− |ϕ0|

2
)
.

Hence we take ψ̂ , the free energy per unit mass in uniform
regions and free from the pressure term, as

ψ̂ = θ

[
c0 ln

θ0

θ
+

1
4

a|ϕ|
2(|ϕ|

2
− 2|ϕ0|

2)
θ0 − θ

θ
+

1
4

a|ϕ|
4
]
.

It follows that

ψ̂(θ0, ϕ) = θ0G(ϕ) =
1
4

aθ0|ϕ|
4

and

lim
θ→0+

ψ̂(θ, ϕ) = θ0b(ϕ) =
1
2

aθ0|ϕ|
2
(

1
2
|ϕ|

2
− |ϕ0|

2
)
.

Accordingly, at the transition temperature θ0, the free energy
has a unique minimum at |ϕ| = 0 (normal state). As θ → 0+, ψ̂
has a minimum at |ϕ| = |ϕ0|. The requirement that, as θ → 0+,
the material is in the superconducting phase suggests that we set
| ϕ0 |= 1 whence
ρψ = −p0 + ρθ

[
c0 ln

θ0

θ
+

1
4

a|ϕ|
2(|ϕ|

2
− 2)

θ0 − θ

θ

+
1
4

a|ϕ|
4
]

+
1
2
αθ |∇ϕ|

2. (7.20)

We now determine the corresponding evolution equation.
Since

ρψϕ/θ = ρ[b′(ϕ)u(θ)+ G′(ϕ)], ∇ · (ρψ∇ϕ/θ) = α1ϕ,

the evolution equation (3.1) yields

ϕ̇ − α1ϕ = −
γ

θ0

[
1
ϑ
(|ϕ|

2
− 1)ϕ + ϕ

]
(7.21)

where

γ = aρθ0, ϑ =
θ

θ0
.

The internal energy e = ψ − θψθ is given by

e = −
p0

ρ
+ θ0[c0ϑ + b(ϕ)].

For the sake of comparison we let the mass density ρ be
constant, as usual in rigid conductors, in which case we have

e = e0 + c0θ + a0

(
1
2
|ϕ|

4
− |ϕ|

2
)
.

The corresponding energy equation ė = −∇ · q + r and the
Fourier law for q provide

c0θ̇ + 2a0(|ϕ|
2
− 1)ϕϕ̇ = κ1θ + r. (7.22)

It is worth contrasting our results with the model applied
in [23] and derived through the approach of [8,9] via the
rescaled free energy functional. Now, our scheme applies when
no magnetic field occurs. It is then satisfactory that Eqs. (7.21)
and (7.22) coincide with (1.1) and (1.3) of [23], in the special
case A = 0 i.e. zero magnetic field.

8. Conclusions

This paper provides a description of non-isothermal phase
transitions through a phase-field model. The approach is based
on a general evolution equation (2.5) for the order parameter ϕ
which is viewed as an internal variable. Owing to the intrinsic
nonlocality of the phase-field model, the constitutive equations
involve, among others, a dependence on the gradient ∇ϕ and on
the Laplacian1ϕ. Accordingly, the thermodynamic framework
consists of the standard balance law of continuum physics (no
internal structure) but the second law is taken in the form of
the Clausius–Duhem inequality where an extra flux of entropy
k occurs. Compatibility with thermodynamics is meant as the
identical validity of the second law.

In simple models the entropy extra flux k vanishes. Here,
instead, we find that k is nonzero and that its occurrence is
related to the dependence of the free energy on ∇ϕ. This in
turn is consistent with the feature that nonlocal theories result
in k 6= 0. Eq. (2.17) for k is also consistent with the observation,
in other approaches, that the fluxes are linear in f .
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The whole scheme is found to be compatible with
thermodynamics, subject to appropriate restrictions on the
constitutive relations and on the evolution equation. The natural
condition (2.17) makes the Clausius–Duhem inequality to hold
and shows that the evolution is driven by the quantity (2.18). In
addition, the right-hand side of (2.18) makes it apparent why the
approach through the rescaled functional provides the correct
equations in non-isothermal conditions.

The scheme is quite general and applications are given to the
description of the solid–fluid transition in water and thermally-
induced transition in superconductors. The detailed form of
the free energy and of the evolution equation are given for
transitions at constant pressure thus allowing for a variable
mass density.

The main novelty of this approach is that the order
parameter is regarded as an internal variable and that the
corresponding evolution equation, governed by f , is required
by thermodynamics to satisfy the inequality (2.19). For
definiteness, heat conduction and the evolution are taken to be
separately compatible with the thermodynamic inequality and
hence the specific models of phase transitions are developed on
the basis of the inequality

f ξ = f [ρψϕ/θ − ∇ · (ρψ∇ϕ)] ≤ 0.
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