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1. INTRODUCTION

We consider the following semilinear hyperbolic equation with linear
memory in a bounded domain � � �3, arising in the theory of isothermal

Ž � �.viscoelasticity cf. 4, 25 ,

�
�u � k 0 �u � k� s �u t � s ds � g u � f in � � �Ž . Ž . Ž . Ž .Ht t

0u x , t � 0, x 	 � � , t 	 � 1.1Ž . Ž .
u x , t � u x , t , x 	 � , t 
 0Ž . Ž .0

Ž . Ž . Ž . �with k 0 , k � � 0, and k� s 
 0 for every s 	 � .
Ž � �.As is well known see 9 , this equation describes a homogeneous and

isotropic viscoelastic solid. If the solid is not homogeneous and isotropic,
the function k has to be replaced by a fourth order tensor depending on

Ž � �.x 	 �, satisfying certain additional hypothesis see, e.g., 8, p. 140 , and
Ž .the above Eq. 1.1 has to be written in divergence form. However, all the

arguments presented here can be easily generalized to the non-homoge-
neous non-isotropic case.

Ž . Ž .Notice that if k� � 0, 1.1 reduces to the semilinear wave equation,
where g represents some displacement-dependent body force density.
Thus, neglecting the contributions of the nonlinearity, that is, taking
g � 0, all the dissipation is contained in the convolution integral. In
particular, the existence of a genuine memory induces a damping mecha-

Ž � �.nism, and asymptotic stability is to be expected see 5, 8, 17 .
Ž . � �A problem similar to 1.1 has been studied in 23 . In that paper,

however, the situation was in some sense more favorable, because of the
presence of an instantaneous damping term. Clearly, the trade off in
considering a weaker dissipation is a much stronger requirement on the

� �structure of the nonlinearity. Here, as in 23 , we introduce the new
Ž � �.variable see 5

� t x , s � u x , t � u x , t � s . 1.2Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž .We set for simplicity � s � �k� s and k � � 1. In view of 1.2 , adding
Ž .and subtracting the term �u, Eq. 1.1 transforms into the system

��
u � �u � � s �� s ds � g u � fŽ . Ž . Ž .Ht t� 1.3Ž .0
� � �� � u ,t s t

Ž .where the second equation is obtained differentiating 1.2 . Initial-boundary
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conditions are then given by

�u x , t � 0, x 	 � � , t � 0Ž .
t �� x , s � 0, x , s 	 � � � � , t � 0Ž . Ž .

�u x , 0 � u x , x 	 �Ž . Ž . 1.4Ž .0

u x , 0 � � x , x 	 �Ž . Ž .t 0

0 �
� x , s � � x , s , x , s 	 � � �Ž . Ž . Ž .0

having set

�u x � u x , 0Ž . Ž .0 0�� x � � u x , tŽ . Ž . �t�00 t 0
� x , s � u x , 0 � u x , �s .Ž . Ž . Ž .0 0 0

The memory kernel � is required to satisfy the following hypotheses:

Ž . 1Ž �. 1Ž �. �h1 � 	 C � � L � 	s 	 � ;
Ž . Ž . Ž . �h2 � s � 0 and �� s 
 0 	s 	 � ;
Ž . � Ž .h3 H � s ds � k � 0;0 0

Ž . Ž . Ž . �h4 �� s � 
� s 
 0 	s 	 � and some 
 � 0;
Ž . 2ŽŽ .. Ž .h5 There exists s � 0 such that �� 	 L 0, s and �� s �0 0
Ž .M� s � 0 	s � s and some M � 0.0

Ž .We can clearly weaken h5 asking that �� is square summable in a
Ž .neighborhood of zero. This automatically implies, thanks to h1 , that

2ŽŽ .. Ž . Ž .�� 	 L 0, s , for every s � 0. Conditions h4 � h5 , which are not0 0
needed in the existence and uniqueness result, imply the exponential decay

Ž . Ž .of � s . In particular, notice that � 0 has to be finite. For instance, sums
Ž . Ž .of exponentials fulfill h1 � h5 . This rather strong decay rate of the kernel

seems to be unavoidable in order to have the exponential decay of the
Ž � �.associated linear problem see, e.g., 5, 8, 12, 17 . On the other hand, since

all the dissipation of the system is contained only in the memory term, we
Ž .also have to require that � � 0, and this explains h3 .

Concerning the nonlinear term, we assume that g is differentiable with
bounded derivative. Clearly, this is a rather strong condition. Indeed, if we
restrict our analysis to existence and uniqueness results, we may ask much

� � Ž � �.weaker condition on g such as those in 23 see also 10 . Nonetheless,
this condition is the best one to obtain, for instance, the absorbing set. We
point out that in this work we are able to obtain the exponential decay of
the associated linear homogeneous system via energy estimates. The

� �reader should compare this result with the analogous ones of 8, 17 , where
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the exponential decay is obtained employing semigroup techniques. Our
approach allows us to improve the asymptotic analysis to the nonlinear
case. However, due to the extremely weak dissipation of the linear semi-
group, we cannot arrive at further Lipschitz nonlinearities.

Let us mention some others papers related to the problem we address.
� �For the nonlinear one-dimensional equation, Dafermos 6 , exploring the

dissipative properties of the equation, showed that the system is well posed
provided the initial data are small enough, whereas for the n-dimensional
linear system the author proved the asymptotic stability of the solutions,

Ž � �.but without providing an explicit rate of decay see 5 . For 3-dimensional
� �isotropic and homogeneous materials, Dassios and Zafiropoulus 7 , using

an asymptotic analysis, proved that the solution of the viscoelastic system
of memory type has a uniform decay to zero provided that the relaxation
kernel is the exponential function. This result was improved for more

� �general relaxations functions in the articles 16, 18, 19, 21 . On the other
hand, when the relaxation has a polynomial decay, it was proved that the
solution of the corresponding model has a polynomial decay either, with

Ž � �.the same rate of decay as the relaxation see 20 . Finally, for boundary
� �stabilization of viscoelastic plates see 15 . Unfortunately, the methods

used to achieve uniform rate of decay in those works are based on second
order estimates, which are time dependent in our problem. Thus these
techniques fail in the case of semilinear problems, and a new asymptotic
analysis has to be devised.

The main result of this paper is to show the existence of a global
Ž .attractor for the solution of Eq. 1.1 . The method we use introduces a new

multiplier and applies the concept of strongly continuous semigroup of
� �operators, and the techniques developed in 23 .

The plan of the paper is as follows. In Section 2 we introduce the
notation. In Section 3 we give the definition of weak solution, along with
existence and uniqueness results. Section 4 is devoted to uniform energy
estimates and to the existence of absorbing sets for the solutions. Finally,
in Section 5, we prove that the semigroup associated to our problem
admits a global attractor in the phase-space.

2. NOTATION

Let � � �3 be a bounded domain with smooth boundary. With usual
notation, we introduce the spaces H�1, L2, and H 1 acting on �. The0

² : �1symbol � , � will be used to denote the duality map between H and
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H 1. Exploiting the Poincare inequality´0

� � 2 � � 2 1� � dx 
 
� dx , 	� 	 H , 2.1Ž .H H0 0
� �

for some � � 0, the norm in H 1 is given by0 0

� � 2
1 � � 2� � 
� dx .H H0

�

Ž . 2 Ž � 1. 1In view of h1 , let L � , H be the Hilbert space of H -valued� 0 0
functions on ��, endowed with the inner product

�
2 � 1² :� , � � � s 
� s 
� s ds dx .Ž . Ž . Ž .L Ž� , H . H H� 0 ž /

� 0

Finally we introduce the Hilbert space

HH � H 1 � L2 � L2 ��, H 1 .Ž .0 � 0

To describe the asymptotic behavior of the solutions of our system we
need also to introduce the space TT of L1 -translation bounded L2-valuedloc
functions on ��, namely

1�2
��1 21 � 2 � � � �TT � f 	 L � , L : f � sup f t dx dy � � .Ž . Ž .TT H Hloc ž /½ 5

� ���0

3. EXISTENCE AND UNIQUENESS

We first formulate precisely the conditions on the nonlinearity. Let
1Ž .g 	 C � and denote

s
G s � g y dyŽ . Ž .H

0

and

GG u � G u x dx , for u 	 H 1.Ž . Ž .Ž .H 0
�
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The assumptions are as follows: there exist C � 0 and � � 0 such that0

G yŽ .
g1 lim inf � 0;Ž . 2y� �y ��

yg y � C G yŽ . Ž .0
g2 lim inf � 0;Ž . 2y� �y ��

� �g3 g � y 
 �.Ž . Ž .

Ž . Ž . Ž � �.The following inequalities are direct consequences of g1 � g2 cf. 10 ,

1 2 1� �GG u � 
u dx � �C , 	u 	 H , 3.1Ž . Ž .H 1 04 �

1 2 1� �ug u dx � C GG u � 
u dx � �C , 	u 	 H , 3.2Ž . Ž . Ž .H H0 2 02� �

for some C , C � 0.1 2
Ž . Ž .The solution to the initial-boundary value problem 1.3 � 1.4 is defined

in the following manner.

� � 1Ž 2 .DEFINITION 3.1. Set I � 0, T , for T � 0, and let f 	 L I, L . We
Ž . Ž . Ž . Ž .say a function z � u, u , � 	 C I, HH is a solution to problem 1.3 � 1.4t

Ž . Ž .in the time interval I, with initial data z 0 � z � u , � , � 	 HH, pro-0 0 0 0
vided

�
² :u , � � � 
u
� dx � � s 
� s ds 
� dxŽ . Ž .˜ ˜ ˜H H Ht t ž /

� � 0

� g u � dx � f� dxŽ .˜ ˜H H
� �

� �

� s � s � � s �� s ds dx � u � s �� s ds dxŽ . Ž . Ž . Ž . Ž . Ž .Ž . ˜ ˜H H H Ht s tž / ž /
� 0 � 0

1 2 Ž � 2 1.for all � 	 H and � 	 L � , H � H , and a.e. t 	 I.˜ ˜0 � 0

The proof of the next two theorems is omitted, since existence and
� �uniqueness are proved exactly like the analogous results of 23 , where the

only difference is the presence of a damping term, which however plays a
significant role only in time-independent estimates.

Ž . Ž . Ž . Ž . Ž .THEOREM 3.2 Existence . Let h1 � h2 and g1 � g3 hold. Then,
Ž . Ž .gi�en any T � 0, problem 1.3 � 1.4 has a solution z in the time inter�al

� �I � 0, T , with initial data z .0
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Ž . Ž . Ž . Ž . Ž .THEOREM 3.3 Continuous Dependence . Let h1 � h2 and g1 � g3

 4 Ž 1Ž 2 ..hold. For i � 1, 2, let z , f z 	 HH and f 	 L I, L be two sets of0 i i 0 i i

Ž . Ž .data, and denote by z two corresponding solutions to problem 1.3 � 1.4 ini
� � � � � � 1 2the time inter�al I � 0, T . Assume also that z � R and f � R,HH L Ž I, L .0 i i

for some R � 0. Then the following estimate holds,

� � 2 � � 2 � � 2
1 2z � z 
 C T z � z � f � f 3.3Ž . Ž .Ž .HH HH L Ž I , L .1 2 R 01 02 1 2

Ž . Ž . Ž .for some constant C T � 0. In particular, problem 1.3 � 1.4 has aR
unique solution.

4. UNIFORM ENERGY ESTIMATES

Ž .In the sequel of the paper, we agree to denote the solution z t of
Ž . Ž . Ž .1.3 � 1.4 with initial data z by S t z . When the system is autonomous,0 0

Ž .namely, when f is independent of time, S t is a strongly continuous
Ž . Ž � �semigroup of continuous nonlinear operators on HH see 24 for a

.detailed presentation of the theory . This follows directly from Theorem
Ž .3.2 and estimate 3.3 of Theorem 3.3.

Ž .The energy associated to 1.3 at time t is given by

1 2 2� � � �EE t � 
u t dx � u t dxŽ . Ž . Ž .H H tž2 � �

�
2t� �� � s 
� s ds dx . 4.1Ž . Ž . Ž .H Hž / /

� 0

The main result of the section is

Ž . Ž . Ž . Ž .THEOREM 4.1. Assume h1 � h5 and g1 � g3 , and let F � TT be a
Ž .bounded set. Then there exists positi�e constants C, �, � depending on F

such that the relation

EE t 
 Ce�� t EE 0 � � 4.2Ž . Ž . Ž .

holds for e�ery t � 0 and e�ery f 	 F. In particular, if g � 0 and F reduces to
Ž .the null function that is, the linear homogeneous case , then � � 0.

Proof. Set

� �� � sup h .TT

h	F
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Let f 	 F and denote

1�2
2� �m t � f t dx .Ž . Ž .Hf ž /

�

Clearly,

��1
sup m � d� 
 � . 4.3Ž . Ž .H f

���0

Ž .Taking the derivative with respect to t of 4.1 we have

d
EE t � 
u t 
u t dx � u t u t dxŽ . Ž . Ž . Ž . Ž .H Ht t t tdt � �

�
t t� � s 
� s 
� s ds dx .Ž . Ž . Ž .H H tž /

� 0

Ž .Substituting 1.3 in the above inequality, we obtain

�d 1 d 2t� �EE t � � � s 
� s ds dxŽ . Ž . Ž .H Hž /dt 2 ds� 0

d
� GG u t � f t u t dx . 4.4Ž . Ž . Ž . Ž .Ž . H tdt �

Ž . Ž � � .Integration by parts in s and h4 yield cf. 11 for the details

� �1 d 
2 2t t� � � �� � s 
� s ds dx 
 � � s 
� s ds dx ,Ž . Ž . Ž . Ž .H H H Hž /ž /2 ds 2� 0 � 0

whereas the Holder inequality gives¨
1�2

2� �f t u t dx 
 m t u t dx .Ž . Ž . Ž . Ž .H Ht f tž /
� �

Ž .Hence from 4.4 we get the estimate

d
EE t � GG u tŽ . Ž .Ž .Ž .

dt
1�2

�
 2 2t� � � �
 � � s 
� s ds dx � m t u t dxŽ . Ž . Ž . Ž .H H Hf tž /ž /2 � 0 �

�
 2t 1�2� �
 � � s 
� s ds dx � m t EE t . 4.5Ž . Ž . Ž . Ž . Ž .H H fž /2 � 0
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Introduce now the functional

�
tFF t � � u t � s � s ds dx . 4.6Ž . Ž . Ž . Ž . Ž .H Ht ž /

� 0

Throughout the proof, we will make extensive use of the Holder and¨
Ž . Ž .Young inequalities, h3 , and 2.1 .

Ž .The derivative with respect to t of FF t entails

�d
tFF t � � u t � s � s ds dxŽ . Ž . Ž . Ž .H Ht t ž /dt � 0

�
t� u t � s � s ds dx . 4.7Ž . Ž . Ž . Ž .H Ht tž /

� 0

Ž . Ž .Exploiting h5 , and recalling h2 , we have

�
t� u t � s � s ds dxŽ . Ž . Ž .H Ht tž /

� 0

�
t� � u t � s u t � � s ds dxŽ . Ž . Ž . Ž .Ž .H Ht t sž /

� 0

�
2 t� �� �k u t dx � u t �� s � s ds dxŽ . Ž . Ž . Ž .H H H0 t t ž /

� � 0

� �s �� sŽ .02 1�2 t� � � � � �
 �k u t dx � u t � s � s dsŽ . Ž . Ž . Ž .H H H0 t t 1�2ž � sŽ .� � 0 0

�
t� ��M � s � s ds dxŽ . Ž .H /s0

� � 2
 �k u t dxŽ .H0 t
�

1�2' s2 1 0 2 1�2� �� max �� s ds , MkŽ .H 01�2 ž /½ 5� � sŽ . 00 0

1�2
�

2t� � � �� u t � s 
� s ds dxŽ . Ž . Ž .H Ht ž /
� 0

�k0 2 2t� � � �
 � u t dx � C � s 
� s ds dx , 4.8Ž . Ž . Ž . Ž .H H Ht 3 ž /2 � � 0
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Ž Ž . . Ž .where C � C � , k , � s , M ; whereas, due to 1.33 3 0 0 0

�
t� u t � s � s ds dxŽ . Ž . Ž .H Ht t ž /

� 0

2
� �

t t� 
u t � s 
� s ds dx � � s 
� s ds dxŽ . Ž . Ž . Ž . Ž .H H H Hž / ž /
� 0 � 0

� �
t t� g u t � s � s ds dx � f t � s � s ds dx .Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H H Hž / ž /

� 0 � 0

4.9Ž .

Let us examine in detail the four terms appearing in the right-hand side of
Ž .4.9 . Concerning the first two, choosing � � 0 to be specified later, we get

2
� �

t t
u t � s 
� s ds dx � � s 
� s ds dxŽ . Ž . Ž . Ž . Ž .H H H Hž / ž /
� 0 � 0

� � �� �2 2t� � � �
 
u t dx � k 1 � � s 
� s ds dx .Ž . Ž . Ž .H H H0 ž /ž /2 2�� � 0

4.10Ž .

Ž .By force of g3 ,

�
tg u t � s � s ds dxŽ . Ž . Ž .Ž .H Hž /

� 0

1�2
�

21�2 t� � � � � �
 k � u t � g 0 � s � s ds dxŽ . Ž . Ž . Ž .Ž .H H0 ž /
� 0

1�2 2 1�2
�� k � k0 02 2t� � � �
 
u dx � 1 � � s 
� s ds dxŽ . Ž .H H Hž /ž /2 2� ��� � 00 0

� � 2 � � 1�2g 0 � kŽ . 0� . 4.11Ž .
2

Ž .The last term of 4.9 is controlled as

�
t� f t � s � s ds dxŽ . Ž . Ž .H Hž /

� 0

1�21�2
�k0 2t� �
 m t � s 
� s ds dx . 4.12Ž . Ž . Ž . Ž .H Hf1�2 ž /ž /� � 00
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Ž . Ž . Ž .Collecting 4.8 � 4.12 , we obtain from 4.7 the estimate

d k0 2 2� � � �FF t 
 � u t dx � � 
u t dxŽ . Ž . Ž .H Htdt 2 � �

�
2t 1�2� �� C � s 
� s ds dx � C m t EE t � CŽ . Ž . Ž . Ž .H H4 5 f 6ž /

� 0

4.13Ž .

Ž .for some positive constants C � C � , C , C . Notice that if g � 0, then4 4 5 6
C � 0.6

Finally we consider the equality

d 2� �u t u t dx � u t dx � u t u t dx .Ž . Ž . Ž . Ž . Ž .H H Ht t t tdt � � �

Ž . Ž .Thus, exploiting again 1.3 , and appealing to 3.2 , we have

d
u t u t dxŽ . Ž .H tdt �

� � 2 � � 2� u t dx � 
u t dxŽ . Ž .H Ht
� �

�
t� 
u t � s 
� s ds dxŽ . Ž . Ž .H Hž /

� 0

� u t g t dx � u t f t dx .Ž . Ž . Ž . Ž .H H
� �

12 2� � � �
 u t dx � 
u t dx � C GG u t � CŽ . Ž . Ž .Ž .H Ht 0 24� �

�
2t 1�2� �� k � s 
� s ds dx � m t EE t . 4.14Ž . Ž . Ž . Ž . Ž .H H0 fž /

� 0

To conclude the proof, for N � 0 and � � 0, introduce the functional

LL t � N EE t � NGG u t � NC � FF t � � u t u t dx .Ž . Ž . Ž . Ž . Ž . Ž .Ž . H1 t
�

Ž .Recalling 3.1 , it is easy to check that, provided N is big enough and �
small enough, there exists two constants C � 1 and C � 0 depending on7 8

Ž .N and � with C � 0 when g � 0 such that8

1
EE t 
 LL t 
 C EE t � C . 4.15Ž . Ž . Ž . Ž .7 8C7
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Ž . Ž . Ž .Collecting 4.5 , 4.13 , and 4.14 , we end up with

d � 2� �LL t � � � 
u t dxŽ . Ž .Hž /dt 4 �

k � �0 2� �� � � u t dx � GG u t � FF tŽ . Ž . Ž .Ž .H tž /2 8 8 N�

�N
 2t� �� � C � � k � s 
� s ds dxŽ . Ž .H H4 0 ž /ž /2 � 0

� 2

� u t u t dxŽ . Ž .H t8 N �

� � � 2


 � � C GG u t � FF t � u t u t dxŽ . Ž . Ž . Ž .Ž . H0 tž /8 8 N 8 N �

� N � C � � m t EE 1�2 t � � C � C . 4.16Ž . Ž . Ž . Ž . Ž .5 f 2 6

Ž . Ž .At this point, it is easy to see that, due to 2.1 and 3.3 , and assuming
without loss of generality N � 1 and � � 1.

� � � 2

� � C GG u t � FF t � u t u t dxŽ . Ž . Ž . Ž .Ž . H0 tž /8 8 N 8 N �

� 2 2� � � �
 
u t dx � � C u t dxŽ . Ž .H H9 t16 � �

�
2t� �� � C � s 
� s ds dx � C , 4.17Ž . Ž . Ž .H H9 10ž /

� 0

for some C , C � 0. Again, C � 0 when g � 0. Choose now � small9 10 10
enough such that

k �0 � � � C � � ,92 8

Ž .set � � ��16 which automatically fixes the value of C , and choose N4
big enough such that

N
 �
� C � � k � � C � .4 0 92 8

Then let � � ��8 N. Denoting

C � C1�2 N � C � �Ž .11 7 5

and
C � �� NC � C � C � C12 1 2 6 10
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Ž . Ž . Ž .notice that C � 0 when g � 0 , from 4.15 � 4.17 we get the differen-12
tial inequality

d
1�2LL t � � LL t 
 C m t LL t � C .Ž . Ž . Ž . Ž .11 f 12dt

Ž � �.By virtue of a generalization of the Gronwall Lemma see, e.g., 22, 23 ,
Ž .keeping in mind 4.3 , we obtain

2C e�
12�� t 2LL t 
 2 LL 0 e � � � .Ž . Ž . �� �2� 1 � eŽ .

Ž .The proof is carried out applying once more 4.15 . The constants C and �
of the statement turn out to be

2C C C e�
7 12 72 2C � 2C and � � 2C C � � � .7 7 8 �� �2� 1 � eŽ .

Ž 
 4.Notice that when � � 0 that is, F � 0 and g � 0, then � � 0.

Ž .Remark 4.2. The uniform energy estimate 4.2 implies the existence of
Ž .a bounded absorbing set BB* � HH for S t , which is uniform as f is allowed

to run in a bounded set F � TT. Indeed, if BB* is any ball of HH of radius
'less than 2� , for any bounded set BB � HH it is immediate to see that

Ž .there exists t BB � 0 such that

S t BB � BB*Ž .

Ž .for every t � t BB and every f 	 F.

Moreover, if we define

BB � S t BB*Ž .�0
t�0

it is clear that BB is still a bounded absorbing set which is also invariant0
Ž . Ž .for S t , that is, S t BB � BB for every t � 0. In particular, if F is0 0

connected, then BB is connected as well.0

5. EXISTENCE OF A GLOBAL ATTRACTOR

In this section we assume

f 	 H constant in time.
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Ž .In this case, as mentioned before, S t is a strongly continuous semigroup
Ž .on HH. Our aim is to show S t admits a global attractor. Recall that the

Ž . Ž .unique global attractor of S t acting on HH is the compact set AA � HH

enjoying the following properties:

Ž . Ž . Ž .1 AA is fully invariant for S t , that is, S t AA � A for every t � 0;
Ž .2 AA is an attracting set, namely, for any bounded set BB � HH,

lim 
 S t BB, AA � 0,Ž .Ž .HH
t��

where 
 denotes the semidistance on HH.HH

�More details on the subject can be found in the classical books 1, 13,
�26 .
Actually, we could extend with minor modifications our analysis to some

particular nonautonomous situations, introducing the notion of strongly
Ž � �.continuous process of operators see 14 , and prove the existence of an

attractor which is uniform as f belongs to the hull of a translation-com-
Ž � �.pact function in a suitable space see, e.g., 2, 3 .

In the sequel, denote A � ��, the Laplacian with Dirichlet boundary
conditions. It is well known that A is a positive operator on L2 with

Ž . 2 1 sdomain DD A � H � H . Moreover, one can define the powers A of A0
Ž s.for s 	 �. The space V � DD A turns out to be a Hilbert space with the2 s

inner product

² : ² s s :u , � � A u , A � .V2 s

In particular, V � H�1, V � L2, V � H 1. The injection V � V is�1 0 1 0 s s1 2

compact whenever s � s . For further convenience, for s 	 �, introduce1 2
the Hilbert space

HH � V � V � L2 ��, V .Ž .s 1�s s � 1�s

Clearly, HH � HH.0
Ž .Let now z � u , � , � 	 BB , where BB is the invariant, connected,0 0 0 0 0 0

Ž .bounded absorbing set of S t given by Remark 4.2.
Ž � �.Following a standard procedure cf. 23 we write the solution z �

Ž . Ž . Ž . Ž .u, � , � to 1.3 � 1.4 as z � z � z , with z � u , � , � and z �L N L L L L N
Ž . Žu , � , � , where z and z are the solutions in the sense of Defini-N N N L N

.tion 3.1 to the problems

�

� u � �u � � s �� s ds � g u � fŽ . Ž . Ž .Ht t L L L
0

� � � �� � � � ut L s L t L

z 0 � zŽ .L 0
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and

�

� u � �u � � s �� s dsŽ . Ž .Ht t N N N
0

� � � �� � � � ut N s N t N

z 0 � 0.Ž .N

In the remaining of the section, let K denote a generic constant, which is
independent of z 	 BB .0 0

Ž .It is apparent from Theorem 4.1 that z fulfills estimate 4.2 withL
� � 0; therefore

� � �� t �z t 
 Ke 	 t 	 � . 5.1Ž . Ž .HHL

Ž . ŽConcerning z , for every t � 0 there exists K t � 0 independent ofN
.z 	 BB , such that0 0

� � �z t 
 K t 	 t 	 � . 5.2Ž . Ž . Ž .HHN 1�2

Ž . � �Proof of 5.2 is obtained repeating the argument of Lemma 5.4 in 23 .
The only difference is that here we get a time-dependent estimate,

� � Žwhereas in 23 due to the presence of a weak damping in the equation for
.u the estimate is uniform as t � 0.N

Ž � �.Finally see Lemma 5.5 in 23 , we have the compact embedding

CC t � � t � L2 ��, H 1 . 5.3Ž . Ž .Ž .� N � 0
z 	B0 0

2 � 1Ž .Denote the closure of CC in L � , H by CC. With reference to� 0
Ž . Ž . Ž . Ž .5.2 � 5.3 , for t � 0 let RR t be the ball of V � V of radius K t3�2 1�2
centered at zero and introduce the set

KK t � RR t � CC � HH .Ž . Ž .
1 2 Ž . Ž .From the compact embedding V � V � H � L and 5.3 , KK t is3�2 1�2 0

Ž . Ž .compact in HH. By construction, z t 	 KK t for every t � 0.N
Ž .Due to the compactness of KK t , for every fixed t � 0 and every

�� t Ž .d � Ke , there exist finitely many balls of HH of radius d such that z t
belongs to the union of such balls, for every z 	 BB . This implies that0 0

� S t BB 
 Ke�� t , 	 t � 0, 5.4Ž . Ž .Ž .HH 0

Žwhere � is the Kuratowski measure of noncompactness, defined by cf.HH
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� �.13


� BB � inf d : BB has a finite cover of ballsŽ .HH

4of HH of diameter less that d .

Ž .Since the invariant, connected, bounded absorbing set BB fulfills 5.4 ,0
Žexploiting a classical result of the theory of attractors of semigroups see

� �.13 , we conclude that the �-limit set of BB , that is,0

HH
� BB � S s BB ,Ž . Ž .� �0 0

t�0 s�t

Ž .is the connected and compact global attractor of S t .
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