ICGST- ARAS Journal, Volume (05), Issue (II), June, 2006

www.icgst.com

1CG8T

ARCSUS
Advanced Robotic Control System Using SVG

F. Tampalini, R. Cassinis
University of Brescia, DEA,
Brescia, Via Branze 38, Italy,
[fabio.tampalini, riccardo.cassinis|@ing.unibs.it,
http://bsing.ing.unibs.it/~cassinis/ARL/

Abstract e— -
AMIRoLoS

We present the study and realization of a control S

system created for distributed systems. We propose J

to use a browser to control robotics system with XML T

and SVG formatted files; so the system exploits the
web server power and allows different control opera-
tions through any OS and any browser equipped with
the SVG plug-in. We created ARCSUS (Advanced
Robot Control System Using SVG) to monitor and
control different devices linked.

e i)
=9
&))

Keywords: Autonomous robot, Distributed sys- : ARCSUS
tem, SVG, XML. oF

1 Introduction Figure 1: SAURON (Surveillance AUtonomous Robot
Over Network): video-surveillance system composed
In this article we present the study and realization by cooperative distributed agents.
of a control system created for distributed systems.
We planned ARCSUS (Advanced Robot Control Sys-
tem Using SVG) to monitor and control a great num-
ber of different devices linked by Internet. Nowadays,
we are surrounded by a lot of cooperative agents, for
example PDAs link to remote computers or satellite
systems to get data about their position at any time.
In the last years, UMTS technology has allowed the
production of mobile phones that are able to send real-

e MORGUL (Mobile Observation Robot for
Guarding the University Laboratories): this
robot carries a laptop containing its hybrid con-
trol system, which allows it to stay connected
to Internet. When the robot has flat batteries it
moves autonomously to its docking station [5];
MORGUL is composed by:

time shots or make video calling. At the same time — Communication Agent, composed by hard-
we have an increasing presence of low-cost webcams ware and software that allow robot to stay
in working and domestic environments. Many fac- linked to Access Points;

tories producing these device agents are pointing at
an easy integration to simplify and empower any of
them. The idea of distributed systems is the same
one we have carried out in our research. It let us cre-
ate a system of distributed agents, which was used for — Marker Agent, composed by a set of LEDs
video-surveillance in our University Faculty of Engi- and software that control the marker itself.
neering, called SAURON (Surveillance AUtonomous e AMIRoLoS (Active Marker Internet-based

Robot Over Network)(in Fig. 1). We have created a Robot Localization System): composed by a

t d by:
System composed by system of low-cost webcams, which is controlled

— Robot Agent, the hardware robot and lap-
top with OS and programs that permit
robot to perform its tasks;

19

)

'www.lcgst.com

ICGST- ARAS Journal, Volume (05), Issue (II), June, 2006

by a server determinating the robot pose [6];
AMIRoLoS is composed by:

— Marker Agent;

— Camera Agent, a commercial off-the-shelf
webcam connected via a USB link to a PC;

Marker Detection Agent, the heart of
AMIRoLoS. Its purpose is to examine the
streams of images from the camera and to
find blobs whose behavior matches the be-
havior expected from the marker;

Coordinates Transformation Agent has the
main task of transforming the coordinates
of the marker seen by the camera into ac-
tual real world coordinates and to transmit
them to the robot navigation agent;

Calibration Agent, a software system
that human operator must use to set-up
AMIRoLoS system.

e APNS (Automatic Predictive Network Selec-
tion): it allows the robot to stay connected to
Internet [4]; ANPS is composed by:

— Communication Agent;
— Network Agent, a program working on

MORGUL laptop.

While developing the system, we faced some typical
limitations of normal graphic interfaces made to mon-
itor and control the agents:

e strong dependence on libraries and their cycle
of life (consider backward incompatibility, e.g.
between Qt3 and Qt2);

e in order to export the interface to remote sys-
tems, the necessity to use some ports that are
probably unsafe;

e hard coexistence of different graphic interfaces
on the same screen;

e inconsistence between interfaces;

e insufficient analysis of human-machine interac-
tion;

e strong dependence on OSs;
e ...

In order to face and overcome these limitations, we
have developed the system described in the following
sections.

20

2 State of the Art

At present, there are some models of controllers for en-
ergetic power stations [8] but there are no real specific
applications based on SVG able to control a robotic
system; we can also assert that a real Human-Robot
interface analysis does not exist at all [10].

The main studies are now focusing on the different
kinds of prepping data need in order to be exchanged
between devices. It is now clear that they will have
XML prepping. The lack of H-R interface analysis is
due to the fact that graphic interfaces, in robotics,
are often bare , as they are mainly used by developers
who monitor and eventually set each device in the cor-
rect way, without a general vision of the cooperative
system. This is partly explainable by the fact that
we are talking about autonomous robotic systems. It
is also true that, in a few years, autonomous robots,
and cooperative distributed devices systems in gen-
eral, will have an increased presence in our daily life.
As a consequence, systems will be no longer used just
by experts or developers but even by common people,
so we will need powerful and user-friendly interfaces,
allowing everyone to control these kinds of devices.
Therefore, developing graphic interfaces in SVG is a
reasonable choice; in fact, besides the benefits (de-
scribed in this article), SVG is nothing but a XML
dialect. Flash could have been another useful instru-
ment [9] but we chose SVG after several compared
analysis. Many similarities exist between Flash and
SVG:

e both SVG and Flash files are vector-based;
e both SVG and Flash files can be animated;
e both required plug-ins to view images;

e both SVG and Flash files can be zoomed and
panned,;

e both SVG and Flash files can contain sound;

e both SVG and Flash files are script-able, though
Flash’s Actionscript is proprietary. SVG can be
scripted with Javascript, Java Bindings, and Ac-
tiveX controls;

e both SVG and Flash files allow hyperlinking;

e both SVG and Flash files have database connec-
tivity;

It turns out that SVG has some very distinct advan-
tages over Flash:

e SVG is open-source code. This means you can
easily see, read, and edit the code underlying
an SVG image. Flash’s code is proprietary, or
owned by Macromedia, and therefore is hidden

)

'www.lcgst.com

ICGST- ARAS Journal, Volume (05), Issue (II), June, 2006

from public view. Viewing Flash code wouldn’t
do most of us much good anyway, because it
is written in binary format, which consists of
strings of zeros and onesaATnot of great use to
most flesh-and-blood-based life forms;

e SVG is text-based. So, it is easy to read an SVG
file and easy to create one. Text used in SVG
remains selectable and searchable. To make or
edit a Flash file, you must have access to Flash
software, and even then, you won’t be able to
read what’s really going on under the hood;

e You only need a texteditor to create SVG, no
need to buy Flash, there are a few SVG editors
available, but only just starting to become use-
able;

e SVG is fully scriptable - using a DOM1 (part
DOM?2) interface and Javascript. That means
you can start with an empty SVG image, and
build it up using Javascript. This is great for
real-time display of , for instance, a machine’s
status online. You can have dials and readouts
replicating those on the machine, showing the
values in buffered real-time;

e SVG can easily be created by ASP, PHP, Perl or
whatever, and extracted from a database. (take
care to set correct mime-types on the server);

e SVG has a built-in ECMA-script (javascript) en-
gine, so you don’t have to code per browser, and
you don’t need to learn Flash’s action-script;

e SVG is XML, meaning it can be read by any-
thing that can read XML . Flash can use XML,
but needs to convert it before use;

e This also allows SVG to be transformed through
an XSLT stylesheet/parse;

e SVG supports standard CSS1 style-sheets.

However SVG and Flash are not direct competitor.
SVG is basis as a subset of XML gives it the ability to
do things that Flash cannot, such as coordinate seam-
lessly with other Web standard technologies. Flash is
a proprietary, binary-coded application used primar-
ily for Web animation, which it does quite wells [7].

3 Architecture

ARCSUS is a meta-system useful to create graphic in-
terfaces. Many characteristics make this system more
useful and powerful than common graphic interfaces,
usually developed for these applications. The system
is based on the following widespread standard tech-
nologies:

21

e SVG (Scalable Vector Graphics) is a lan-
guage for describing two-dimensional graphics in
XML. SVG allows three types of graphic objects:
vector graphic shapes (e.g., paths consisting of
straight lines and curves), images (raster) and
text. Graphical objects can be grouped, styled,
transformed and composed into previously ren-
dered objects. The feature set includes nested
transformations, clipping paths, alpha masks,
filter effects, template objects and extensibil-
ity [12, 16].

e XML (Extensible Markup Language) is a sim-
ple, very flexible text format derived from
SGML (ISO 8879). Originally designed to meet
the challenges of large-scale electronic publish-
ing, XML is also playing an increasingly impor-
tant role in the exchange of a wide variety of
data on the Web and elsewhere [15, 13].

e XSLT (eXtensible Stylesheet Language Trans-
formation) is designed to be used as a part of
XSL, which is a style sheet language for XML.
In addition to XSLT, XSL includes an XML
vocabulary for specific formatting. XSL spec-
ifies the style of XML documents: by means of
XSLT, it describes the transformation of a doc-
ument into another XML document using the
formatting vocabulary. XSLT is also designed
to be used independently from XSL. However,
XSLT is not supposed to be a complete general-
purpose XML transformation language, rather
it is developed primarily for the transformations
that are necessary every time XSLT is used as
part of XSL [11].

e PHP (Personal Home Page Tools) is a widely
used general-purpose scripting language espe-
cially suited for Web development, which can
be embedded into HTML [2].

While developing the system, we focused on the im-
portance of H-R interaction and on the possibility of
exporting and visualizing the interface by means of
several kinds of agents: not only common comput-
ers or notebooks but even mobile phones or PDAs,
thanks to empowering systems visualizing SVG pages
even on these kinds of devices [3, 14]. Making the
interface compatible with a wide range of devices is
already a SVG function; in fact, since it is based on
vector images, it is also easily resizable and suitable
without changing the original source code.

Let is underline the initial idea of ARCSUS: creating a
component useful to human operator to monitor and
control a system focused on the use of autonomous
patrolling robots for surveillance purposes. In this
way, it is possible to modify some parameters but
these variables are not fundamental for hard real time
tasks. The hard real time tasks are autonomously
processed and controlled in stand-alone programs. In

)

'www.lcgst.com

ICGST- ARAS Journal, Volume (05), Issue (II), June, 2006

this way the server can be delayed in time to respond
the required data.

4 Realization

In this section, we describe the system realization and
show the interface realized to monitor AMIRoLoS sys-
tem (in Fig. 2).

At device level, the system works in this way; if the

ARCSUS | MORGUL | SAURON e

Date: 14112005 Time: 14:17:06

Figure 2: ARCSUS page about AMIRoLoS monitor-
ing.

robot is not sure about its own pose or needs certain
data, it asks for more information through a middle-
ware in which all the cooperative agents are plunged.
One of the cooperating devices is a server getting
the robot requests. After processing the images of the
robot taken by a webcam, it converts them in coor-
dinates related to the robot environment and sends
them to the robot. These exchanges of requests and
answers between agents are all XML formatted. Af-
ter calculating the coordinates, the server transmits
XML file to the devices needing it, by means of the
middleware we have already described. A web server
is interested in these data, too; ARCSUS is installed
on this web server. In Fig. 3 we can see an example
of XML formatted data sent from AMIRoLoS server.
This file contains information about date, time, pose
and further details about the data acquired during the
images elaboration by AMIRoLoS server. These data
are the ones visible in Fig. 2 on a browser after SVG
conversion. At web server level (strictly about ARC-
SUS), the system works in this way: data in XML
format (in Fig. 3) get into the web server and, by
means of a PHP code (in Fig. 4), they are processed
by an XSLT file (in Fig. 5) to obtain an SVG file (in
Fig. 6). The main aspects of the PHP program are:

e creating and giving a now XSLT processor:

$xh = xslt_create();

e xslt_process() function is one of the most im-
portant in XSLT extension. It allows any XSLT

22

transformation by using almost any source as
an input. The simplest kind of transformation
based on xslt_process () function is the trans-
formation of an XML file by means of an XSLT
file; the result is another XML (or HTML) doc-
ument:

xslt_process ($xh, $inputXML, $inputXSL, outputXML) ;

e video printing of SVG
by xslt_process() function:

page created

echo ’<embed src="./’.$outputXML.’"type="image/xml+svg"/>’;

e releasing the XSLT processor identified by the
given handle:

xslt_free($xh);

As we can see, the operative way is the same for each
controller of each device present in SAURON; it is
definitively the same for any system we want to con-
trol. We created an XSLT file respecting all the speci-
fications and, as any new data comes from the agents,
it is processed by PHP file. In a similar way, when
human agents modify the control settings, these new
data are saved in an XML file which is sent to the in-
volved devices by means of the middleware. We have
created SVG pages for APNS, for images acquired by
the webcam mounted on-board MORGUL, etc. with
similar XSLT files and respective XML files. Now we
have a web site in which we can monitor and control
SAURON system.

5 Experiment

ARCSUS was tested to be free from programming
problems. The system (still in beta version at that
time) was used in the demonstration we gave at
SMAU 2005 to introduce MADSys (Multi-Agent De-
velopment System) [1] where SAURON was present.

During the exposition, the robot moved itself in the
Faculty of Engineering Campus, at Brescia University,
and it was possible to monitor it from the exposition
stand (in Milan) thanks to a big screen employed as a
monitor for a browser interfacing with ARCSUS. It is
important to stress that time slice necessary to load
one SVG page is similar to the one necessary to load
a simple HTML page (as SVG page is a XML page).
So our interface is lighter than a Flash site. ARCSUS
system was studied and realized to completely respect
W3 specifications; therefore it is certificated and vali-
dated by on-line validator of W3 Consortium for SVG
and XML files.

6 Conclusion and Future
Research

The ARCSUS system presented in this article is a re-
ally powerful instrument for autonomous robotic and
it is very useful for cooperative distributed agents

)

'www.lcgst.com

ICGST- ARAS Journal, Volume (05), Issue (II), June, 2006

<?xml version="1.0"7>
<!DOCTYPE amirolos [
<!ELEHENT amirolos (date, time, image, world)>
<!ELEHENT date (#PCDATA)>
<!ELEHENT time (#PCDATA)>
<!ELEHENT image (marker coorxrd, max valme, pixel max _valume,
average_valune, pixel average valune)>
<!ELEHENT marker cooxd (x, y)>
<!ELEHENT x (#PCDATA)>
<!ELEHENT y (#PCDATA)>
<!ELEHENT max_valune (#PCDATA)>
<!ELEHENT pixel max_valune (#PCDATA)>
<!ELEHENT average_valune (#PCDATA)>
<!ELEHENT pixel average_valune (#PCDATA)>
<!ELEHENT world (robot_cooxd, distance)>
<!ELEHENT robot coorxd (x, y)>
<!ELEHENT distance (#PCDATR)>
1>
<amirolos=>
=date>
148.#47 ;1184472005
</date>
<time>
148#55; 175#65 ;06
</time>

<world=
<robot_coord>
<x=116567</ x>
<y=25108</y=
</robot_coord>
<distance>28554</distance>
</world=
</amnirolos>

Figure 3: Information about robot pose formatted in XML file.

systems. We showed an application of ARCSUS in systems) and monitor the environment in every
MADSys project: we realized a system composed by moment, even making other tasks or being out-
robot, web server and webcam, which is able to make side their office;

video surveillance in open or close environments; in
this article we focused specially on AMIRoLoS inter-
face, the system used by the robot to update and mod-
ify the informative data about its own pose. By using e increasing the number of agents controlled by
an SVG page inside ARCSUS, it is possible to monitor ARCSUS.

the server behaviors which provides correct informa-

tion about the robot pose, thanks to the images taken

from the webcams. ARCSUS was developed so that it Acknowledgements

could be validated according to W3 Consortium spec-

ifications. Therefore, it could be a possible standard ~ The authors acknowledge partial support by MIUR
for interfaces visible not only on monitors (with differ- ~ COFIN-03 contract.

ent resolutions) but also on PDAs or mobile phones.
ARCSUS characteristics and formats make it usable

e PDAs can be used as specific agents for other
tasks;

and integrable in working and operative systems. For References
the future we are: [1] Multi-agent development system.
e developing SVG pages to completely control the http://www.airlab.elet.polimi.it/MADSys/,
related agents that will make the human opera- 2005.

tor able to set the parameters from the browser

and to give directives; [2] Personal home page tools, php hypertext proces-

sor. http://php.net, 2005.
e increasing and verifying this interface applica-
tion even on agents different from computers
(e.g. PDAs, mobile phones,. ..). In this way hu- [4] R. Cassinis, F. Tampalini, and P. Bartolini. Wire-
man operators can control SAURON (or other less network issues for a roaming robot. In Pro-

[3] Tinyline. http://www.tinyline.com, 2005.

23

)

'www.lcgst.com

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ICGST- ARAS Journal, Volume (05), Issue (II), June, 2006

ceedings of the ECMR’05, pages 74-79, Ancona,
Italy, September 7-10 2005.

R. Cassinis, F. Tampalini, P. Bartolini, and
R. Fedrigotti. Docking and Charging System for
Autonomous Mobile Robots. Technical Report
Tech. Rep. no. R.T.2005-02-4, DEA, University
of Brescia, (Italy), 2005.

R. Cassinis, F. Tampalini, and R. Fedrigotti. Ac-
tive markers for outdoor and indoor robot local-
ization. In Proceedings of the TAROS 2005, pages
27-34, London, England, September, 12-14 2005.

G. Held, T. Ullrich, A. Neumann, and A. M.
Winter. Comparing .swf (shockwave flash) and
.svg (scalable vector graphics) file format specifi-
cations. http://www.carto.net/papers/svg/
comparison_flash svg/, 2005.

N. Jay. Scalable vector graphics, an
open solution for real-time graphics.
http://www.wpsenergy.com/JayNick/, 2005.

Macromedia. Flash.

http://www.macromedia.com/, 2005.

M. Makatchev and S. K. Tso. Human-robot inter-
face using agents communicating in an xml-based
markup language. In Proceeding of the IEEE Int.
Workshop on Robot and Human Interactive Com-
munication, RO-MAN 2000, pages 270-275, Os-
aka, Japan, 2000.

W3C. Xsl transformations (xslt), version
1.0, w3c recommendation 16 november 1999.
http://www.w3.org/TR/xslt/, 1999.

W3C. About svg, 2d graphics in xml.
http://www.w3.org/Graphics/SVG/About,
2004.

W3C. Extensible markup language (xml)
1.1, w3c recommendation 04 february 2004.
http://www.w3.org/TR/xml11/, April, 15 2004.

W3C. Mobile svg profiles: Svg tiny and svg
basic, w3c recommendation 14 january 2003.
http://www.w3.org/TR/SVGMobile/, 2004.

W3C. Extensible markup language (xml).
http://www.w3.org/XML/, 2005.

W3C. Scalable vector graphics (svg) full 1.2
specification, w3c working draft 13 april 2005.
http://www.w3.org/TR/SVG12/, 2005.

24

Vitae

Riccardo Cassinis got
his degree in Electronic
Engineering in 1977 at
Polytechnic University of
Milan., and has worked
with that Institution un-
til 1987, as Fellow, As-
sistant Professor and Re-
search Associate.

In 1987 he was appointed Associate Professor of
Robotics and of Numerical Systems Design at the Uni-
versity of Udine. Since 1991 he is Associate Professor
of Computer Science and of Robotics at the University
of Brescia. He has been founder and director of the
Robotics Laboratory of the Department of Electronics
of Milan Polytechnic University, of the Robotics Labo-
ratory of the University of Udine, and is now Director
of the Advanced Robotics Laboratory of the Univer-
sity of Brescia. After graduation, he has been work-
ing for about fifteen years on several topics related to
industrial robots, and has then addressed navigation
and sensing problems for advanced mobile robots. His
last research interest aims at taking advantage of In-
ternet technologies for building robots whose sensing
and processing capabilities, rather than being concen-
trated in a single machine, are distributed over a net-
work, allowing the construction of very simple and
small devices.

Fabio Tampalini re-
ceived his diploma in
Electronic Engineering

from the University of
Brescia, Italy in 2003.
He is currently working
as a Ph.D. student of
Information Engineering
at the Department of
Electronics for Automation of University of Brescia.
His research interesting include fuzzy logic, swarm
robots and distribute systems.

ICGST- ARAS Journal, Volume (05), Issue (II), June, 2006

<7?php.

$upload _dir = "./";.

$xh = xslt create():.

$inpuntXHL = $upload dir . "data.xml";.
$inpntXSL = $npload dir . "data.xsl":.
S$ontputXHL = "OutSVG. svg";.

.l.f (xslt_process($xh, $mpntXHL SmpntXSL $upload_dir . $ountputXHL)) {.
$fo = fopen{ "./Tup-$ountpuntXHL", "w"
fputs($fo. <°xm1 version="1. D“ encodlng—“lso -8859-1" standalone="no"?=');:
fputs($fo, '<!DOCTYPE swg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www. w3. org/Graphics/SVG/1. 1/DTD/swgll. dtd"=");:.

$fi = fopen{ "./$ontpntXHL", "r"):.
fgets($fi):.

while (!feof ($fi)) fputs($fo, fgets($fi)):
fclose($fo):.

fclose{ $fi):.

echo "<html><head=<title=ARCSUS .::. AMIRoLoS</title=</head><body=":.
echo '<embed src="./Tump-' . SontpntXHL . '" type="image/xml+svg" /=';
echo "</body=</html=";.
else {.

echo "<html><head=<title=Error</title=</head><body=";.

echo "Error " . $inputXHL ./*% " in " . $outputXL .*/ " " . $inputXSL;.

echo "
" . xslt errox($xh) . "<br/=";.
echo "Error Code: " . xslt_errmo($xh);.
echo "</body=</html=";

iﬁlt_fx‘ee(th) :.
=

Figure 4: PHP file content converting from XML to SVG, by means of XSLT file.

kxsl:stylesheet version="1.0"
xmlns: xsl="http: //www.w3.0rg/1999/XSL/Transfoxm".
xmlns="http: //www.w3.0rg/Graphics/SVG/SVG-19990812.dtd">.

.<x31:ontprnt method="xml" indent="yes" media-type="image/svg"/>.
<xsl:template match="/">

<?xml version="1.0"7=.
<!DOCTYPE svg PUBLIC "-//W3C//DTD S¥G 1.1//EN"
"http://www. w3. org/Graphics/SYG/1. 1/DTD/svgll. dtd">
<?xml-stylesheet type="text/css" href="style.css" 7=,
<5vg width="100%" height="100%" xmlns="http://www.w3.org/2000/svg" version="1.1"

%!-- Colore sfondo totale -->.
érect class="Backgronnd" x="0" y="0" width="100%" height="100%" /=
%!—— END Colore sfondo totale -->.
ésvg onload="init(evt)" xnl:space="preserve" width="100%" height="100%"
=g transform="translate(0,-15)"> .
<!-- Intestazione -->.
%tect class="Background" x="0" y="0" width="800" height=
=g transform="translate(0,17)">.
<a xlink href="./AHIRoLoS.svg" id="AHIRoLoS">.
<rect class="EtichetteON" x="220" y="20"
<set begin="AHIRoLoS.mouseover"
</rect>.

<text class="EtichetteON" x="226" y="36"
<fax.

Figure 5: Subpart of XSLT file used to convert from XML to SVG file.

<?xml version="1.0"2>,
<!DOCTYPE svg PUBLIC "-//W3C//DTD S¥G 1.1//EN" "http://www.w3.org/Graphics/SVG/1
<?xml-stylesheet type="text/css" href="style.css" 7>
<svg width="100%" height="100%" xmlns="http:.//www. w3 org/2000/svg" wversion="1.1"
<1-- Colore sfondo totale --».
érect class="Background" x="0" y="0" width="100%" height="100%" /=
<1-- END Colore sfondo totale --=.
<svg onload="init{evt)" xul:space="preserve" width="100%" height="100%"
=g transform="translate(0,-15)">
<!-- Intestazione -->.

érect class="Background" x="0" y="0" width="500" height=
<g transform="translate(0,17)">.

Figure 6: Subpart of SVG content finally shown from the browser.

25

)

