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ABSTRACT 
In this work we suggest a synthesis of recent results 

obtained on the application of soft-computing techniques to 
solve typical automatic machines design problems. Particularly, 
here we show an optimization method based on the application 
of a specialized algorithms ruled by a generalized software 
procedures, which appears able to help the mechanical designer 
in the first part of the design process, when he has to choose 
among different wide classes of solutions. In this frame, among 
the different problems studied, we refer here about the choice 
of the best class of motion profiles, to be imposed to a cam 
follower, which must satisfy prefixed design specifications. A 
realistic behaviour of the system is considered and the 
parameter model identification is set up by a soft computing 
procedure. The design, based on theoretical knowledge, 
sometimes is not sufficient to fulfil desired dynamical 
performances, in this situation, a residual optimization is 
achieved with the help of another optimizing method. 

The problem of a cam-follower design is presented. A class 
of motion profiles and the best theoretical motion profile is 
selected by an evolutionary algorithm. A realistic model is 
considered and its parameter identification is achieved by a 
genetic algorithm. The residual optimization is achieved by a 
servomotor optimized by another genetic algorithm. 
Evolutionary approach is used during all the design process 
and, as was shown, it allows really interesting performance in 
terms of simplicity of the design process and in terms of 
performance of the product. 

 
INTRODUCTION 

During his own activity the designer of automatic 
machines has to solve different problems: he has to design his 
machine according to 
- specific limits (working time, stroke…) 
- some parameter that can change in a smaller range 

- some parameter that give the idea of well designed 
machine 

From a mathematical view point he has to find the best solution 
under a series of constrain, more or less wide: he has to find the 
solution of a constrained maximization/minimization problem. 

Sometimes in this operation (at least during the first phase 
of his work) he is aided by some table or graph that suggest 
him the best choice. As an example, consider Figure 1 in which 
the main characteristics of typical mechanical transmissions are 
given: note how picture specifies some boundaries, which 
circumscribe the utilization of the different devices. By such an 
aid, also a non-expert designer is guided through a good choice 
of the right transmission for the particular problem he is facing.   
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FIG. 1. Synthetic indications for the choice of a mechanical 

transmission [1]. 
 
In other cases the process is based on designer experience 

or reiterated analysis. In this second case the work is long and 
tedious. 

In this framework we have tried to solve the designer 
constrain optimization problem by the use of a specific 
mathematical tool called genetic algorithm: among possible 
classes of solutions, the method is able to select the best ones 
according to pre-defined goals. Moreover, by changing the 
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goals, it is possible to automatically create tables or graphs, just 
like the one above described, which define the limits of good 
utilization of particular solutions.  

It was explained that we have to solve a constrain 
optimization problem. There are many mathematical tool to 
solve this specific problem, but we have decided to implement 
and use a genetic algorithm in particular for one reason. 
Genetic algorithm at the end of the optimization phase gives a 
family of solutions; the designer can select his solution inside 
this family considering also other parameters that can guides 
through the best machine. This scenario reflects the real 
situation: in a very wide range of real situation he can select 
from different solutions (Figure 1), all of them suitable from 
the specific problem.  

In this paper, the procedure will be presented both from a 
general point of view and by the results obtained by its 
application on a practical example dealing with the motion 
planning of a cam-follower mechanism. 

 
 

NOMENCLATURE 

Genetic algorithm variables. 
n: number of the elements of a vector. n21 x,...,x,x : elements 
of a vector ("genes") 
x : vector having n21 x,...,x,x  as elements. 

( ) ( )n21 x,...,x,xFFF == x :generic functional depending 

on vector x  (on variables n21 x,...,x,x ). 
F* : value of the functional to be reached (goal). 

( )*
n

*
2

*
1 x,...,x,x* =x : solution vector that satisfies 

( ) F**F =x . 
i
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i
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Variables for motion definition 
t: time variable. 
s: generic displacement in time t. 
S: total displacement. 
T: total time to perform displacement S. 
T*, S*: precision point co-ordinates. 

 

1  THE GENETIC ALGORITHM AND THE EVOLUTION 
STRATEGY USED 

The method discussed enters the category of the ”genetic 
algorithms”, so called because they follow some procedures 
which appear in Darwin’s doctrine of evolution, basically 
explaining that every creature or individual must adapt to the 
environment, being otherwise its progeny doomed to 
extinction. It possible to say that the genetic process optimizes 
the species because only the best elements of each generation 
can survive. 

In this context, we propose here, by using a so called 
"evolution strategy" (see [4-5] for a deeper knowledge of the 
subject), an extension of the classic genetic algorithm, devising 
the parallel evolution of more than one species which 
periodically are compared each other as regard to a pre-
established goal. The relative comparison among the elements 
of different species is a sort of "fight" inside the same 
environment: each species tries to survive in the environment 
and, at the same time, pushes the others to extinction. In this 
way, at the end of the process, or we will have only one species 
surviving, or the contemporary presence of more than one 
species living in equilibrium in the same environment. 

In the case of a numerical application, it is possible to build 
the following scheme: the "environment" is a functional where 
the "creature" is the functional variable (in general a vector), 
and the goal to be reached "to survive" is a pre fixed value of 
the functional itself. 
Mathematically, consider functional 

( ) ( )n21 x,...,x,xFFF == x  
The elements of vector x are named "genes". 

Let's consider a pre-fixed value F* of the functional; the 
aim of the typical genetic algorithm is to find vector x*=(x*1, 
x*2,…, x*n), so that F(x*)=F*. 

To reach the goal, let's define a set of vectors  
( )1

m
1
2

1
1

1 ,...,,X xxx= . 1X  is the first family (generation) of 
vectors by means of which we try to find the solution. 
For every vector forming the first generation, it is now possible 
to define an index by means of which we evaluate the 
closeness of the vector itself to the solution. 

A possible index is the inverse of the error, so defined: 
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are the errors evaluated in correspondence to all the vectors of 
the first generation, as regard to the pre-fixed functional value 
F*. 

It is useful to normalize the index above defined as follows: 
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So, at every vector  x j
1 of the first generation we have 

linked a value 1
jA  named "fitness index": a vector with a high 

fitness index will have good possibilities of surviving in the 
next generation, while a vector with a low fitness index will 
have poor possibilities of surviving in the next generation. 

From the definition, it is easy to verify that 
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It is easy to understand the parents selection process by 
looking at the next figure (Fig. 2).  
 

 
FIG. 2. Random determination of the "parents" from a 

generation. 
 
 

We rotate the wheel two times, the first one for the mother 
generation and the second for the father generation. It is 
obvious that the probability to select the bigger square  is 
higher then the probability to select a smaller square; in other 
words it is easier to select vectors having a higher value of 
fitness. 

These two selected vectors are named "parents" and form a 
couple of vectors from which a new vector originates, the 

"son". The son is generated from the parents by means of three 
basic mechanisms (Fig. 3) acting on the elements (genes) of 
the two vectors: the inheritance, the cross-over, and the 
mutation. 

The inherited gene directly passes from the parent to the 
son, without changing its value or its position in the vector. 
The cross-over mechanism determines the passage of a group 
of genes from one parent to the son, but in different positions. 
The mutation causes the presence of a random gene in the son. 
The three mechanisms are active under a random flag, so that 
the chances of the son turning out a perfect copy of one of the 
parents is as likely as it being completely different from them 
both. 
 
 

 
FIG. 3. The mechanisms for the generation of a son vector 

 
 

The son's generation is iterated repeatedly in order to define 
a new generation 2X . Starting from this new family, the phases 
described above for the first generation are repeated. The 
procedure stops when a vector with fitness near 1 (inside a 
tolerance pre-fixed by the user) is obtained.  

Now let’s imagine that the evolution towards the goal 
contemporaneously happens on more than one species. 
Periodically, after a pre-established number of iterations (or 
generations) a pre-fixed number of vectors are drawn from 
each population and "fight" each other: that is, a classification 
is made on all the selected individuals according to their own 
fitness index, and only the first ones (according to a pre-fixed 
number) come back to the original populations; the other ones 
are discarded from the evolution. It comes that the population 
which remains with a low number of individuals will have 
difficulties in its evolution and it is doomed to extinction. 

At the end of the process we can have two cases: 
1) only one of the populations has defeated all the others and, 
continuing with the evolution, its creatures go towards the 
goal; 
2) two or more families establish an equilibrium (no one could 
defeat all the others) and the evolution continues in a parallel 
way towards the goal (Fig. 4). 
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It is clear that this kind of procedure gives two results: it is 
able to identify the best (or more robust) population(s), and, 
inside each population it will be possible to recognize "the 
champion", that is the element which is nearest to the pre-
established goal. 

 
 

 
FIG. 4.  The equilibrium of more than one species. 

 

2  THE CASE STUDIED 
In the definition of the motion profile of a cam-follower 

system, we generally must obtain a pre-fixed displacement S in 
a pre-fixed time T, with null velocity at the beginning and at 
the end of the movement. Often, it is also necessary to respect 
other constraints as the passing of the follower through a 
precision point P defined by a specified displacement S* in 
time T*. 

In Figure 5 this situation is depicted. We will consider the 
follower passing through the precision point when the error e = 
|s(T*) - S*| will result less than a predetermined value. 

 
 

 
 

FIG. 5. The displacement profile through a precision point: 
different motion laws are possible 

 
 

It is clear that, among different types of parametric function 
s(t), commonly used in these kinds of mechanical design 
problems, it will be possible to find the class which better 
satisfies the above given constraints. 

The analyzed motion functions, which are also the most 
commonly used in cams design, are: 

 
1) The “modified trapezoidal motion” (also known as “seven 
segments motions”). They are largely described in specialistic 
literature [1-3] and greatly used in technical field, mainly 
because it is possible to obtain very smooth profiles on the 
velocity diagrams. 
They allow to define the movement on a total displacement S, 
in total time T, by means of seven coefficients which represent 
the time percentages as regard the total time of the acceleration 
diagram partitions, as depicted in Figure 6. The velocity and 
displacement trends are obtained by integration of the 
acceleration diagram on which it is possible to impose some 
constraints (the continuity and null values at the motion ends, 
for instance). 
 
 

 
 
FIG. 6. Acceleration, velocity and displacement of modified 

trapezoidal motion 
 
 
The mathematical relationships to define this category of 
motion planning can be easily found in literature: we will only 
say here that this kind of acceleration profile is made up by an 
alternation of harmonic and constant segments. 
 
2) The trigonometric profiles (Figure 7) are defined as a 
combination of a pre-fixed number k of harmonic functions 
having periods multiple of T (total motion time) which satisfy 
the typical boundary conditions at the ends of the movement 
(displacement S in time and null velocity at time T and null 
velocity at time 0). The main advantage of this class of motion 
is the possibility, during the motion definition, to shut out a-
priori the harmonic functions having their own frequency close 
to the natural frequency of the system, avoiding so the 
resonance condition. 
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FIG. 7. Acceleration, velocity and displacement of 

trigonometric motion 
 
 

3) The polynomial motions (Figure 8) are formed by a 
polynomial function, whose coefficients can be determined 
imposing the boundary conditions on displacement, velocity 
and acceleration. The main characteristic of these profiles is 
the possibility to increase the number of boundary conditions 
simply by increasing the polynomial degree. 
 
 

 
FIG. 8. Acceleration, velocity and displacement of 

polynomial motion 
 
 
To operate a selection on the three s(t) motion functions in 

order to determine what is the best to guarantee the passage 
with the best precision (that is minimising error e = |s(T*) - S*|) 
through point P = (T*, S*), contemporaneously fulfilling other 
boundary conditions, we have used a strategy based on the 
above described genetic procedure. 

3  RESULTS OF THE SELECTIVE ALGORITHM 
The results of the use of the genetic algorithm procedure 

on the problem above stated are summed up in Fig. 9. (Total 
time T and total displacement S have been normalized to 1).  
The graph has to be read as follows: if precision point P=(T*; 
S*) falls inside the white zone, it is advisable to use the "seven 
segment" motion profile to gain it (that is, it will be easier to 
find inside the "seven segment" motion class a motion profile 
which will get the solution with high precision and 
contemporaneously fulfills the above stated boundary 

conditions). If precision point co-ordinates fall in dark grey 
zone it will be advisable to use the "polynomial profile"; if 
point P falls inside the dotted area, the best choice to obtain the 
highest precision in passing through the point is the 
"trigonometric profile"; finally, in the dark grey zone we have 
an equilibrium, so that no one of the profiles is the best (inside 
the genetic procedure, in this case we have the cohabitation of 
all the three populations which cannot overcome each other). 

The black zones cannot be reached by any of the profile; 
the genetic algorithm does not converge towards a solution for 
anyone of the profiles. 

In conclusion, we can say that we have tried to use a 
genetic algorithm ruled by an evolution strategy to select 
possible classes of solutions inside a problem having several 
parameters and boundary conditions to be fulfilled.  

The shown application, even if inside a very narrow and 
specific problem (however very felt by mechanical designers), 
has given satisfactory results, not only from the procedure 
point of view (which has resulted very easy to be 
implemented), but also from the particular obtained result; in 
fact, the graph above shown can be a substantial and actual 
help to the designer in the choice of the motion class. 
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FIG. 9. Motion profiles choice for the passage through a 

precision point 
 

4  REALISTIC BEHAVIOUR OF THE SYSTEM 
Some experimental tests, executed by means of an 

accelerometer fixed on the rotating table, have suggested that 
the peak value of the table acceleration is remarkably higher 
than the theoretical one. This kind of behaviour becomes more 
and more evident when the inertial load is high. 

Two phenomena are particularly evident: the maximum 
negative amplitude of the table acceleration is about twice than 
the theoretical one; there are important residual vibrations at 
the end of the rising phase. 

In order to explain the actual behaviour of the 
mechanism, a proper mathematical model has been studied but 
its parameter could be correctly and easily evaluated only 
when this system is physically realized. It particularly 
considers: 
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* the characteristic of the motor (which can explain the speed 
fluctuations due to the load changes); 
* the presence of clearance in the gear speed reducer 
(particularly high in applications with many serial reduction 
stages); 
* the elasticity and structural damping of the mechanical 
components. 
 

The motor is described by its characteristic function 
)(TT mm γ= . 

The clearances of the gear speed reducer and the elasticity 
of the mechanical members are simulated by means of elastic 
elements, as depicted in Fig. 10. Backlash g1 is due to the 
tolerances between the teeth of the speed reducer; its value is 
particularly important when the transmission ratio is high. The 
coupling between the table and the indexing mechanism output 
shaft mainly causes clearance g2, which is generally very close 
to zero. Finally, the damping variables have been considered as 
scalar constant values, as well as all the moments of inertia. 
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FIG. 10. Equivalent scheme of the indexing mechanism 

 
 

According to the definitions given above, referring to the 
symbols of Fig. 10, the set of differential equations which 
describes the dynamical behaviour of the mechanism appears 
as follows: 
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where the dot symbol is used for time derivatives while the 
prime notation is utilized for derivatives calculated with 
respect to the cam rotation angle α Clearly, the relationship 
between angles β and α is linked to the cam profile inside the 
indexing mechanism, in accordance with the well known 
formulas [1-3]: 
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(6)

 
Functions M1 and M2 describe the sum of the effects of a 

compliance component (elasticity and backlash) with a 
damping element. Their analytical expressions are: 
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5  PARAMETER IDENTIFICATION 
It is possible to observe that the proposed mathematical 

model utilizes some parameters which are generally known a-
priori, directly from the manufacturers (the cam profile of the 
indexing mechanism, all the moments of inertia of the various 
components, the backlash inside the speed reducer, the motor 
characteristic), and other parameters which are typically 
unknown, such as the compliance characteristics of the two 
joints (k1 , r1 , k2 , r2). 

So, one of the main difficulties to use the model is to 
correctly esteem the value of these parameters. To solve this 
problem we have tried to use an identification technique based 
on a genetic algorithm which finds out the optimum set of 
parameters as regard a particular index which can measure the 
“distance” between the actual behaviour of the device and the 
simulated one (Figure 11). 

Let’s consider the actual behaviour of an indexing 
mechanism (for example, by the acceleration measured on the 
table) and the simulated result obtained by the mathematical 
model with the use of a particular set of parameters. After a 
sampling of the two graphs, it is possible to define, as 
goodness index, a value related with the number of points of 
the simulated plot which fall inside a pre-fixed area of 
tolerance drawn on the graph describing the actual behaviour 
of the device (Fig. 12). The percentage of the points falling 
inside the area upon the total number of examined points, 
determines the goodness index value. At the extremes, if all the 
considered points will fall inside the pre-defined area, we will 
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say that we have a very good coincidence between the 
simulated and actual results (goodness index value = 100%); 
on the contrary, if we will obtain all the points outside the 
tolerance, than the index value will be zero. A big difficulty in 
this way of proceeding lies in the fact that it is possible to 
obtain very close goodness index values with different 
combinations of the parameters (non-coincident solutions). 
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FIG. 11. Example of simulated acceleration (first 

graph) and measured acceleration (second graph) 
 
 

 

 
FIG. 12. Definition of goodness index 

The genetic algorithm does not get a single solution, but 
acts in terms of families of solutions. In this way, if there are 

several sets of combinations of parameters, which offer very 
similar values of the goodness index, the genetic algorithm 
finds all of them. Among the different solutions, it will be the 
user who, by the direct comparison of the simulated and the 
actual graph, will select the one that appears the best for his 
own purpose. 
 

 
 

6  RESIDUAL OPTIMIZATION OF THE SYSTEM 
As it has been shown, the real behaviour can be 

dominated by effects which are impossible to consider during 
the design stage. In this situation, after the physical realization 
of the cam-follower system, it is possible to achieve a residual 
optimization. Usually cam-follower systems are moved by a 
constant speed motor; instead we will use a variable-speed 
servomotor and we will optimize the speed motion profile of 
the motor to achieve the desired dynamical behaviour of all the 
system (Fig. 13). 
 
 

 
FIG. 13. Variable Motor Speed during the time cycle 

 
 

So now we know the parameters of our mathematical 
model that allows to reproduce in an optimal way real 
behaviours of the system. It is easy to modify the seven 
segment motion lows coefficients of the variable speed 
servomotor and observe their effect on the motion of the 
follower. By the use of a genetic algorithm we change these 
coefficients to optimize the motion of the follower in such a 
way to reproduce the desired motion low of the follower 

The optimization of the motor motion profile is achieved 
by a genetic algorithm and in Fig. 14 numerical results are 
showed. 
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FIG. 14. Follower acceleration before and after an 

optimization 
 

7  CONCLUSIONS 
 

The problem of a cam-follower design is presented. A 
class of motion profiles and the best theoretical motion profile 
is selected by an evolutionary algorithm. A realistic model is 
considered and its parameter identification is achieved by a 
genetic algorithm. The residual optimization is achieved by a 
servomotor optimized by another genetic algorithm. 

 Evolutionary approach is used during all the design 
process and, as was shown, it allows really interesting 
performance in terms of simplicity of the design process and in 
terms of performance of the product. 
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