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ABSTRACT

The recently standardized Scalable Video Coding(SVC) extension of H.264/AVC allows bitstream scalability
with improved rate-distortion efficiency with respect to the classical Simulcasting approach, at the cost of an
increased computational complexity of the encoding process. So one critical issue related to practical deployment
of SVC is the complexity reduction, fundamental to use it in consumer applications. In this paper, we present a
fully scalable fast motion estimation algorithm that enables an excellent complexity performance.
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1. INTRODUCTION

Most of the activity of the ISO and ITU Joint Video Team (JVT) over the last few years has been dedi-
cated to scalable video, and this work has recently seen recognition in the so called “Scalable Video Cod-
ing”extension(SVC) of the H.264/AVC standard for video compression1,2 . Contrasting from the classical video
coding approach, the scalable paradigm enables the decoding from a unique coded representation(bitstream) at
different “working points”in terms of spatial, quality and temporal resolution. The main drawback of the SVC
architecture, shown in Figure 1, is the complexity increase compared to H.264 single layer coding. In SVC the
original video sequence is downsampled to generate lower spatial resolutions that can be encoded at different
quality layers. The lowest decodable point (in terms of spatial and quality resolution) is called Base Layer and
is H.264/AVC compatible, while the others layers are called enhancement layers. The Inter-layer prediction is a
new tool introduced in SVC that enables the reuse of the motion, texture and residual information from lower
layers to improve the compression efficiency of the enhancement layers. In particular, from the motion estimation
point of view, it has been shown that better compression performance are obtained by performing the full motion
estimation process independently at each layer, where for the enhancement layers additional new macroblock
modes(introduced by the Inter-layer prediction and defined in SVC standard) have to be evaluated. Because the
motion estimation process is responsible for most of the encoding time, it is clear as this multi-layer architecture
drastically increases the complexity compared to single-layer coding. This is one of the reason why the success of
this scalable video coding extension will depend on the tradeoff between complexity and performance compared
to the use of simulcast or transcoding solutions. A complexity analysis of the new SVC standard con be found
in3 .

This work presents the full scalable extension of a fast motion estimation algorithm for the base layer and
temporal scalability that was presented in4 . The overall proposed algorithm not only decreases the complexity of
the motion estimation process for the enhancement layers (independently from the adopted scalability configura-
tion), but it also provides a fast motion estimation algorithm for the base layer. This is the reason why different
algorithms are used for motion estimation in the base layer and in the enhancement layers, as will be described
in the following. The results show that the proposed algorithm could greatly decrease the complexity in terms
of number of tested motion vectors with comparable compression performance to the fast motion estimation
algorithm proposed in the reference software5 .
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Figure 1. Scalable Video Coder structure

The remainder of the paper is structured as follow. Sections 2 gives a brief explanation on how the proposed
algorithm works for the base layer, while in Section 3 the multi-layer extension is proposed. Finally Section 4
provides the conducted experimental simulations.

2. MOTION ESTIMATION IN BASE LAYER

The motion estimation algorithm in SVC base layer is based on two main steps: the Coarse Search and the Fine
Search. The Coarse search is a pre-analysis step useful to initialize the Fine Search, which provides the motion
vectors that will be used to actually encode each block.

2.1 Coarse Search

The Coarse Search is a pre-processing step that finds a single motion vector for each 16x16 macroblock of each
frame following the display order and it uses only the previous original frame as reference. The Coarse Search
could be applied on the whole sequence before the encoding process or independently within each Group of
Picture (described in the follow). If the current macroblock is at position (i, j) in frame n, the Coarse Search
tests 3 spatial predictors and 3 temporal predictors(obviously available from the second frame), where the 6
predictors are the motion vectors already computed for the Coarse Search of previous macroblocks. The spatial
predictors are the vectors of the macroblocks in position (i− 1, j), (i, j − 1), (i− 1, j − 1) in frame n, while the
temporal predictors are related to the macroblocks in position (i, j), (i, j−1), (i−1, j) in frame n-1. Subsequently
a grid of 12 fixed motion vectors called “short updates”at half pel accuracy are added to the best spatial/temporal
predictor to get the best motion vector for the 16x16 macroblock. At each step the criteria for the choice of the
best motion vector is the minimization of the Sum of Absolute Differences (SAD). The vectors estimated during
the Coarse Search do not have coding purposes, but are used as a good starting point for the Fine Search step
explained in the next section.

It is important to note as the Coarse Search process is performed only on the input spatial resolution used
to generate the base layer, that is potentially a downsampled version of the video sequence used to encode the
enhancement layers, as in case of spatial scalability. It follows as the motion information generated by the Coarse
Search has to be adjusted in order to be used in the Fine Search of the enhancement layers, as will be explained
in section 3.
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Figure 2. Hierarchical B-frame decomposition structure for a single GOP

2.2 Fine Search

The Fine Search is the step of the algorithm that is responsible for the estimation of the final motion vectors
for each macro-blocks that are subsequently used for the motion compensation and coding. The Fine Search
is applied on each frame following the encoding order given by the particular temporal decomposition struc-
ture, where in the rest of the work only the Hierarchical B-frame decomposition, that enables native temporal
scalability with improved performance compared to other structures,6 is considered. As shown in Figure 2, the
Hierarchical B-frame decomposition processes the video sequence in Group of Pictures (GOP) where for each
GOP the last frame, called key-picture, is intra-coded(I-frame) or inter-coded(P-frame) with the previous key-
picture as reference. Al the other pictures within the GOP are inter-coded as bidirectional pictures(B-frame)
using the reference as shown in Figure 2. Since Hierarchical B-frame enbles the closed-loop motion estimation,
during the Fine Search the motion estimation is performed using the decoded version of the reference frames.

For the understanding of the proposed algorithm, is also important to note as inside the reference software
the bidirectional motion-estimation (for B-frames) for each block is not performed by joint search of the forward
and backward motion vectors. First the best forward and backward vectors are independently estimated by one-
directional motion estimation, then an iterative procedure “corrects”the vectors for bi-directional estimation. At
each step of the iterative procedure one motion vector is fixed while the other one is refined. This is the reason
because the Fine Search is further split in 2 steps: the one-directional step, and the bi-directional refinement. In
B frames the one-directional step is applied two times to search the best forward and backward motion vectors
and then the bi-directional refinement is applied, while P frames need only to the one-directional step to find
the best backward motion vector.

For each macroblock the one-directional step is applied for each block type because different partitioning
scheme are evaluated for each macroblock. This means that the motion estimation process has to be performed
for each possible sub-block(16x16, 16x8, 8x16, ...). Similarly to the Coarse Search, the Fine Search tests 3
temporal predictors and 3 spatial predictors, where the difference is in the meaning of the temporal and spatial
predictors. In fact the spatial predictors are the result of the Fine Search already performed for the spatially
adjacent blocks of the same size (and not macroblocks) while the temporal predictors are the results of Coarse
Search scaled by an appropriate ratio, as shown in Figure 3(a).

To understand the meaning of the temporal and spatial predictors let consider the following example. Suppose
to apply the one-directional step for the macroblock (i, j) of the frame f4, inspecting the macroblock mode Mx,
in order to obtain the Fine Search vectors f4,b(i, j,Mx) and f4,f (i, j,Mx). Let assume that c4(i, j) is the Coarse
Search motion vector for the macroblock (i, j) in frame f4 that has been estimated with a motion estimation
performed with respect to the frame f3, because recalling the section 2.1 in the Coarse Search the motion



estimation is performed with respect to the previous frame. Since the temporal distance between f4 and its
references (f0 and f8) is equal to 4 pictures, the temporal predictors has to be rescaled by a factor of 4. The sets
of temporal(T ) and spatial(S) predictors for backward and forward motion vectors are given by:

Tb(i, j) = {4c4(i, j), 4c4(i− 1, j), 4c4(i, j − 1)} Tf (i, j) = {−4c4(i, j),−4c4(i− 1, j),−4c4(i, j − 1)}

Sb(i, i) = {f4,b(i− 1, j − 1,Mx), f4,b(i− 1, j,Mx), f4,b(i, j − 1,Mx)}

Sf (i, i) = {f4,f (i− 1, j − 1,Mx), f4,f (i− 1, j,Mx), f4,f (i, j − 1,Mx)}

The best backward and forward predictor is choosed through a RD-optimization

pb(i, j,Mx) = arg min
x∈Tb,Sb

(d(x) + λmot · r(x, bl mode Mx))

pf (i, j,Mx) = arg min
x∈Tf ,Sf

(d(x) + λmot · r(x, bl mode Mx))

where d() is the MSE on the block (i, j) obtained using the vector x and r() is the cost function.

The best predictor is than refined through 3 different sets of update vectors: short(US), medium(UM ) and
long(UL), where the new groups of medium and long updates are defined in order to take in account the distance
between current and reference frame in case of possibly long GOP. n particular, if D ≥ 8 long, medium and short
updates are tested, if D = 4 or D = 2 medium and short updates are tested and if D = 1 only short updates are
tested. So, for the above example, the best “updated backward predictor”(ub) is given by:

uM
b (i, j) = pb + arg min

u∈UM

(d(pb + u) + λmot · r(pb + u, bl mode Mx))

ub(i, j) = uM
b + arg min

u∈US

(d(uM
b + u) + λmot · r(uM

b + u, bl mode Mx))

The number and the values of the updates, as also the threshold value D are experimentally derived through
an extensive set of simulations over different test sequences with different coding parameters in order to obtain
the best tradeoff between performance and complexity. After the updates evaluation, for efficiency purpose ub

is compared to the zero motion vector(z) and the H.264 predictor(p264) and the best one is finally refined at
quarter-pel accuracy(with vectors taken from the set UQP ), in order to find the final Fine Search motion vector
f4,b(i, j,Mx) for the MB mode Mx:

f̂4,b(i, j,Mx) = arg min
x∈{ub,z,p264}

(d(x) + λmot · r(x, bl mode Mx))

f4,b(i, j,Mx) = f̂4,b + arg min
u∈UQP

(d(̂f4,b + u) + λmot · r(̂f4,b + u, bl mode Mx))

The bi-directional motion vectors are obtained through an iterative refinement of one-directional vectors. At
each step of the iterative procedure one motion vector is fixed while the other one is refined through 8 updates
at quarter pel accuracy.

3. MULTI LAYER EXTENSION

To simplify the notation, referred to Figure 3(b) the base layer (BL) is identified by L0 while a general enhance-
ment layer (EL) is represented as Lm. Exploiting the motion information from lower layers, for each picture of
higher layers we can expect to have a good representation of the motion using an appropriate scaled version of
the motion flow of the corresponding pictures at lower layers. This is not true when a particular picture in a
higher level has no associated picture at lower layers, for example when a different frame rate is used from one
layer to another, thus a different motion estimation approach is used for pictures with or without an associated
frame in lower layers. This problem is shown in Figure 3(b), where an 8-picture GOP is considered and the
EL has a frame-rate 4 times larger then the BL. In this case, for the key-pictures (if P-type) and for B-level-0
pictures the motion information are directly inferred from the corresponding pictures in the BL, following the
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Figure 3. 3(a): Scaling of Coarse Search motion vectors to obtain temporal predictors in Fine Search; 3(b): Motion scaling
between layers with different frame-rate

process described in section 3.2. This case leads to a better compression efficiency and a speed-up of the motion
estimation process. For the B-level-1 and -2 pictures the correspondence with the BL is missing, and consequently
the motion information are similarly to what was used for the BL (see subsection 3.1).

The problem of the different frame-rate is not the only aspect that has to be considered during the multi-
layer extension process. In fact the SVC standard allows a particular type of spatial scalability, named Extended
Spatial Scalability (ESS), where generally the BL is a scaled and cropped version of EL, as in case of SDTV
to HDTV scalability, for which SDTV represents a base layer with 4:3 aspect ratio whereas HDTV corresponds
to a 16:9 aspect ratio enhancement layer. The ESS defines the concept of Cropping Window (CW), that is
the area of the EL used to generate the BL, as shown in Figure 4. In sections 3.1 and 3.2 we will refer
as (WBL, HBL) the dimension of the BL, (WEL, HEL) the dimension of the EL, (xCW , yCW ) the origin of
the CW inside the EL and with (WCW , HCW ) the dimension of the CW. Obviously, depends on the value of
these quantities it corresponds a different scalability configuration. So, for eample, if (xCW , yCW ) = (0, 0) and
(WCW , HCW ) = (WEL, HEL) = (2WBL, 2HBL) we assume dyadic spatial scalability, if (xCW , yCW ) = (0, 0) and
(WCW , HCW ) = (WEL, HEL) = (WBL, HBL) is the case of CGS, and so on. This is the reason since in the
following all the algorithms will be generically presented. Therefore a layer can be of any type: CGS, MGS,
dyadic spatial or ESS.

3.1 Frame without an associated match in lower layers
When the lower layers do not provide any motion information to the upper ones, the motion estimation process
for the EL follows the algorithm explained in section 2 for the BL. The only difference concerns the Coarse
Search, since as previously explained the full Coarse Search process is performed only for the BL. In order to
have the temporal predictors for the Fine Search at higher layers, a scaling of the motion vectors obtained from
the Coarse Search is performed. Hereafter, the process is explained only for one EL with respect to the BL.
Similarly it could be easily extended between 2 consecutive enhancement layers. Let us define the frame rate
ratio fR = fEL/fBL as the ratio between the frame rates of the EL(fEL) and BL(fBL), and the resolution ratios
as follow:

rX =
WCW

WBL
rY =

HCW

HBL
(1)

Referred to Figure 3(b), suppose to estimate the temporal predictor c2,EL(i, j) for the macroblock (i, j) at
position [xEL(i, j), yEL(i, j)] in frame f2 (and similarly for f1, f3) of the EL. The Coarse search motion vector
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c4,BL(h, k) estimated for frame f4 of the BL has to be used to infer the temporal predictors. If the current
macroblock lies inside the cropping window, the Coarse Search motion vectors c2,EL(i, j) for MB (i, j) in the EL
is computed as

c2,EL(i, j).x =
c4,BL(h, k).x ∗ rX

fR
c2,EL(i, j).y =

c4,BL(h, k).y ∗ rY
fR

(2)

where h and k are the indexes of the macroblock of BL with coordinate [xBL(h, k), yBL(h, k)] of the upper-left
pixel given by:

xBL(h, k) =
xEL(i, j)− xCW

rX
yBL(h, k) =

yEL(i, j)− yCW

rY
(3)

If the MB (i, j) lies outside the cropping window, as in the case of ESS with cropped BL, we can not use
the BL motion information, and so c2,EL(i, j) = 0. After this scaling process, the Fine Search is performed as
explained in section 2.2. So, the set of temporal predictors for frame f2 in the EL, is given by:

Tb(i, j) = {2c2,EL(i, j), 2c2,EL(i, j − 1), c2,EL(i− 1, j)}
Tf (i, j) = {−2c2,EL(i, j),−2c2,EL(i, j − 1),−2c2,EL(i− 1, j)}

3.2 Frame with match in lower layers

For the pictures with corresponding low-layer representations, like KP and B0 pictures in Figure 3(b), we can fully
exploit the motion information of the BL, expecting good performance with reduced computational complexity.
However, these considerations are not completely true in case of ESS scalability so, in general, the reuse of the BL
motion information can be done only for the blocks of the EL that lie within the cropping window. Furthermore,
the performance depends also on the quality of the pictures in the BL. The higher the quality of the BL the more
efficient the inter-layer prediction, both for texture and motion information. In order to show the dependencies
between the quality of th BL and the performance of the proposed algorithm, two scenarios are considered:

• low complexity: the one-directional step of the Fine Search tests only 1 inter-layer predictor inferred from
the lower layers (see below), together with the predicted motion vector provided by the SVC encoder and
the zero motion vector. The best vector is finally refined through 8 updates at quarter pel accuracy. The
bi-directional step is the same of the BL.

• high complexity: the one-directional step of the Fine Search tests 1 inter-layer predictor inferred from
lower layers and refines it with short, medium and long updates as explained in section 2.2, together with
the predicted motion vector provided by the SVC encoder and the zero motion vector. The best vector is
finally refined through 8 updates at quarter-pel accuracy. The bi-directional step is the same of the BL.



It’s important to note as since in this case the Fine Search does not test the temporal predictors, the scaling of
the Coarse Search information, described is section 3.1, is not needed.

Again, referred to Figure 3(b), let consider to estimate the one-directional inter-layer predictor (backward or
forward) p4(i, j,Mx) for the macroblock (i, j) at position [xEL(i, j), yEL(i, j)] (that lies inside the Crop Window)
in frame f4 of the EL for the particular macroblock mode Mx. Each macroblock mode has a relative position
(xMx , yMx) inside the macroblock. The inter-layer predictor is a scaled version of motion vector f4,BL(h, k,Mx)
computed in the Fine Search for the corresponding block mode Mx of BL where h and k are the indexes of the
macroblock of BL with coordinate [xBL(h, k), yBL(h, k)] of upper-left pixel given by the equation 3, while the
position of the block inside the macroblock is given by

xBL(h, k,Mx) =
xEL(i, j)− xCW + xMx

rX
yBL(h, k,Mx) =

yEL(i, j)− yCW + yMx

rY

The value of the predictor is given by:

p4(i, j,Mx).x = f4,BL(h, k,Mx).x ∗ rX p4(i, j,Mx).y = f4,BL(h, k,Mx).y ∗ rY

As explained before, if the MB lies outside the cropping window, the motion information of the block is derived
using the motion estimation algorithm explained in section 2, where the Fine Search is performed with zero
temporal predictors.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algorithm different configurations have been tested: Coarse
Grain Scalability (CGS), Medium Grain Scalability (MGS), dyadic Spatial Scalability (SPA) and Extended
Spatial Scalability (ESS), in each case using different test sequences, where the HD sequences used for ESS test
are provided in7 .

In all the configurations we compare the fast search algorithm used in the JSVM 9.14 reference software8

and the proposed algorithm in terms of Rate-Distortion (R-D) performance and complexity. More details about
how the fast search algorithm adopted in JSVM software works can be found in5 . The R-D performance is
evaluated using the Bjontegaard Delta9 , as suggested by the JVT commitee, while the complexity is evaluated
as the number of tested 4x4 block-match for each macroblock performed during the motion estimation process.
Has been chosen to evaluate the complexity in terms of number of match in comparison to the encoding time
because at the moment only software implementation of the SVC encoder are available, while the final target
of our work is the hardware implementation for real-time coding. With software implementation the encoding
time strongly depends on the level of optimization of the code, as for example efficient implementation of the
matching functions or optimization for particular architectures. At the moment our algorithms have still to
be optimized and so a comparison of the encoding time is not a fairly indicator of the complexity reduction.
Furthermore, in view of an hardware implementation, the aim is to minimize the number of matching performed
for each macroblock because this is the most time-consuming operation involved in the encoding process for each
macroblock.

The main settings of JSVM software used for all the configuration are: 4, 8 and 16 picture GOP dimension
with P-type key-picture, adaptive inter-layer prediction, single loop decoding and intra perdiod usually equal to
2 or 4 times the GOP dimension. For the SPA e ESS configurations we tested two different encoding modes for
the EL: the first one using the same QP for both the BL and EL, while in the second one the QP of the EL is
set to the QP of the BL - 6. In the CGS configuration we test only the case with QP of the EL is equal to QP of
the BL - 6, as suggested in.8 In MGS configuration we usually define 2 enhancement layers with 3 MGS vectors
for each one and the extraction process to obtain the sub-bitstreams has been performed using the “Quality
Layers”10 . In terms of resolution and frame-rate, for the SPA test we used a CIF BL at 30Hz and a 4CIF EL
at 30Hz or 60Hz; for the CGS and MGS tests both CIF 30Hz and 4CIF 30 Hz while for the ESS test we used a
SDTV (720x576) BL at 25Hz and a HDTV EL (1920x1024) at 50 Hz. At the moment, the proposed algorithm
supports only the progressive mode, and so the SDTV BL used in ESS experiments is not a native PAL/NTSC
format, but rather it was obtained by cropping and downsampling the original HDTV video. For the dyadic
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Figure 5. 5(a): RD comparison for SPA using a GOP size = 8; 5(b): RD comparison for ESS using a GOP size = 8
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Figure 6. 6(a): RD comparison for CGS using a GOP size = 8; 6(b): RD comparison for MGS using a GOP size = 8

and Extended Spatial Scalability simulations we used the high complexity version of the algorithm, because the
different spatial format decrease the inter-layer correlation between the respective motion fields, requiring a more
accurate motion estimation in the EL. In CGS and MGS, the low complexity mode of the algorithm has been
used because each layer has the same resolution and it is reasonable that the EL needs only a refinement of
the BL layer motion information. Therefore fewer motion vectors estimation should provide for enough quality
improvement.

Examples of R-D comparison for SPA, ESS, CGS and MGS configurations are shown in Figure
5(a), 5(b), 6(a) and 6(b), while Table 1 presents the mean number of 4x4 block-match for MB for
these configurations. Examples of R-D comparison for SPA, ESS, CGS and MGS configurations
are shown in Figure 5(a), 5(b), 6(a) and 6(b), while Table 1 presents the mean number of 4x4
block-match for MB for these configurations. Examples of R-D comparison for SPA, ESS, CGS
and MGS configurations are shown in Figure 5(a), 5(b), 6(a) and 6(b), while Table 1 presents the
mean number of 4x4 block-match for MB for these configurations.

All the other performed experiments are summarized in Table 2, where the values have been obtained as
the average over different working points, approximately in the 30dB to 40dB range. Table 2 does not present
results for MGS scalability because is a relatively new configuration and the performance comparison is similar to
those of CGS scalability. The motion estimation computational gain of the proposed algorithm is not reported



Table 1. Complexity Analysis Examples

Configuration 4x4 match fo MB gain
proposed fast ME JSVM fast ME

Dyatic Spatial scalability - - -
Extended Spatial scalability 12300 972000 98.7%

Coarse Grain scalability 7500 337000 97.8%
Medium Grain scalability - - -

Table 2. Summary of performance comparison

Configuration Bjontegaard Delta

Rate % Y-PSNR

SPA, GOP 4, QP EL = QP BL-6 2,88 -0,11

SPA, GOP 8, QP EL = QP BL-6 2,57 -0,10

SPA, GOP 4, QP EL = QP BL 3,75 -0,13

SPA, GOP 8, QP EL = QP BL 3,08 -0,11

CGS (LC), GOP 4, QP EL = QP BL-6 1,59 -0,06

CGS (LC), GOP 8, QP EL = QP BL-6 0,72 -0,03

ESS, GOP 4, QP EL = QP BL-6 2,77 -0,13

ESS, GOP 8, QP EL = QP BL-6 1,86 -0,06

ESS, GOP 4, QP EL = QP BL 6,48 -0,30

ESS, GOP 8, QP EL = QP BL 1,72 -0,06

in the table because all the tested configuration show a almost constant gain, which is about 96% to 98%
complexity reduction with respect to the JSVM Fast-ME method, as also evidenced in 1. Table 2 shows that the
proposed algorithm has a good tradeoff between coding efficiency and complexity. In general the performance
depends on the motion activity of the sequence, because the higher the motion is the more difficult it is to catch
the “true”motion vector by testing few vectors. In spatial scalabiliy configurations (SPA and ESS) almost all
sequences show a Bjontegaard Delta lower that 4% in bit-rate increasing or 0, 15 dB of Y-PSNR decreasing, while
for the CGS configuration the proposed algorithm shows almost the same performance of Fast Search algorithm
in reference software, and in fact the loss is lower than 0, 2dB in Y-PSNR or 2% in bit-rate increasing. About
the two different modes of the proposed algorithm, the high complexity version increases the number of tested
motion vector by about 50% with respect to the low complexity one, but with a better R-D performance, so that
it appears suitable for spatial scalability applications.

5. CONCLUSIONS

This work presents a fully scalable motion estimation algorithm for the Scalable Extension of the H.264/AVC
standard. The proposed algorithm correctly works for all the scalability configuration except for progressive to
interlaced scalability. Two different modes for the algorithm at the enhancement layer are proposed, the low
complexity mode suitable for CGS and MGS and the high complexity mode for spatial scalability (both ESS
and SPA).

In conclusion, the proposed algorithm shows good performance with a very high reduction of the complexity
and a limited loss in quality. In particular has been shown as for CGS and MGS scalability is possible to
obtain the same RD performance, while for spatial scalability configurations the loss in performance is limited
within 0, 2dB in Y-PSNR or 4% in bit-rate increasing. Although at the moment only software implementation
of the encoder are available, the low complexity features shown in the work makes it suitable for hardware
implementation in view of the use in consumer application.
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