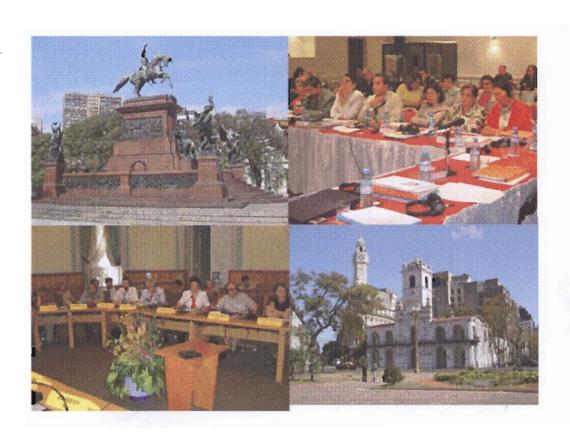


### UNITED NATIONS ENVIRONMENT PROGRAMME




### **CHEMICALS**

# REGIONAL AWARENESS-RAISING WORKSHOP ON MERCURY POLLUTION

A global problem that needs to be addressed

Buenos Aires, Argentina, 13 – 16 September 2004



Overview of approaches that can be used to assess exposures and risks for a population, by Roberto Lucchini, resource person

Slide 1

### Approaches for Assessing Population Exposures

Mercury Awareness Raising Workshop Buenos Aires, Argentina September 13-16, 2004

Roberto Lucchini MD Institute of Occupational Health University of Brescia, Italy lucchiniomed.unibs.st

#### Slide 4

# Compartments used for Hg exposure biomarkers

- Blood (plasma, serum, erythrocytes)
- Hair
- Urine
- Saliva
- Sweat
- Nails
- Skin
- Exhaled air
- Biopsy

Slide 2

### Outline for presentation

Exposure biomarkers
Estimating Hg human exposure

Measuring Modeling

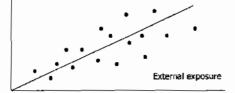
### Slide 5

## Measuring mercury levels in human tissues

Hair: Most commonly monitored tissue.

- Wet digestion (acid/base) measured by cold vapour atomic absorption
- Each cm of hair represents one month exposure (short history of exposure)
- Conversion from hair level to blood level is established (between 250/300:1)

Caution: hair must be washed carefully prior to analysis using 'standard protocol'


Slide 3

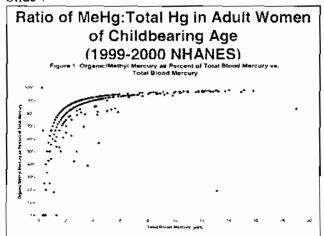
### **Exposure Bio-markers**

### Purpose:

To replace external dose with internal dose on an individual basis

Internal exposure




Slide 6

### Measuring mercury levels in human tissues

Blood: Commonly measured

- Total Hg measured in whole blood using Cold Vapour Atomic Absorption
- Organic mercury removed with solvents and blood reanalysed to determine ratio of inorganic to organic forms
- Cord blood levels are related to maternal blood levels (2:1)
- · Ratio of MeHg to total Hg varies

Slide 7



Slide 10

# Can model estimate exposure from other measurements?

- Example MeHg exposure from fish in US
  - -EPA Mercury Study Report to Congress
  - FDA Exposure assessments in support of fish advice
- Exposure is a function of amount of fish consumed and Hg level in fish

Slide 8

### Measuring mercury levels in human tissues

### Urine:

- Used for biological monitoring in industrial exposures and to measure elemental and inorganic Hg
- Measures excreted mercury
- Useful for establishing elimination rates
- Method: CVAA

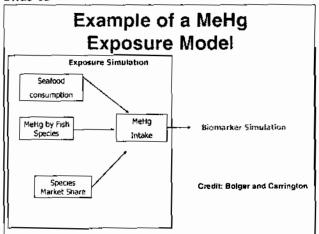
Slide 11

# Estimating exposure through modeling

- Calculation of exposure using available info on:
  - Hg levels in food and the environment;
  - Types and amounts of food consumed;
  - Key groups likely to be at risk
- Purpose of modeling exercise (emission regulation, public health advice)
- · Quality of data used in model

Slide 9

## Caution: Population sampling issues


- Social issues (acceptability of hair, blood, cord blood sampling?)
- Ethical issues (participant consent, reporting to participants, who owns data?).
- When to sample (seasonal and daily variation)
- Confounding factors (hair treatment, other exposures)
- Whom to sample (gender and life stage, crosssection or exposed subpopulation)

Slide 12

### Cautions - modeling

- Regarding models: "All models are wrong; some are useful"
- Regarding data quality for input to models: "Garbage in, garbage out"

Slide 13



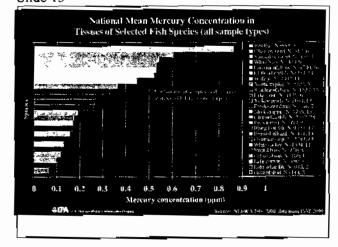
Slide 16

### Mercury Data in Fish and Shellfish U.S. Food and Drug Administration

| Before 20003      |      |           |      | NEW DATA (2003) |            |            |    |    |
|-------------------|------|-----------|------|-----------------|------------|------------|----|----|
|                   | MEAN | RANGE     | 0    | MEAN            | RANGE      | n          |    |    |
| Bluetish          | 0.30 | 0.20-0 40 | 2    | 0.318           | 0.139-0.4  | 79         | 21 |    |
| Croaker*          | 0.28 | 0 18-0 41 | 15   | 0.054           | 0.013-00   | 96         | 51 |    |
| (arouber)         | 0.27 | 0.19-0.33 | 48   | 0.569           | 0 072 12   | 05         | 20 |    |
| Crawfish/crayfish | NA   | NA        | NA   | 0 028           | 0.014-0.0  | 47         | 20 |    |
| Trout Freshwater  | 0 42 | 1 22 (max | ()   | NA              | NA         | NA         |    | NA |
| Farm Raised Trout | NA   | NA        | NA   | 0 033           | 0 015-0 1  | 10         | 15 |    |
| Orange Roughy     | 0.58 | 0 42-0 76 | 9    | 0 485           | 0.013-07   | 62         | 20 |    |
| Red Snapper       | 0.60 | 0 07-1 46 | 10   | 0 154           | 0.077-0.3  | 95         | 12 |    |
| Trout Seawater    | 0.27 | ND-1.19   | 4    | 0.328           | 0.022-0.7  | 44         | 20 |    |
| Tiletish*         | 145  | 0 65-3 73 | 60   | NA              | NA         |            | NA |    |
| Golden Tilefish   | NA   | NA        | NA   | 0.208           | 0.055-1.1  | 23         | 20 |    |
| Whitelish*        | 0.16 | ND-0.31   | 1    | 2               | 0.06B      | 0 027-0 13 | 37 | 14 |
| Black Sea Bass    | NA   | NA        | NA ' | 0.127           | 0.058-0.3  | 52         | 20 |    |
| Sardine           | NA   | NA        | NA.  | 0.016           | 0.004 - 0. | 035        | 21 |    |
|                   |      |           |      |                 |            |            |    |    |

### Slide 14

### Measurements of Hg in fish


- Current data for large oceanic fish species is useful for all countries (shark, tuna, swordfish, etc.)
- Specific measurements may be needed for fish species caught along marine shore or in inland lakes and rivers (possible influence of local sources of pollution)
- Top of the food chain species are the key species to measure

### Slide 17

### Caution: what to measure

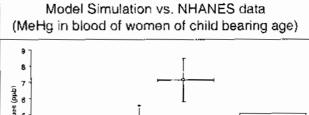
- · High cost of analyzing food items
- Possibility of unusual exposures via food items (e.g., vegetables) grown in contaminated soils
- · Measurement of cooked or raw food
- Other sources beyond food (water, products, jewellery, cooking utensils, dust, occupation, amalgams, etc.)

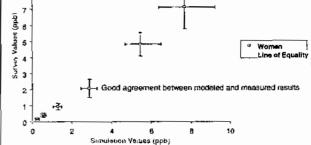
Slide 15



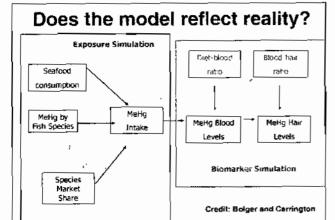
Slide 18

### Caution: how to measure


- Whole fish or part of a fish.... comparing results with others
- Measuring cooked (as prepared for consumption) or uncooked fish tissue
- Quality Assurance/Quality Control (QA/QC) programs are available


### Slide 19

### **Dietary assessment**

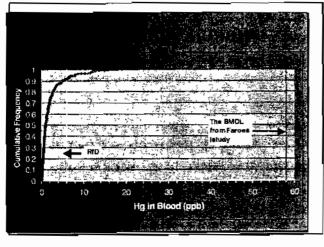

- Dietary surveys (24 hour recall survey, monthly food diary)
- 2. Measure key food items in the diet and multiply by amounts consumed
- Measure what is in total meals (duplicate food plate analyses of meals as they are served)
- Measure what is sold in an area (market basket)

### Slide 22



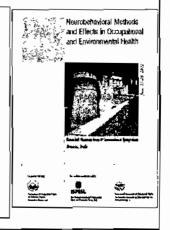


Slide 20




Slide 23

### Guidance from UNEP


- UNEP will prepare a guidance on assessing human exposure to MeHg by
  - Bio-monitoring
  - Dietary survey
  - Modeling techniques
- Available in 2005

Slide 21



Slide 24

- International Commission on Occupational Health (ICOH)
- Scientific Committe on Neurotoxicology and Psychophysiology
- Triennial International Symposia on Neurobehavioral methods and effects:
  - Italy, 2002
  - -Korea, 2005
  - -- Costarica, 2008

