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A new method for the restoration of two-dimensional (2-D) images obtained through a circularly band-limited sys-
tem is given. Object and image are decomposed into circular harmonics, and it is observed that the imaging system
acts separately on each harmonic. We show that superresolution is, in practice, attainable with a small number
of one-dimensional iterations. The method presents several advantages on the conventional 2-D algorithms of the
Gerchberg type. The computing effort in particular can be much reduced. Performances of our method on com-
puter-generated images are presented.

1. INTRODUCTION

In this paper we present a new approach to restoring images
obtained through a circularly band-limited optical system.

Superresolution of the image of a finite object produced by
arbitrary low-pass nonnegative pupils in coherent and inco-
herent illumination has been a topic of current interest (see,
for example, Refs. 1-4) since a simple iterative method was
introduced by Gerchberg in 19745 and further analyzed 6' 7 and
generalized 8 -13 by others.

Although a complete restoration of the information con-
tained in the object spectrum is in theory possible only in the
noise-free case with an infinite number of iterations,6 a sig-
nificant improvement to the effective resolution of a real noisy
image is achievable with a finite number of iterations if the
number of degrees of freedom, or the space-bandwidth
product, of the system is low.6 The techniques for superre-
solution known at present are subject to strong limitations in
this sense. That is, the overall number of degrees of freedom,
in a typical multidimensional system, is so high that an ex-
pensive computational effort is required, involving a large
number of elementary operations as well as long access time
in sequential access memories.

Observing that the circular symmetry of the system allows
for the decomposition of the object-to-image relationship into
a denumerable set of one-dimensional (1-D) operators that
link circular harmonics of the same order, we will demonstrate
here how a two-dimensional (2-D) restoration may be per-
formed through a selected number of 1-D restorations, each
of them corresponding to angular information of interest in
the particular image.

The convergence of the method, as well as the effect of a
finite number of iterations on the image restoration, will be
analyzed by means of the generalized prolate spheroidal wave
functions.' 4

The efficiency of the method will be checked by means of
the restoration of some computer-generated test images. We
have achieved good reconstructions by iterating only those few
harmonic components that were present in the image in a
significant way.

The main advantage of our 1-D approach is that, depending
on the effective space-bandwidth product of each harmonic,
it allows for a differentiation of the restoring effort.

2. IMAGING THROUGH CIRCULARLY
SYMMETRIC SYSTEMS

We remember how a 2-D shift-invariant imaging system can
be generally characterized by means of its point-spread
function s(x, y):

(1)

where i(x, y) is the output of the system (image) corre-
sponding to the given input o(x, y) (object).

In the Fourier space Eq. (1) becomes

Ftij(v,, v2) = F{s(vi, V2)Fjol(vi, V2), (2)

where Ffgj denotes the Fourier transform of the function g(x,
y).

As soon as we consider circularly symmetric systems, it is
advantageous to introduce polar coordinates, both in the data
spaces (r, 0) and in the Fourier space (co, ).

In these coordinates the Fourier transform of g(x, y) is ex-
pressed by

27r +X
F~gI(cw, ) = f X g(r, )exp[i27rcor cos( - 0)]rdrdO.

(3)

Let s(r, 0) s(r) be the point-spread function of our system.
From Eq. (3) its transfer function will be 27rS(c), where S(w)
is the zero-order Hankel transform' 5 of s(r),

S(c) = f rs(r)JO(27rr)dr. (4)

In the following we consider a class of objects of finite
support belonging to L 2(R), where R = (x, y): x 2 + y 2 <

I1.
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Let us develop object and image into circular harmonics:

o(r, 0) = A, ON(r)exp(iNO), 0 r 1, 0 0 _ 27r;
N=--

i(r, 0) = A, IN(r)exp(iNO), 0 r _ +, 0 0 _ 27r.
N=--c

(5)

The Fourier transforms of the above series are written as

Flo1(w, 0) = 27r (-i)NON(w)exp(iN0),
N=-2

fli(, 0) = 2r A,(-i)NIN(w)exp(iNP),
N=--

for 0 c _ +0, 0 _ 0 _2X, (6)

where ON( () and IN(w) are the nth-order Hankel transforms
of ON(r) and IN(r),

Now the kernel SN [see Eq. (10)] becomes

I
SN,a(p,r) = 4a2 wpJN(2rvMrw)JN(27vMpw)do.

(13)

Conventional 2-D iterative image restorations use expan-
sions in terms of the set of eigenfunctions of 3a, i.e., the so-
lutions of the equation

Ak,10k,1(X) = (9.0kl), (14)

where Ak,l is a doubly numerable set' 4 of real and positive
numbers such that Akl 2 /Ak+1,l+j with i, j 2 0, while lbkl(x)}

are the generalized spheroidal prolate wave functions, or-
thogonal on R and complete in L 2(R).16

I) If we introduce the operator T that truncates to the circle
R, the imaging relation [see Eq. (11)] leads to the expres-
sion

'khl = Ak,10k,l (15)

ON(O) = rON(r)JN(27rwr)dr, (7)

with inverse transform

IN(r) = 47 2 fo cIN(co)JN(2rwr)dco. (8)

From Eqs. (1) and (2) we immediately obtain that

IN(r) = 87r3 CS(O9)N(o)JN(27r o)r)dc. (9)

Substituting Eq. (7) into Eq. (9), we have a relationship
between harmonics of the same order,

IN(r) = At SN(p, r)ON(p)dp O(NON)(r), (10)

9N being a shift-variant integral operator.
By now the problem is reduced to the inversion of a count-

able set of 1-D integral operators. This problem can be ap-
proached in different ways; we adopt an iterative procedure.
Through the eigenfunction analysis of the operators involved
we reach a deep comprehension of the reconstruction pro-
cess.

3. THE CIRCULAR BAND-LIMITING
OPERATOR: EIGENFUNCTIONS AND
EIGENVALUES

In the particular case of a circular low-pass system we have

i(x) = J Sa(-y)(y)dY= (9aO)(y), (11)

where x, Y denote radius vectors in the object and image
planes and where

Sa () = S exp(2riV x)d. (12)

Here Pa is the pupil defined by Pa - (v1, v2): p1
2 + v2

2 <
asr 2 SO that a is the space-bandwidth product of the system,
that is, the product of the object support area times the ac-
cessible Fourier area a = w

2
vm 

2
(vM is the maximum trans-

mittable frequency).

connecting the coefficients of the expansions

O(W) = E Ok,1lk,l(y),
kl

Ti( ) = E Ik,11 k, (),
k ,l

x inR. (16)

Now, if we use the result'4 that expanding +I(x) = i(r, 0) in
circular harmonics

06(r, 0) = E RN(r)exp(iNO),
N=-O

the RN(r) satisfy (we may only consider N 2 0)

7N,nRN,. (r) = f JN(2rvMpr)RNn (p)pdp,

where YN,n and MIN,n are related by

AN = 4a2'YN, . 2.

(17)

(18)

(19)

Comparing Eqs. (18) and (13) we immediatly see that the
functions RN,, (r) satisfy the equation

AN,nRN,n(r) = (0N,aRN,n)(r). (20)

In other words {RN,n (r)I is a complete set of eigenfunction for

SN,a

4. ITERATIVE RESTORATION OF HARMONIC
COMPONENTS

For each harmonic component N, we may expand IN(r),

ON(r) into the set {RNfn(r)I complete in L2 (0, 1):

IN(r) = E iN,nRN,n(r),
n=O

ON(r) = E: ONnRNn(r).
n=O

Then Eq. (10) simplifies to

(21)

iN,n = I-tN,nON,n. (22)
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Fig. 1. Plots of qf,(l) = 1 - (1 - N,,,)' for different harmonics and different space-bandwidth products a. The number of iterations I is
given close to each curve [for convenience, continuous curves join the values of qN,y () for the same 1].
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which ensures the convergence of our iteration to the object's

harmonic ON (r).

<4" ~~~~~~~~~It is perhaps worth pointing out that the convergence just
proved does not guarantee a meaningful result in any practical

situation when the image is not perfectly known. This be-
~~~,, ~~~~havior is due to the well-known ill posedness of the mathe-

matical problem of inverting a Fredholm integral equation of
the first kind [Eq. (1)1.

<4<4 "~~~~~~~~~ ~Theory of regularization can be used in order to restore the

~~"<" '4<~~~~ continuity of the inverse operator SON-, by introducing
4' ~~~~suitable constraints on the set of acceptable solutions.'0

On the other hand, in any practical reconstruction only a

p
4 ~~~~~~~~finite number of iterations is performed, and this regularizes

the problem' 7 as well. Comparison of Eqs. (21) and (26)

shows that ON (1)(r) differs from ON (r) in having each coeffi-
cient ON,n multiplied by the weighting factor qN,,

Fig 2 Obect utilzed in eample 1.In Fig. 1 we have plotted the values qN~ (1) for the first

values of N, n and different space-bandwidth products a; the
iteration number 1 is given close to each curve.

We have qN,nl(0=AIN,n. As the number of iterationsl1in-

creases, the qN~ (1) approach one, showing a characteristic

step-function behavior with respect to n, that is, the weighting

factors are very close to unity for any index value between zero

and a certain critical value, after which they drop to nearly
zero values.

4 ~~~~~~~~~~As one can see, for a given space-bandwidth product a, the

critical index decreases with increasing harmonic index N.
This signifies that, as is obvious, the higher the harmonic is,
the more degraded the associated information is. If we con-
sider the image corrupted by noise uniformly distributed over

/ ~~~~~~~~~~the angular harmonics, the modes that are multiplied by small

Fig. 3. Reconstruction of the image in Fig. 4 obtained by iterating
the first seven harmonics according to Table 1.

Now, defining the operator KN,a as

(IZN,aO)(X f 3 I(X -Y)- SN,a(X,Y)1o(Y)dY, (23)

where 6(x is the Dirac delta function, we may use the formal

identity [see Eq. (10)]

IN(r) = ON(r) - (1ZN,aON)(r) for r in [0, 1] (24)

to get the iteration scheme6

ONM'(r) = IN(r) + [KN,aON( 1')Ir)

= IN~~r) + Z (KN~~aJIN)(r), ~Fig. 4. Im age of the object in Fig. 2 (a 10).

1=1 ~~~~~Table 1. Numbers of Iterations Settled with Our
ONM')(r = IN (r), (25) Criterion for Each Harmonic of the Objects in

Examples 1 and 2
Using Eqs. (21) and (22), we may write Eq. (25) as

ON(t)(r) = E ONnqNfnq(l)RNn(r), (26)
n=O

where

qNn( 1 ) = 1 - (1- Nn) 1* (27)

Since 0 < IIN,n < 1, it holds that

lim qN,n (l) = 1 for each N, n,
I- +c

Harmonic Numbers of Iterations
(No.) Obj. 1 Obj. 2

0 69 37
1 291 169

2 63 339

3 420 68

4 3498 289
5 6784 2375

6 796 1362

Vol. 2 No. 11/November 1985/J. Opt. Soc Am. A 2049
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Fig. 5. Plots of the 1-D restorations for each harmonic
component corresponding to the reconstruction in Fig.
3. Dotted-dashed line, object; dashed line, image; solid
line, reconstruction.
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n 1 iON') (kAr)
k=1

ON(1)(kAr)12/ fo 1ONv'1'(kAr)12 (29)
k=1

m being the number of radial divisions, becomes smaller than
a given treshold.

Example 1

The object consists of three Gaussian functions centered at
different points around the origin of the plane (x, y) and

"esidessimulating three bright spots (Fig. 2). The minimum relative
improvement for iteration is set to be 10a7.

The reconstruction (Fig. 3) of an image (Fig. 4) obtained

through a system with space-bandwidth product a = 10 is
calculated by iteration of the first seven harmonics only. The

Fig. 6. Reconstruction of the image in Fig. 8 obtained by iterating higher-order harmonics of the object are in fact virtually
1he first seven harmonics according to Table 1. suppressed by the system so that their contribution to the

image is nearly zero. As it can be seen in Table 1, the optimal
number of iterations is strongly different from one harmonic
to the other. A comparison among the one-dimensional res-
torations of the first seven harmonics (Fig. 5) reveals how the

relative resolution improvement with respect to the image
harmonics IN(r) increases with the order N, as we outlined
in Section 4.

Fig. 7. Object utilized in example 2.

eigenvalues [see Eq. (22)] will not in practice be recoverable.
Besides varying the harmonic N, we need different numbers
of iterations to recover a mode with a specified index n. For
a = 1 about 1 = 10, 50, 300 iterations are necessary to bring the

coefficients qN,1(1) close to one for the harmonics N 0, 1, 2,
respectively (Fig. 1). Restoration of higher-order harmonics
would likely mainly amplify the noise and thus should be Fig. 8. Image of the object in Fig. 7 (a =15).

avoided.
A different number of iterations is also required for each

harmonic to obtain the same relative resolution improvement.
For example, with a 6.25 about 200 iterations are required
for the harmonic N =0 to double the resolution (i.e., the
number of modes that are present in the image), whereas for

N = 1 we need fewer than 30 iterations.

5. EXPERIMENTAL RESULTS

The proposed method has been tested on some 2-D target
objects. A number of noise-free images were created on a

polar grid consisting of 64 angular divisions and 40 radial di-
visions of the domain R.

For each harmonic we evaluated the optimal number of
iterations by means of the following criterion. Iteration of
the Nth harmonic ends as soon as the relative improvement
for iteration eN (1, defined as Fig. 9. Image of the object in Fig. 7 (a =30).
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Example 2
The reconstruction (Fig. 6) of the target object shown in Fig.
7 is obtained from an image with a = 15 (Fig. 8). Again, only
the first seven harmonics turned out to be significantly present
and recoverable. The threshold for the relative improvement
eN(1) is now set to 10-6, and the corresponding numbers of
iterations are reported in Table 1.

The same considerations as in example 1 on the numbers
of iterations and resolution improvement for each harmonic
are still valid.

For comparison we also report the image (Fig. 9) of the
object in Fig. 7 obtained through a system with space-band-
width product a = 30. It can be seen that this image (Fig. 9)
and the reconstruction (Fig. 6) are qualitatively similar.
Therefore we conclude that the obtained superresolution has
allowed for a near doubling of the effective space-bandwidth
product. On the other hand, it should be clear that the in-
crease of resolution depends on the angular spectrum of the
object.

6. CONCLUSIONS

Using the circular symmetry of the problem, 2-D iterative
superresolution is performed through separate I-D recon-
structions of the harmonic components of the object imaged
through a circularly band-limited system.

Our method has the following important advantages:

1. It avoids interpolation errors when image data are given
on a polar grid.

2. The number of required computations may also be
considerably reduced. If, for instance, we need L iterations
to recover a particular high-frequency angular information
with a conventional Gerchberg algorithm," the number of
operations will be proportional to LM2 log2 M (M2 is the
number of data), since each iteration requires a 2-D fast
Fourier transform (FFT). On the other hand, if we iterate
separately only the harmonic components of interest, we need
a number of iterations of order LM 2 for each component, since
the operator N,a is shift variant and L is allowed to vary from
one harmonic to the other. For large M and strongly varying
L the reduction of complexity is relevant.

3. Our algorithm also noticeably reduces the access time
to data stored in a sequential memory, because of its lowering
the dimensionality of the problem. With this method, the
handling of large matrices as is required by methods based on
2-D FFT can be avoided.

4. If the image is noisy, then iteration of high harmonic
components would produce only an amplification of the noise.
This iteration is implicit in the 2-D algorithms and imposes
a limit on the number of iterations. The limit can be con-
siderably increased, though, in the 1-D restoration of selected
harmonic components whose signal-to-noise ratio is not too
low.

A minor disadvantage of the method can be seen in the in-
creased complexity of evaluating the kernel SN,a [Eq. (13)]
used in our iteration, in comparison with the kernel Sa [Eq.
(12)]. However, this does not significantly affect the per-
formances of the algorithm, since the values of N,a are to be
computed only once for each harmonic component.

G. Gregori and S. Wabnitz

Superresolution of some computer-generated images has
been performed to show the validity of the proposed method.
These experimental results confirm how the computational
effort is, in general, strongly different from one harmonic to
the other. Consequently, one can optimize the number of
iterations to be carried out for each harmonic indepen-
dently.
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