
374 J. Opt. Soc. Am. B/Vol. 7, No. 3/March 1990

Finite-dimensional description of nonlinear pulse
propagation in optical-fiber couplers with applications to

soliton switching

E. Caglioti

Dipartimento di Fisica, Universitb di Roma "La Sapienza," P. le Aldo Moro 7, 00185 Rome, Italy

S. Trillo and S. Wabnitz

Fondazione Ugo Bordoni, Via Baldassarre Castiglione 59, 00142 Roma, Italy

B. Crosignani and P. Di Porto

Dipartimento di Fisica, Universit& dell'Aquila, 67100 L'Aquila, Italy

Received May 14, 1989; accepted October 6, 1989
We have developed a general formalism able to describe nonlinear pulse propagation in multimode optical fibers or
waveguide couplers by means of a finite number of parameters, which are functions of the traveled distance. These
parameters possess a direct physical meaning and can be interpreted, for a wide class of time-dependent interaction
phenomena, as conjugate variables of a suitable Hamiltonian. The accuracy and the importance of the method are
discussed with reference to a specific example of bimodal optical propagation, involving soliton switching and
soliton instabilities.

1. INTRODUCTION

A wide class of nonlinear fiber propagation problems associ-
ated with the optical Kerr effect can be described in terms of
a system of partial differential equations (PDE's), which
represent the space-time evolution of the complex ampli-
tudes of a modal expansion of the electric field.' It is well
established that, under approximations that are reasonable
for picosecond pulses, this system takes the form of a set of,
say, N coupled nonlinear Schrodinger (NLS) equations.'
Unfortunately, only a few analytical solutions of such sys-
tems of equations are known, which usually take the form of
temporally localized solitary wave packets. In the particu-
lar case of propagation in a monomode fiber, a single NLS
equation results.2 -8 As is well known, this equation is exact-
ly integrable both in the anomalous- 4 and in the normal-5

dispersion regimes by means of the inverse scattering trans-
form (IST) method, which reveals the existence of a family
of bright4 6 and dark5 ,7 solitons, respectively. NLS bright
and dark solitons have been observed experimentally in the
propagation along an optical fiber. 9"10 On the other hand,
when a system of incoherently coupled (i.e., with coupling
terms that are linearly proportional to the intensities of the
components) NLS equations are considered, only a few spe-
cial cases (with N = 2) are completely integrable by means of
the IST,"1,' 2 whereas no such IST solutions have been found
when linear coupling terms are present. Solitary wave solu-
tions to systems of coupled NLS equations may be found,
without resorting to the IST method, by means of direct
methods.13- 8 These solutions include polarization-modu-

lated vector solitary waves in birefringent fibers 6 and cou-
pled dark and bright solitary waves that may be sustained
either by cross-phase modulations or by polarization cou-
pling due to fiber birefringence. 8

If, on the one hand, serious difficulties are faced in trying
to obtain analytical solutions to initial value problems in-
volving a set of coupled NLS equations, on the other hand,
there is a strong interest, in various applicative problems, in
finding ways of characterizing the nonlinear evolution of
pulses that propagate in mode-coupling structures. To this
purpose, a popular approach has been that of forgoing an
exact solution of the system of PDE's in favor of an approxi-
mate description of the pulse evolution based on a limited
number of parameters of direct physical interpretation that
obey a set of ordinary differential equations (ODE's). Since
the early work of Kaup and Newell, 9 a number of papers
have appeared in which the particlelike nature of solitons
has been exploited in order to derive, from conservation
laws, ODE's for the adiabatic variation of some soliton pa-
rameters during the propagation.2 0 -24 In particular, Refs.
20-22 have shown that, from the variational principle based
on the field Lagrangian, one may obtain a set of ODE's for a
given number of relatively slowly varying parameters, which
determine the field amplitudes through a prescribed func-
tional dependence. This method gives results that are gen-
erally in good agreement with those obtainable by means of
analogous perturbative approaches based on the longitudi-
nal variation of scattering parameters associated with the
IST representation of the pulse.22 23 Alternatively, one may
also prove, by direct insertion of the modal amplitudes into
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the set of NLS equations, that a suitable choice of soliton
parameters yields equations for conjugate variables of a fi-
nite-dimensional Hamiltonian dynamical system.24

Finite-dimensional approaches to nonlinear wave propa-
gation are particularly attractive in that one may gain an
immediate global physical insight, for example, by means of
drawing phase-space portraits or by finding motion invari-
ants, into the dynamics of a solitonlike wave packet. For
example, a description based on a Hamiltonian system with
only a few degrees of freedom may permit an analytical
determination, by means of well-developed techniques,2 5 of
the regions in parameter space that may be subject to soli-
tary wave instabilities, thus avoiding extensive and blind
numerical searches (for example, with the beam-propaga-
tion method2 6). Finally, replacing a system of PDE's with a
few coupled first-order ODE's is generally convenient also
from a purely computational point of view, even though this
may lead to reduced numerical accuracy.

In the present paper we present a systematic approach
that permits the derivation, starting directly from a quite
general class of field Lagrangians, of a self-consistent system
of Hamilton equations for a finite set of suitably chosen
parameters that characterize the interacting components of
the pulse envelope. In this way we are able to generalize the
results that were obtained in Ref. 24 for a specific propaga-
tion problem, where the resulting Hamiltonian form of the
parameter ODE's looked somewhat fortuitous. The actual
number of parameters is arbitrary, and clearly the accuracy
of the finite-dimensional representation may be improved
by increasing the number of parameters. These parameters
possess an immediate physical meaning and give rise to a
particularly simple and elegant finite-dimensional descrip-
tion.

The general formalism is applied in this paper to nonlin-
ear pulse propagation, in the regime of anomalous chromatic
dispersion, through two-mode coupling structures. Such
nonlinear couplers have been of interest in recent years for
demonstrating the potential of glass fibers for ultrafast all-
optical switching.2 7 The two coupled modal amplitudes
may represent, for example, the individual (or array) modes
of a twin-core fiber,28

3
1 the two counterrotating circular

polarization components of a linearly birefringent fiber,32 33

the unperturbed linear polarization eigenmodes of a periodi-
cally twisted fiber,34 or the two lowest-order modes of a
single-core fiber or waveguide, with35 or without 36 grating-
assisted coupling. Besides being of potential for these ap-
plications, coupling processes in two-mode structures are
known to exhibit intriguing nonlinear dynamical properties
even in the steady-state limit.3 1-33 As we shall show, the
finite-dimensional perturbative approach makes it possible
to appreciate more clearly what the effects are of the extra
degrees of freedom that are provided by linear dispersion on
the spatial instabilities and the self-switching of short opti-
cal pulses.

The practical interest in using two-mode fiber coupling
structures in the anomalous-dispersion regime and with
pulses whose values of peak power and width are sufficiently
close to the values required for the formation of solitons is
the possibility of avoiding the breakup of the output pulse
profile, which typically occurs in the quasi-continuous-wave
regime.3 7-40 This phenomenon is detrimental if, for exam-

ple, one wants to cascade different switching elements and is
due to the fact that different portions of a sufficiently long
input pulse couple with different efficiencies and coupling
periods, according to their own instantaneous power level.
A substantial improvement in the switching characteristics
may result when square pulses are used,4' although the syn-
thesis of such pulses with picosecond durations requires
considerable experimental effort. 42 On the other hand, it
has been pointed out and recently experimentally demon-
strated that the particlelike behavior of soliton pulses may
inhibit pulse breakup in different examples of ultrafast all-
optical switching devices. 43- 7 Moreover, in the specific case
of interest here, namely, the interaction between two linear-
ly and nonlinearly coupled modes, the existence of soliton
instabilities has been numerically and analytically investi-
gated by several authors.4 5 47-50

The paper is organized as follows: in Section 2 we present
specific physical examples of two-mode fiber couplers for
which the time-dependent propagation is described by sys-
tems of NLS equations. In Section 3 we derive a finite-
dimensional representation of the propagation of a pulse.
From a field Lagrangian that is written in a general form, one
may reduce the Lagrange equations to a system of coupled
first-order ODE's for a set of suitable time-independent
Hamiltonian conjugate variables. Finally, in Section 4 we
discuss an example in which the method is applied to investi-
gating soliton switching and instability phenomena in a non-
linear directional coupler.

2. COUPLED-MODE EQUATIONS

Here we give a brief r6sum6 of the coupled-mode equations
that govern the propagation of two coupled pulses in differ-
ent types of fiber couplers. These include the cases of a
linearly birefringent fiber, a periodically twisted birefrin-
gent fiber, and a single-polarization, dual-core fiber. Along
with the coupled-mode equations, the respective field La-
grangians are also listed below.

A. Birefringent Fiber
The electromagnetic field propagating in a linearly birefrin-
gent optical fiber along the positive direction of the z axis,
which is aligned with its symmetry axis, can be expressed as
a superposition of linearly polarized guided modes, with
mean optical frequency 0, in the form

E(x, y, z, t) = [xEx(z, t)exp(if3xz) + yEy(z, t)exp(iflyz)]

X f(x, y)exp(-ioot), (1)

where ifxy(wo) are their propagation constants and f(x, y) is a
modal transverse configuration (which is assumed equal for
the two modes, which is reasonable in a weakly birefringent
fiber). The slowly varying amplitudes Ax(z, t) =E.(z,
t)exp[i(x - jy)z/2] and Ay(z, t) = Ey(z, t)exp1-i(#x -fy)zI

2] obey the set of PDE's 45 ,5, 6 ,51

a Ax 1 ~ aA x aO2Ax Af
i +- Ax +-A

dz Vx t 2 t2 2

+ R[Ax12 + (1 -B)IAyI
2]Ax + RBAY2Ax* = 0,
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+ - A a, A- _ A# A
z V t 2 t2 2

+ R[IAy12 + (1 - B)IAx 2]Ay + RBAX2AY* = 0, (2)

where Vxy = (d,3,,/dwl w )-1 are the group velocities of the
modes, a,,,y = d~x y/d2LO represent chromatic dispersion,
and A13 = #Bx(co) - fly(wo) is the fiber birefringence. More-
over, R = wong/cA, where A is the effective common area of
the modes and n2I is the nonlinear refractive-index coeffi-
cient (the total refractive index is n = no + n2JI, I being the
intensity). We assumed in Eqs. (2) that the modes are
mixed by the isotropic nonlinear vectorial displacement52

DNL = eo[(1 - B)(E E*)E + B(E - E)E*], (3)

where B = Xxyyx/Xxxxx and X = 3xxxxx (note that 0 < B < 1 and
B = 1/3 for silica).

The nonlinear Eqs. (2) for the fields may be expressed in
terms of a variational formulation by means of a Lagrangian
density C. This is a functional of the modal amplitudes, of
their partial derivatives with respect to z and t, and of the
complex conjugates of these quantities (which are regarded
as independent variables). The Lagrangian density that
generates Eqs. (2) is

L =-IM(AX* xAx + Ay* aAY

- A * X + 1 A *Ay)
VX at VY at 

ax Ax* Ax ary AY* AY
2 at at 2 at at

+ A': flAx2 - AY12) + RB (IAx 14 + AY14)

+ R (1 - B)(IAxl2 + IAYI2)2 + RB (Ay 2Ax*2 + Ay*2Ax2).
2 2 

(4)

The set of equations describing the evolution of the modal
amplitudes Axly can be obtained from the Lagrangian densi-
ty L = L£[JAjJ, Ajz1 , {AjtJ, Aj*}, tAjz*1, {Ajt*1I, withj = x, y, by
the variational principle

a Jf dzdtL = 0, (5)

which in turn implies the Lagrange equations

00 + OdLC dO
at Aj t dz Aj- aAj

a _ 01 dO _ 01= 0
at Aj t* dz OAjz* OAj*

j = x,y, (6)

where Ajt 0 /Aj/t and Aj, 0,Aj/az. The first and the second
of Eqs. (6) yield the coupled-mode Eqs. (2) and their com-
plex-conjugate equations, respectively.

Let us now rewrite Eqs. (2) in terms of circularly polarized
modes, which are given by the relations 53

A+ = It (A., + iAY),

A = a (Ax- iAY).

1_ 

(7)

From Eqs. (2) one obtains

/oA+ + 1 A\ a O2A+
O5z 5V s 2 S2

+ R[(1 - B)IA+12 + (1 + B)IAi 2]A+ = 0,

./dA_+ 1 dA+\ a2A-
i + - I-- kA+
O dz SV s 2 0s 2

+ R[(1 - B)IAj 2 + (1 + B)IA+12]A. = 0, (8)

where k A#/2. In Eqs. (8) we assumed equal dispersion
coefficients for the linear polarization modes a. = ay a, and
we used the delayed time variables s = t - zIVg, where Vg-1
(V-' + VY-1)/2 and 6V-- (V-' - V- 1)/2 are the inverse of
the average group velocity and of the group-velocity differ-
ence, respectively. The Lagrangian density that generates
Eqs. (8) is

dA_ dA+
L = -Im A_* - +A+* d

az ~az

1 I * dA_ A-*
5V ~ as a sJ

2 ds ds + A' As.) + k(A+*A_ + A-*A+)

+ R(1 - B) (IA 14 + IA_1 4) + R(1 + B)IA+ 2 A_ 12. (9)
2

In Eqs. (8) and (9) the coefficient k, which is due to fiber
birefringence, leads at low powers to complete periodic pow-
er exchange between the two circularly polarized compo-
nents. The spatial period of the coupling is the beat length
Lb = 2LC = 7r/k, where L, is the coupling length. In the limit
k = 0, the circularly polarized waves experience just a non-
linear phase shift (this leads to a uniform rotation of the
polarization ellipse52 53), which is due to the self- and cross-
phase modulation terms [with coefficients R(1 - B) and R(1
+ B), respectively]. Both in the steady state and in the
dispersive regime, at relatively high peak powers the pres-
ence of both linear coupling and nonlinear phase shifting
leads to polarization-instability phenomena.3 2' 33 ,4 i5 0

B. Periodically Twisted Fiber
Consider now the case of a birefringent fiber, in which longi-
tudinally periodic coupling between the two linear polariza-
tions is introduced by periodic twisting. In the regime of
purely linear coupling, this fiber may be used for wave-
length-dependent polarization rotation. When the fiber is
placed between two crossed polarizers, a bandpass filter
results, with typical bandwidths of a few nanometers. 34

Whenever the total field is written as the superposition of
linearly polarized modes [see Eq. (1)], the slowly varying
envelope amplitudes Axly that were introduced in Subsection
2.A obey the equations
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iAx + 1 Ax _ X + A Ax + 2k cos(3oz +)A,
Oz V.,a t / 2at' 2

+ R[IAx 12 + (1I B)IAY12]Ax + RBAY2Ax* = 0

dA~ 1 OA \ a d2 A A13
(az vY at 2 t 2 
-tdY+ -Vd- Y 2-- 2A y + 2kcos(IBoz + )Ax

+ R[IAyI2 + (1 - B)lAx12]AY + RBAx 2 AY* = 0. (10)

With respect to Eqs. (2), note the presence here of a new
term, which is due to periodic coupling between the two
linearly polarized modes. This leads, at low powers, to com-
plete rotation of the polarization state of a linearly polarized
beam, which is initially aligned with the principal birefrin-
gence axes.34 Moreover, the group-velocity mismatch be-
tween the two coupled linear polarization modes is responsi-
ble for the dispersive properties of the coupling structure
that are inherent in the filtering action.54

Equations (10) may be simplified by introducing the slow-
ly varying amplitudes

y y exp[ 2 (6z - ] ' (11)

where the coefficient 6 - [#x(wo) - fly(co)] - f3o/2 is the
detuning from resonance [where Af(wo) = flo]. Neglecting
the terms that correspond to fast spatial oscillations (rotat-
ing-wave approximation), from Eqs. (10) one obtains

Oa+ 1 a. a O2ax
i -+ -- 2-- +6ax +kaaz 6was i 2 as2

X 3

+ R[lax12 + (1- B)la 1
2]ax = 0,

aax aa -c a2a ' +k
az avas 2 aS2

+ R[lay 12 + (1 - B)ax 12]ay = 0, (12)

where s and 6V are the delayed time and the group-velocity
difference, respectively, as they were defined in Subsection
2.A. The field Lagrangian density that corresponds to Eqs.
(12) is

L I ( * aa, *ay)
X=-Im a az + ayaz/

-Im 1 a * ! aa I * ay( m a, as 6W a as)
aax* aax aay* aay\

2 as s as as)

+ k(axay* + ayax*) + 6(lax12 - laYl 2)

+ 2 (lax14 + laY4) + R (1 - B)(la 12 + la 2)2. (13)

It is worth noting that Eqs. (12) and (13) are a correct
representation of the propagation in the nonlinear rocking
rotator fiber filter only for relatively low peak power levels.
These are such that the nonlinear power exchange that oc-
curs between the modes over a distance of the order of the

birefringence beat length Lb may be neglected. At higher
power levels, when the nonlinear power exchange may no
longer be neglected, the rotating-wave approximation does
not apply. In this case, even in the stationary regime the
nonautonomous coupled-mode equations do not possess the
integrability property: spatial Hamiltonian chaos in the
evolution of the polarization may occur.55 56

C. Dual-Core Fiber
The scalar field that travels in a weakly coupled dual-core
isotropic fiber may be expressed as the superposition of the
modes of the two individual cores:

E(x, y, z, t) = [A1(z, t)f1(x, y)exp(i3 1z)

+A2(z, t)f2 (x, y)exp(ij 2z)]exp(iw0t). (14)

For identical cores, the slowly varying modal amplitudes A1,2
obey the system of coupled PDE's4 6

(i - dA +kA2+RIAj2A =0,~az 2 a 2 /

(. a - a 2 2
I-z 26 A2+ kA + RIA 2I

2A2 =0, (15)

where s is the delayed time in a reference frame that travels
with the common group velocity Vg. Equations (15) are
adequate to describe situations in which the isotropic part of
the nonlinearity and the linear coupling represent weak per-
turbations to the ideally uncoupled propagation of the
modes of the two identical cores. The Lagrangian density
that corresponds to Eqs. (15) is

L = + * aA2 A2* aAjImAlaz az)

a+aAi* Al + aA2* aA2
2 ds as as as)

+ k(A1 *A2 + A2 *A1) + 2 (IA114 + A214).
2 

(16)

As one can see by inspecting Eqs. (9), (13), and (16), there
is a close similarity between the field Lagrangians that de-
scribe the interaction of two circularly polarized modes in a
birefringent fiber, of linearly polarized modes in a periodi-
cally twisted fiber, and of scalar individual core modes of a
twin-core-fiber nonlinear directional coupler.

3. HAMILTONIAN FORMALISM

We deal here with a quite general form of field Lagrangians,
which are associated with the nonlinear interaction between
two guided modes. Extension to the general case of N cou-
pled modes is rather straightforward and will not be dis-
cussed here. The treatment that follows may be immediate-
ly applied to deal with any one of the cases that appear in
Section 2. We show how two coupled NLS equations may
be reduced to a Hamiltonian system of ODE's for a certain
set of z-dependent parameters. We consider Lagrangian
densities that take the general form
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2 r i au. au.* i3 aujL = EU ) (-1)i m (u*
Z.=12L az 'az / V ~'at

auj* / au3 - au,1 \11
-ui -F )+ V at j at

E-Z ±_ -( |uJ4 + A(Iu112 - IU21)
2at 2 /

+ K(UIu 2 * + U1*U 2 ) + Ylu,12 1u,1 2
+ P(U2 U,*

2
+ U2 *

2
UJ2),

(17)

where m and n can independently assume the values of 0 and
1 and the upper (lower) sign in front of the dispersive term
holds in case of propagation in the anomalous- (normal-)
dispersion regime. The explicit form of the coupled-mode
equations that are satisfied by the modal envelopes (u, u2 )
may be obtained by writing the Lagrange equations [see Eqs.
(6)] that correspond to Eq. (17). They read as

au, m aul n U2 a2u2

I- --- +-- I:1

\az V at V at 2 at2

+ AU1 + KU + (JU11 + ZIU2)U1 + PU2 2U,* = ,

./dU2 m aU2 n ui 12 dU2
az V at V at 2 t2

- AU2 + xu1 + (IU21 + yIU,1 2)U2 + PU2 U2* = 0. (18)

Equations (17) and (18) appear in a normalized form: we
have adopted the usual dimensionless soliton units, where z
is expressed in terms of a characteristic length z, t2/Ica (o
= rzc/2 is the period of higher-order solitons of a single NLS
equation),9 t is the retarded time, which is in units of the
temporal width t of the fundamental soliton solution of a
single NLS equation [ = sech(t)], and the field amplitudes
are normalized accordingly.9,45-51 We have also introduced
a normalized group-velocity difference V = 6Val/t,. The
mismatch term A between the propagation constants of the
two guides may be due, for example, to the presence of
uniform twisting or optical activity in a birefringent fiber
(Subsection 2.A) or to core asymmetries in a dual-core fiber
(Subsection 2.B).

Clearly, Eqs. (17) and (18) include as particular cases all
the equations discussed in Section 2. For example, the
linearly polarized modes of a birefringent silica (i.e., for B =
1/3) fiber satisfy Eqs. (18) with m = 1, n = 0, A = A,3ts2/21al, K
= 0, y = 1-B = 2/3, and p = B = 1/3. The interaction of
circular modes in the birefringent fiber is described by Eqs.
(18) withn= 1,m = 0,A O,-y = (1 +B)/(1 -B) = 2,p = 0,
and K kts2/IaI = AIlts2/21a1 = zo/Lc = Pcjl - yI/4Ps, where Pc
and P, (in watts) are the continuous-wave critical switching
power and the fundamental soliton power of a single NLS
equation, respectively. In the case of linearly polarized
modes, which are coupled along a rocking rotator glass-fiber
filter, Eqs. (18) apply with m = 1, n = 0, A = ats2/IaI, K = kt,2/

jai = PC/(12P8 ), y = (1 - B) = 2/3, and p = 0. Finally, Eqs.
(18) hold for a dual-core fiber with m = n = 0, A = 0, K = kt, 2/
IaI, and -y =p = 0. Equations (17) and (18) may also describe
other-types of interaction: For example, consider the cou-
pling between two lowest-order modes in a multimode fi-
berl3 6 or between two pulses with identical polarization and

slightly different average frequency that travel in the same
mode of an isotropic fiber. 7

Let us introduce the Lagrangian L, which is defined as

L = £dt, (19)

so that the variational principle [Eq. (5)] may be expressed
as

6 Ldz = 0. (20)

First, let us suppose, in the spirit of the finite-dimensional
approach, that we may characterize each mode amplitude

uj(z, t) = Iuj(z, t)Iexp[itj(z, t)] (j = 1, 2) (21)

in terms of a finite number, say, 2N + 2, of z-dependent
parameters

(n = 0, 1, 2, 3,... , N) ( = 1, 2),

(22)

which are defined as follows:

Mn'N(Z) = | tnluj(z, t)12 dt,

N
*j(z, t) = E an(j)(z)tn.

n=O

(23)

(24)

Second, we assume that the lun(z, t)12's are of the form

Iuj(z, t)12 = Fj[Mo()(z),Mll)(z),. . ., MN()(Z), t], (25)

where Fj is an arbitrary function that satisfies Eq. (23). We
therefore look for the solution of the variational problem
[Eq. (20)] with u in the class of functions that is defined by
Eq. (25). For example, when N = 2, we may write

IUj(Z, t)1
2

= AI
1

O ( <I)' (26)

where rj and aj are obviously related to the first- and second-
order momenta Mo(W) and M2 ('), respectively, and fj is an
arbitrary normalized function with mean value and variance
equal to 1. The accuracy of the approximation depends, of
course, both on the choice of the number N of degrees of
freedom and on the form of the fj's.

According to the above considerations, we have, in gener-
al, that

L = L[an(j), ,(i) , X (i)], (27)

where the dots stand for derivation with respect to z. Set

L Lo + L,

where by definition we choose

+ + 2 i uj duj* dt
Lo -Lodt =| E2 U dz -Ui d]zd

f J=
1

- |~ J Iuji dt =- E (

j=1 j=1 n=O

and consequently

(28)

(29)
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(30) this may lead to rather lengthy expressions: an example of
(30) such calculation is given in Appendix A.

We may then rewrite the Lagrange equations associated
with the variational principle [Eqs. (6): here the Aj's are
replaced by the uj's and (j = x, y) with (j = 1, 2)]. We obtain

a 0L aL

0_- OL
d a at

- -L a iU) = 

= 1,2), (n = 0,1,2,3, ... ,N). (31)

By inspecting Eqs. (24)-(26) and by exploiting the special
form of the Lagrangian in Eq. (17), one may immediately
verify that

aL aL0 U
oanu =~n a°=M , (32)

so that the moments Mn() represent the conjugate momenta
of the variables an('). Besides, the set of Eqs. (31) reduces to

a U) at aLl
az n oa ) aan U

OL 0L0 0L1 _ _~n~j ~ L 0 . (33)
-aMn° = aMn° - aM ° a° aM ° ° 33

These are Hamiltonian equations of a dynamical system
that is described by the set of conjugate variables Mn), an(),
whose Hamiltonian H is given by L1, that is,

dMn) Ll __ OH
dz da,,') a,,(j)

dan) OL1 H aH
dz -Mn(,) Mn() (34)

The Hamiltonian H is obviously also a conserved quantity
of the original PDE's [Eqs. (18)]. Note that the reduction
procedure presented above is by no means limited to the
specific Lagrangian in Eq. (17): rather, the method is valid
in all cases when the term L1 does not exhibit an explicit
dependence on both OMn~()/Oz and an(). Therefore the
method may be applied with great generality to different
physical situations, also beyond the framework of nonlinear
optics. Note also that it is the particular choice of the
parameters Mn(7) and an(Z) in Eqs. (23) and (24) that permit-
ted the reduction by a factor of 2 (from 2N + 2 to N + 1) of
the number of degrees of freedom of the problem. This is a
consequence of the peculiar form assumed by the kinetic
part Lo, which in turn implies that OLo/Oan(J) = aLol/[aMn(i)/
az] = 0. By using the above formalism one may recover in a
much simpler way the results of Ref. 24, where the Hamilto-
nian form of the parameter equations was obtained through
a constructive and rather cumbersome approach. This con-
sisted in explicitly deriving the z evolution of Mo(iW, M10,
M2P), and ao(j), al(i), a2/) by direct insertion into the set of
PDE's. In order to obtain the Hamiltonian H in explicit
form one must perform the integrations in Eq. (30). Even in
the simple case with N = 2 and with Gaussian pulse shapes

4. SOLITON SWITCHING AND INSTABILITIES

The effectiveness and accuracy of the finite-dimensional
characterization of pulse propagation in coupling structures
are investigated here in some specific cases involving nonlin-
ear directional couplers or birefringent fibers. In particular,
we are interested in soliton switching and instability phe-
nomena, so that the analysis is restricted to propagation in
the anomalous-dispersion regime. The method requires
specification both of the number 2(N + 1) of momenta and
of the particular form of the functions Fi appearing in Eq.
(25). Numerical simulations46 have indicated that under
certain conditions solitonlike input pulses may periodically
couple between the two modes of the coupler without appre-
ciable changes in their shapes, so that we may choose N = 2.
In addition, the switching properties and the soliton insta-
bility phenomena do not to critically depend on the tempo-
ral shaping of the input pulses, which justifies the choice of
Gaussian pulse profiles. This choice corresponds to the
example reported in Appendix A and leads to substantially
simpler expressions for the Hamiltonian with respect to the
hyperbolic secant case. The interaction of weakly coupled
modes may be described by Eqs. (8) or (15), so we shall set p
= 0 and A = 0. We are essentially interested here in study-
ing propagation over relatively short interaction lengths (of
the order of the linear beat length), so we may also neglect
any group-velocity difference. Therefore, according to Eq.
(30), the Hamiltonian is H = LI - HI + H2 + Hint, where

H1 = j1 (- + JujJ4)dt (j = 1, 2),

Hint = ('yIu 1
21u212 + 2K Refu1u 2*D)dt. (35)

We consider here, for the sake of simplicity, the case of
initially unmodulated pulses. Since we have also neglected
the presence of group-velocity difference V, one obtains
M/i)(z) = a/i)(z) = 0, j = 1, 2. As a consequence, the
evolution of each pulse may be characterized by four param-
eters only (instead of six), and propagation described by the
pair of NLS Eqs. (18) is studied in terms of a three-degrees-
of-freedom Hamiltonian system of ODE's. As is shown be-
low, the Hamiltonian in Eqs. (35) is considerably simpler
than the general case in Eq. (A3) below. The total Hamilto-
nian H = H1 + H2 + Hint may be expressed as a function of
the eight momenta a0o(), a2(), M(i), MPi) (j = 1, 2) and takes
the form

1 [M 0~')]2 +j-!-M- ) + [M 0
0j)]112

Hj = M2 V) + 2[a2(112[M )]} 4 [M 2 (j)]1/2

(7 =1, 2),

{2 [M ([)MO(2)]3/2 [M(1)m2(2)}1/211/2

(expfi[ao (2) - a0 Ml] _y { [MO()Mo(2)] 3 11/2
X R ~ (1--id) M J,,r (36)

with M = Mo(f)M2(2) + M0
(2)M2(C) and d = 4[a2(2) -

LJ (L -L)dt.
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a2 (')]M2(1)M2(2)/M. The evolution equations for the momen-
ta and their conjugate variables are readily obtained from
the total Hamiltonian H in the usual way [see Eqs. (34)].
Integration of these equations for different choices of the
initial conditions permits a study of the dynamical behavior
of soliton parameters along the fiber. We have not been
able to find additional invariants, besides the trivial ones
associated with the conservation of energy, E = MoM1 +
Mo(2), and with the conservation of momentum. 4 7 Therefore
a numerical integration of the trajectories of the dynamical
system that is described by Eqs. (34)-(36) was necessary.

We shall discuss first the performance of the finite-dimen-
sional representation in the simulation of ultrashort-pulse or
soliton-switching experiments.3 7 -4 A typical situation in-
volves the study of the transmission characteristics of a
coupler when one is varying the peak power of a pulse of
given temporal width that is initially launched into one of
the two modes. Beam-propagation simulations show that
the pulses may switch between the two modes at the output
without appreciable distortion in their shape, when the in-
put peak power of the pulses grows larger than a certain
critical switching power. 46 47

A fundamental soliton of a single NLS equation is repre-
sented, in the spirit of our approach, by Eq. (Al), with Mo()~a
= (r)1/2. Here we set the normalized input variance c-j2 =

(2)-1/2, so that the fundamental soliton corresponds to a
normalized amplitude equal to 1 [i.e., u0 = 1 in Eq. (Al)]. In
the following calculations, the peak power p of the pulses is
normalized by the continuous-wave critical power P,: p =
Pp/Pc = u0211 - y1/4K = [MO(1) + MO(2)]Il - 'Y/4K(2)1/4(7r)1/2.

In Figs. 1-4 we present a comparison of calculations ob-
tained by integration of the representative system of ODE's
(dashed curves) or by numerical integration of the PDE's by
the beam-propagation method (solid curves). These calcu-
lations involve the evolution of typical parameters that char-
acterize the pulses along a dual-core fiber (see Subsection
2.0): Figs. 1-4 show the pulse energy (which is equal to Mo)
and the pulse width (i.e., a) versus the normalized propaga-
tion distance. In Figs. 1 and 2 we simulate launching into
one core of the fiber coupler a fundamental soliton with peak
power equal to the critical continuous-wave power (i.e., K =
0.25 and p = 1), whereas Figs. 3 and 4 show the case in which
K = 0.25 and p = 1.5. Here the peak power of the input pulse
is larger than the fundamental soliton power but still lower
than that of the first higher-order (i.e., spatially periodic)
soliton. Note that the propagation distance is given in units
of the soliton characteristic length: one coupling length
corresponds in Figs. 1-4 to z = 2r. Whenever the peak
power is lower than a certain critical power, complete and
periodic energy exchange occurs (see Fig. 1). On the other
hand, for powers larger than the above value of power only a
small fraction of the total energy is coupled back and forth
between the modes (see Fig. 3). As is clear by inspecting
Figs. 1-3, almost complete switching of the output energy
may be obtained in a one-coupling-length long dual-core
nonlinear directional coupler (i.e., for z = 2r). This may be
seen as a consequence of the halving of the period of the
energy exchange that occurs when the input peak power
grows from P = P = P to P = 1.5PC. Figures 1 and 3 show
that a remarkable agreement exists between the finite-di-
mensional representation and the beam-propagation calcu-
lations, as far as the energy exchange is concerned, over
relatively long propagation distances.

Consider next the pulse compression that may result from
studying the evolution of pulse widths along the coupler.
Figure 2 illustrates the case of a pulse that is launched at the
input with p = 1. Substantial temporal broadening may
occur in a pulse that travels in the input mode whenever
energy is transfered into the other mode: this is because,
when the peak power grows smaller, the nonlinearity cannot
balance dispersive broadening any longer. For the same
reason, pulse compression occurs as the energy is coupled
back. Meanwhile, the width of the pulse that propagates in
the coupled mode grows only slightly larger over the same
distance. Note the discrepancy that occurs between the
predictions of the present method (dashed curves) and
beam-propagation simulations (solid curves) in the estimate
of the degree of temporal broadening of the pulse that prop-
agates in the input mode. The situation is rather different

3

'3)

'3)

(U

2

1

0
0 5 10

distance z
Fig. 1. Evolutions of the pulse energies along a dual-core nonlinear
directional coupler (z is in units of soliton length z,) when a funda-
mental soliton (K = 0.25, p = 1) is launched at the input of one guide.
The dashed curve is obtained by integration of the ODE's, while the
solid curve is obtained by numerical integration with the beam-
propagation method of the PDE's.

5

4

3

2

1

a)
o)

0
0 5 10

distance z
Fig. 2. Evolution of the pulse widths (standard deviations ai, i = 1;
2) along a dual-core nonlinear directional coupler when a fundamen-
tal soliton (K = 0.25, p = 1) is launched at the input of one channel.
The dashed curve is obtained by integration of the ODE's, while the
solid curve is obtained by numerical integration by the beam-propa-
gation method of the PDE's.
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Fig. 3. Same as in Fig. 1 but with p = 1.5.
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Fig. 4. Same as in Fig. 2 but with p = 1.5.

As can be seen, with this choice of parameters (which yields
P = P), good agreement exists, both in the shape of the
characteristics and in the value of the switching power, be-
tween the description of Eqs. (17) and (18) and that of Eqs.
(34)-(36). Note that in the pulsed case the effective switch-
ing power, as estimated from energy-transmission curves, is
shifted toward higher powers with respect to the continuous-
wave case. A qualitative explanation of this phenomenon is
given in Appendix B. We show there that, based on the
present model and under reasonable approximations, the
evolution of the energy of two coupled solitons may be well
approximated by the evolution of two equivalent continuous
waves, with an effective power that, as one would expect,
turns out to be smaller than the peak power of the input

1 0 pulse.
Figure 6 shows energy transmissions [calculated by means

of Eqs. (34)-(36)] from a dual-core coupler as a function of
input pulse peak power for three different values of the ratio
Pc/P,. A reduction of the normalized coupling K leads to

10

when the input power is raised to the value p = 1.5. Stable
oscillations in the broadening and compression of the input
pulse width occur with a spatial period that is the same as
that of the energy transfer: the minima in the width corre-
spond to the minima in the energy that remains in the pulse.
At the same time, the amplitude of the oscillations in the
compression of the coupled pulse width gets substantially
larger with the distance. In this case (see Fig. 4) the agree-
ment between the results of the two methods is satisfactory.
Note that the small discrepancy in Figs. 1-4 between the
initial values of the energies and the widths for the solid and
dashed curves is due to the fact that the beam-propagation
method simulations were carried out by using input pulses
with hyperbolic secant (instead of Gaussian) profiles.

In Fig. 5 we compare three straight-through nonlinear
energy transmissions {defined as Mo(1)(z = L,)/[Mo(M) +
Mo(2)], where i = 1 or 2 indicates the model from a one-
coupling-length-long dual-core-fiber nonlinear directional
coupler. The switching curves were obtained by numerical
integration of Eqs. (34)-(36) with input pulses of the form of
Eq. (Al) (solid curve), by the beam-propagation method
solution of Eqs. (18) (dotted-dashed curve, where squares
represent actual calculated points), and by solving the cou-
pled-mode equations in the continuous-wave limit (dashed
curve). In solving Eqs. (34)-(36) we took -y = 0 and K = 0.25:

1

z
0
0-)
Cn
: 0.5
E-

0
0 1 2 3

INPUT PEAK POWER p
Fig. 5. Nonlinear switching characteristics for a one-coupling-
length-long dual-core nonlinear directional coupler fiber. The
dashed curve shows stationary power transmissivity versus power,
while the other two curves show energy transmissions that are ob-
tained either with the beam-propagation method integration of the
PDE's (dotted-dashed curve with squares) or by integration of the
present ODE's (solid curve), with K = 1/4 andy = 0.
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Fig. 6. Average transmissions versus pulse peak power for differ-
ent values of the linear coupling x, for a L,-long dual-core nonlinear
directional coupler: K = 1/8 (dotted-dashed curve), K = 1/4 (solid
curve), K = 1 (dotted curve).
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larger effective switching powers and smoother switching
characteristics. In particular, when K = 1/8 the switching
curve is close to the continuous-wave case with an effective
switching power of p = 2. However, for values of K as high as
1, the switching characteristic departs strongly from the
stationary case. Values of K larger than 1/4 correspond to a
situation in which, at the critical power p = 1, pulses with
peak power larger than the fundamental soliton power or
even higher-order solitons (for K = n/4, n > 1, integer) are
launched at the input. Note that increasing K while keeping
the normalized input pulse width fixed is equivalent to re-
ducing the input pulse width with a given value of the cou-
pling distance.

Energy transmissions computed over longer propagation
distances and with relatively high values of K may display a
complex behavior. For example, Fig. 7 shows the transmis-
sion computed for K = 1 and y = 0 and for a coupler of length
L = 2c. In contrast with the regular (oscillatory with pow-
er) switching characteristics that pertain to the stationary
case, irregular soliton transmission curves are obtained be-
cause of a stochastic behavior of the spatial evolution of the
parameters associated with the interacting pulses. The his-
tory of pulse energy versus length for different input condi-
tions is displayed in Figs. 8 and 9. In Fig. 8 we show the
energy MoMl' of a circularly polarized pulse that propagates
in a birefringent silica fiber (i.e., y = 2 and B = 1/3, with K =

1) over a relatively long distance (20 characteristic soliton
units). Figure 9 shows evolutions of circular polarization
components of a pulse that propagates in a birefringent
fiber, again with K = 1. The initial polarization is close to
either the slow (dashed curve) or fast (solid curve) birefrin-
gence axis (this is spatially unstable in the continuous-wave
regime32' 33). Spatially disordered evolution may result for
the pulse parameters described by the model of Eqs. (34)-
(36) when the initial polarization of the pulse is close to a
spatially unstable eigenstate.

The disordered evolution of the pulse energies that is
revealed by the trajectories and the switching characteristics
is associated with the nonintegrability of the Hamiltonian
dynamical system of Eqs. (34)-(36), which may lead to cha-
os. However, owing to the high number of degrees of free-
dom of the system, a more detailed numerical or analytical
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Fig. 7. Average transmission for a dual-core nonlinear directional
coupler of length 2L, and K = 1.
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Fig. 8. Irregular spatial evolution of the total energy contained in
the initially excited right-handed circular polarization component
of a pulse traveling in a birefringent fiber, for K = 1. z is in units of
soliton characteristic length.
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Fig. 9. Same as Fig. 8, when the input pulse is polarized close to the
slow (dotted curve) or fast (solid curve) axis of the fiber.

study of the irregular behavior and of the chaoticity domains
is beyond the scope of this work. We wish, however, to point
out that, in order to assess the physical significance of the
spatially disordered evolutions that are exhibited by the
time-independent parameters in the framework of the
present finite-dimensional representation, one should ex-
amine the effects of increasing the accuracy of the represen-
tation, for example, by means of adding new parameters or
by direct simulation of the solutions of the full system of
PDE's.

5. CONCLUSIONS

We have presented a general method for dealing with non-
linear pulse propagation of coupled modes in guiding struc-
tures. It allowed us to reduce the system of nonlinear cou-
pled PDE's, which describe time-dependent propagation, to
a set of ODE's for a finite number of parameters, character-
izing the phases and the intensities of modal amplitudes.
Starting from the field Lagrangian, we have demonstrated
that these two sets of parameters are conjugate variables
through a suitable Hamiltonian, which is readily evaluated,

l l l l l l l1 l l l l l l l l l l1 l l l l l l
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once the shape of the pulses and the number of parameters
have been chosen, by performing simple integrals.

By applying the method to the investigation of soliton
switching in two-mode fiber couplers, we have been able to
reproduce the characteristic features of the energy transfer
and temporal compression of the interacting pulses, in good
agreement with results that are obtainable by numerically
integrating the system of coupled NLS equations. Exten-
sions of the present method may be useful for dealing with
different systems of coupled PDE's, representing physical
interactions that are also outside the field of optics.

APPENDIX A

In the following example we explicitly calculate the Hamil-
tonian for the case N = 2; in other words, we assume that
each pulse can be simply characterized by three momenta
(MO, Ml, M2) associated with the pulse energy, the pulse
walk-off from the center-of-mass, and the pulse width, re-
spectively. We further assume a Gaussian shape for the
pulses, so that

Iui(z~t)I2=uio2exP[- (t -j)2 Moj) p[(t rj)2 ]

(Al)

where
Al )

JM1U),
2

= M2) _ 2

_j Mo Tj.

APPENDIX B

Here we show how the switching behavior of interacting
solitons in fiber couplers can be explained, in a qualitative
way, by means of a simple transformation of the Hamilto-
nian calculated with the method reported in this paper [see
Eqs. (35) and (36)]. More precisely, we show that, under
certain assumptions, the evolution equations that govern the
pulse propagation in the framework of our model are equiva-
lent to the coupled-mode equations that describe the propa-
gation of continuous waves in a time-stationary regime.

In particular, we consider here the evolution of two soli-
tonlike unmodulated pulses [i.e., aj(2) = 0], which evolve with
constant and equal variance. This assumption, though it
may appear arbitrary, turns out to be well supported by
numerical simulations, performed either by integrating the
equations obtained by means of the present model or by the
beam-propagation method. In fact, by investigating the
behavior of pulses that are launched with fixed width and
increasing peak power, as is done when one is computing the
energy transmissions, it turns out that, for not-too-large 's,
they exhibit only small periodic variations of their widths.
Even at powers lower than the soliton power, they couple
without experiencing substantial width variations (see Figs.
2-4), at least over the lengths considered. According to
these considerations, the Hamiltonian given in Eq. (36),
written as a function of the pulse widths al = 0r2 a = (M2/
MO)1/2, takes the form

(A2)

The total Hamiltonian may be written as a sum of two parts,
which describe self-interaction and the mutual interaction
between the two pulses, respectively. By evaluating all the
integrals that appear in Eq. (30), one finds that

H = H[MO(I, ao0 )] = [ 0 ] + [Mor ]

+ 2K[Mo(l)M 0 (2)j]l 2 cos[a 0 (l) - a0(2 )I + 7 MoMyoM
2#cr

(B1)

H = EH + H. = m (B{ (-l)[al)M0 (0 ) + 2a2 j)Ml~jl v [[ M0iM( 2 ) 11/2 ia 3-j) expli(a 0(3j) - aO U'TIH = mt, ~1 -IVjVI (r 2 +cr) 1-d
j=1,2 = .i=1,2 2a 'IJ id

Ti2 T2 2
_a -4 +

4cr1
2 4cr2

2

{ + 22 + i[al(3-j)I2cr1
2 2cr22

- aif)]} cr2)
1

1 -id

-z {MO + a(j)12MO(') + [(j)]2M2() - A(_)jMo0U) + Mt 0()
+F + [ Re[M]I( , ') 4A[)-a2t 2
- 2 4 cr 2 + - - - I + 

/ r~ ~T . T2 - i (2) - ,1)] 2 ]
• 2K Re MM (M 2cr,c 2 \ 1/2ex iao2)-a l]ep T1

2 T2
2 tc, + 2 c 2r2 I

2 R - id c12 + ' 22 )J e p ia ( ) - a ( ) l x ( 4cr 1
2 4cr 2

2 1 - id

+ 'Y MOM~MO(2) 1 expF -2 +T

7 2i (al 
2

+ cr 
2
)1/

2 L[ k r 
2

2
2

,)]

+ p Re expli[ao(2) - ao (')iexp(- 
2

T2 r 
2

+ { +2 +i (A3)

L [2ir(al 2 + cr2
2)(1 - id)] 1/2 2cr1

2
-2cr 2

2 +1 -id2

where a
2

= (1/cr12 + 1/0Y2
2
)-', d = 4cr 2[a2(2) - al(2)], and dj =

4o-j2[a( 2) -al(2).

where we have dropped the dispersive term since it is z
invariant for constant a. From Eq. (Al) it is immediately

X exp
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verified that the variables yi = Mo(i)/[Mo(l) + MO(2)] are con-
jugate to the ai = ao(i) through the Hamiltonian

Hyi, a) = 1 - [ + Mo 2 (), a . (B2)

Since the Hamiltonian in Eq. (B2) depends only on the
phase difference a = a - a2, and the total energy is con-
served (i.e., yi + Y2 = 1), the relevant variables turn out to be
the phase and the energy difference, a and y = Yi - Y2,
respectively. It is easy to show, with a canonical transfor-
mation, that the variables (y, a) are conjugate variables, with

H = H(y, a) = ply2 + 1-y 2 cos(a), (B3)

da = OH dy _ OH
dR ay dD da

where we have introduced the propagation distance in units
of beat length = 2KZ = 2rzl/Lb, z being the propagation
distance in real units, and the normalized peak power pi = pl
(2)1/2. This Hamiltonian is formally equivalent to the inte-
grable Hamiltonian that governs the nonlinear evolution of
two coupled modes in a fiber coupler in the stationary re-
gime.55'56 In the continuous-wave case, Eq. (B3) holds, pro-
vided that pi is given the meaning of total continuous-wave
power normalized to the critical one, say, Pcw = P/Pc, the
variables a and y being, respectively, the phase and continu-
ous-wave power (normalized to the total power, that is, y e
[-1, 1]) differences.

Such formal equivalence implies that, under our assump-
tions, the dynamical evolution of the interacting solitonlike
pulses follows the corresponding evolution of the continuous
waves, where the role played by the power of the waves is
now played by the energy (i.e., the time integral of the pow-
er) of the pulses. Furthermore, the continuous-wave nor-
malized power Pcw is replaced, for solitonlike pulses, by the
power pi = p/(2) 1/2, where p is the input peak power of the
pulse divided by the continuous-wave critical power P,
Since switching for continuous waves is expected, on the
basis of Eq. (B3) at the critical power,5 5 that is, for Pcw = 1
(see the dashed curve in Fig. 5), this qualitatively explains
why switching of the pulse energy, which would be expected
for pi = 1, actually occurs for larger values of power p (see
Fig. 5).
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