August 15,1991 / Vol. 16, No. 16 / OPTICSLETTERS 1249

Ultrashort soliton switching based on coherent energy hiding
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Coherent coupling between light and atoms may be exploited for conceiving a novel class of all-optical signal-
processing devices without a direct counterpart in the continuous-wave regime. We show that the self-switching
of ultrashort soliton pulses on resonance with a transition of doping centers in a slab waveguide directional cou-
pler is based on nonlinear group-velocity (instead of the usual phase-velocity) changes.

The nonlinear response of a material to a propagat-
ing field permits the control of light by light, which
may permit ultrafast all-optical signal processing.
For example, Fig. 1(a) shows the intensity-induced
routing of two N = 1 solitons of the nonlinear
Schrodinger equation by means of a Kerr nonlinear
directional coupler® (NLDC). Pulses with rela-
tively low intensities emerge from guide 2. By an
increase in the input soliton intensity, the nonlinear
refractive-index mismatches the coupler, and cou-
pling is suppressed. In this Letter we demonstrate
that an opposite switching behavior may occur in
the coherent regime, i.e., whenever the input pulse
width is shorter than the decay times of a two-level
system (TLS) nonlinearity.? On TLS resonance,
the nonlinear change of refractive index is zero,
therefore no nonlinear switching is possible for con-
tinuous waves. On the other hand, if the input
pulse is a 27 soliton of self-induced transparency*
(SIT), then linear coupling may be suppressed by in-
creasing the input time width of the constant area
pulses above a certain threshold value [see Fig. 1(b)].

The possibility of switching SIT solitons of fixed
time width in a TLS-doped NLDC by means of con-
trolling the input pulse area was suggested in Ref. 3.
Here we elucidate the physical principle of SIT soli-
ton dynamics in the NLDC and propose that the
switching may be controlled by changing the input
pulse width (or velocity). Moreover, in Ref. 3 an ap-
proximate coupled-mode formalism (i.e., valid only
in the ideal case of a flat mode and doping profile in
the guiding region, and no field in the cladding®®)
was used. Since coherent pulse propagation is sen-
sitive to transverse effects,*”® we consider here real-
istic one-dimensional slab waveguides and directly
solve the wave equation in one spatial transverse,
temporal, and longitudinal coordinate.

The equations for the slowly varying envelopes of
the field E(x, z,¢) and polarization P(x, z,t) at the
resonant frequency  read
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Here B is the linear propagation constant of the
waveguide mode, 1/8' is the mode group velocity,
ko = wfc, x is the transverse coordinate, n(x, z) is the
linear index profile of the coupler, o is the linear
background absorption, W is the population inver-
sion, o' = puowN(x), where p is the dipole moment
of the transition, and N(x) is the doping profile
across the coupler. In Egs. (1) we have neglected
the relaxation times for the population and the po-
larization, say, T: and T;. Equations (1) may be re-
duced to a dimensionless form by changes in the
variables,
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where 7o is an arbitrary time width, subject to
70 << T1,T>. Equations (1) reduce to
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where we have defined
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We chose the following input conditions for the field
and the atoms:

Eiz=0,x¢) = é—sech(t/r)F(x — Xo),

P(z,t = -T) =0, Wzt =-T)= -1, (5)

where F(x) is the transverse profile of the local TE,
mode of an individual guide (with the center at
x = %) and T is the half-width of the computational
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Fig. 1. Switching in a soliton NLDC: (a) Kerr solitons,
(b) two-level system solitons.
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Fig. 2. Input pulse (top) and pulses in the NLDC after

one half and one coupling lengths. Left, linear coupler;

right, resonant TLS doping, with an input area ® = 2m

temporal window. The function F' was normalized
so that the pulse area ® = [E(x = 0)d¢ = 7A.

In the computations, we have used a grid of
256 samples both in the time and transverse coordi-
nates, a temporal window 27 = 207 and a trans-
verse window 2X = 500. We solved Egs. (3) by
means of a split-step procedure, where the linear
diffraction step was advanced by Fourier transfor-
mation, whereas the propagation step involving the
linear index profile and the nonlinear interaction
with the TLS doping was advanced by means of a
predictor—corrector method.’

We assume here a NLDC with tapering of the
coupling strength. That is, we allow for a slow vari-
ation with z of the distance Ax = Hy(1 + yz®) be-
tween the two waveguides. A parabolic tapering of
the coupler leads to an exponential dependence on 2
of the linear coupling coefficient as in Ref. 3. We
have set for the linear index difference in the guid-
ing region of the identical step index guides én =

0.00363, and the guide width was kh = 41.1, which
yields single-mode operation. The minimal center-
to-center separation between the guides was d =
Hy, + h = 2h, and the bending coefficient was
vy = 7.5 x 107°. Finally, the peak value of the non-
linearity coefficient was set equal to a(0) = 1.39 X
107*, and the total length of the coupler was L =
6.78 x 10*. The adiabatic tapering condition,
HyyL << 1, was well satisfied.

In Fig. 2 we show the input pulse and the pulses at
one half and one coupling distances (in terms of A =
Ao/n) in the tapered coupler. Here we have taken
7 = 2 and have assumed that o = 0. This figure
shows a main result of the simulations: an input
pulse of area ® = 27 may travel almost undistorted
in the input guide without coupling to the other
channel (Fig. 2, right), whereas in the absence of
doping the coupling is complete. Note that in each
contour plot the intensity is normalized with respect
to the peak value. Initially the time width of the
soliton is compressed by approximately a factor of 2,
whereas the peak intensity grows larger. On exit-
ing from the coupler, the pulse is slightly absorbed,
and its time width recovers the initial value.

Figure 3 shows two examples of output pulse pro-
files; the input area is ® = 447 in both cases, but the
input time width is different. In Fig. 3(a) the input
pulse width is 7 = 4 so that the initial amplitude is
the same as in Fig. 2 (left). By comparing Figs. 2
and 3(a), one can see that the bar state for the soli-
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Fig. 3. Switching of the output pulse from the bar to the
cross state by halving the input time width of the input
pulse (with a constant area ® = 41) for (a) T = 47 and
(b) T = 27,.
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ton is stable with respect to an increase of the pulse
width. On the other hand, Fig. 3(b) shows the im-
portant property that, if the input area is main-
tained constant but the pulse width is reduced,
switching of the soliton from the bar to the cross
state may be obtained [see Fig. 1(b)]. In Fig. 3(b)
the input width was 7 = 2, so that the initial inten-
sity was four times higher than in Fig. 3(a). By
comparing Fig. 2 (left) and Fig. 3(b), one also can
see that for a fixed input time width, switching of
the whole output pulse from the cross to the bar
state may be achieved by increasing the input area
(or intensity).

The mechanism behind the resistance of SIT soli-
tons to linear coupling is the coherent exchange of
energy between the field and the atoms in the input
guide, which effectively hides the pulse from the
other guide. In a linear directional coupler, energy
transfer may be inhibited by introducing strong dif-
ferential gain or absorption between the input guide
and the crossed guide. Here the input guide is
transparent because the leading part of a 2# pulse
in the input waveguide is absorbed, whereas the
trailing section of the pulse is amplified by stimu-
lated emission. On the other hand, whenever the
coherent pulse reshaping is strong relative to the lin-
ear coupling, all the energy that gets coupled to the
cross guide is rapidly absorbed. As a result, the
growth of energy in the cross guide is inhibited, and
the input soliton propagates unchanged. The rela-
tive strength between nonlinearity and coupling
may be varied by changing the input pulse width,
which in coherent pulse propagation leads to differ-
ent values of the group velocity in the medium.
The separation between coupled and decoupled soli-
ton regimes occurs at the critical pulse width

zear, = 1, (6)

where z. is the width of the coupling region and 7, is
the critical input width of the 27 soliton. In fact, in
the retarded coordinate frame of Eqgs. (3), the veloc-
ity of the soliton is a7,”. Therefore a time delay of
one pulse width occurs over the distance z. of Eq. (6).
This is confirmed by the numerical results: Eq. (6)
predicts, in real units, z. = 3600\ with @ and 7 =
7 = 2 as in Fig. 2 (left). In conclusion, pulses that
are longer (shorter) than 7, remain uncoupled (cou-

pled) through the TLS NLDC. In fact, Egs. (3) and
(4) show that an increase in the input pulse width 7,
is equivalent to an increase in the strength of the
nonlinear coefficient a.

The crucial advantage of using coherent effects
for all-optical processing is the possibility of exploit-
ing the resonant enhancement of the nonlinearity,
which would permit relatively low-power operation
of the NLDC at an arbitrarily high bit rate. As dis-
cussed by Watanabe et al. bound excitons in CdS
may be modeled as a TLS with transverse decay
times of the order of hundreds of picoseconds. With
an exciton concentration N = 10 m~3, an input 2
pulse width of 2 ps, and a linear coupling distance of
2 mm, we predict switching energies as low as
0.1 pJ. We have also verified that the SIT switching
mechanism persists whenever moderate background
losses are present (i.e., for 6z, = 0.2-0.3).
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