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We analyze from both the physical and the analytical viewpoints the equation

!u 0000 � � þ
Z 1

0

½u 0ðxÞ�2dx
� �

u 00 ¼ g;

the solutions represent the equilibria of a thin extensible beam subject to external load.
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1. Introduction

We consider a boundary value problem, written in dimensionless form, describing the

steady state solutions of the vertical de°ection u : ½0; 1� ! R, with respect to the

reference con¯guration, of a thin extensible beam of natural length ‘ > 0 hinged at

the endpoints of the space interval:

!u 0000 � � þ
Z 1

0

½u 0ðxÞ�2dx
� �

u 00 ¼ g;

uð0Þ ¼ uð1Þ ¼ u 00ð0Þ ¼ u 00ð1Þ ¼ 0:

8<
: ð1:1Þ
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Here, g 2 L2ð0; 1Þ is the lateral static load distribution, while the positive parameter

! is of the order h2

‘2 , where h � ‘ is the thickness of the beam. Finally, � 2 R rep-

resents the longitudinal displacement of the ends, proportional to the axial load

acting in the reference con¯guration. Precisely, � is positive when the beam is

stretched, negative when compressed.

As customary in the structural mechanics literature, the investigation of the

solutions to (1.1), in dependence on �, is named nonlinear buckling problem. The

notion of buckling, introduced by Euler more than two centuries ago, describes a

static instability of structures due to inplane loading. In this respect, the main

concern is to ¯nd the critical buckling loads, at which a bifurcation of solutions

occurs, and their associated mode shapes, called postbuckling con¯gurations. In the

past, nonlinear buckling problems were mainly considered in the ¯eld of structural

and engineering mechanics (cf. Ref. 13 and references therein). Nowadays, the study

of the prebuckling, transition and postbuckling states under prescribed compressive

stresses has become of particular relevance in the analysis of the static deformation of

micromachined beams and microbridges (cf. Ref. 8). Indeed, the thin ¯lm material

composing a micromechanical structure is normally under residual stresses, as a

result of fabrication processes. Unlike microelectronics devices, a micromechanical

structure is no longer constrained by its underlying silicon substrate with the

exception of its ends. Therefore, residual stresses may cause bending and buckling of

its con¯guration, and this behavior can be exploited to fabricate useful micro-

mechanical structures.

A lot of papers on postbuckling analysis of beams axially loaded at the ends

beyond the critical value are present in the literature. However, most of them deal

with approximations and numerical simulations. For a detailed overview, we refer the

reader to Nayfeh and Pai (see Ref. 14). To the best of our knowledge, exact solutions

to (1.1), with g ¼ 0 and hinged ends, have been ¯rst found in Ref. 5 and, more

formally, in Ref. 15, whereas exact stationary solutions to the ended-loaded

Timoshenko beam equation have been obtained in Ref. 11. Around the same period,

several authors have also investigated the stability properties of the unbuckled

(trivial) and the buckled stationary states (e.g. Refs. 2, 6, 11 and 15), but only in the

homogeneous case g ¼ 0.

On the contrary, our aim is to understand how the steady state solutions are

a®ected by the presence of an external load. Therefore, we assume g 2 L2ð0; 1Þ, and
we look for solutions to (1.1) in the following sense.

De¯nition 1.1. A (weak) solution to (1.1) is a function u 2 H 2ð0; 1Þ \H 1
0ð0; 1Þ

such that

!

Z 1

0

u 00ðxÞw 00ðxÞdxþ � þ
Z 1

0

½u 0ð�Þ�2d�
� �Z 1

0

u 0ðxÞw 0ðxÞdx ¼
Z 1

0

gðxÞwðxÞdx;

for every test function w 2 H 2ð0; 1Þ \H 1
0ð0; 1Þ.
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It is worth noting that (1.1) represents the static counterpart of quite many

di®erent evolution equations, arising both from elastic and viscoelastic theories (see

Ref. 9 and references therein). An example is the following quasilinear equation

describing the small transversal de°ection of the Euler�Bernoulli beam, proposed by

Woinowsky�Krieger (see Ref. 16) in the '50s:

@ttuðx; tÞ þ !@xxxxuðx; tÞ � � þ
Z 1

0

½@�uð�; tÞ�2d�
� �

@xxuðx; tÞ ¼ gðxÞ: ð1:2Þ

This is the case of a beam with ¯xed ends where the geometric nonlinearity,

accounting for the axial tension due to the elongation, is taken into consideration (see

Ref. 13). Obviously, the steady state solutions remain the same in the presence of

rotational inertia (as in the Kirchho® theory), or of any kind of damping, due to

structural and/or external mechanical dissipation. The global dynamics of (1.2) with

linear damping and hinged ends has been addressed in Refs. 7 and 10, where the

existence of the global attractor is obtained, for a general longitudinal displacement

�. The result has recently been improved in Ref. 9, which provides the optimal

regularity of the attractor for the motion of both damped-elastic and viscoelastic

nonlinear extensible beam models related to (1.1).

In any case, the set of solutions to (1.1) has a dramatic e®ect on the long-term

dynamics of the corresponding evolution system, especially when its structure is

nontrivial. Indeed, very di®erent asymptotic behaviors occur, depending on whether

the associated static problem has one, a ¯nite number or in¯nitely many solutions,

respectively (cf. Refs. 9 and 10). Nonetheless, in spite of its wide range of applications,

a stringent variational derivation of (1.1) seems not to be available in the literature

(see Ref. 1 for a survey on nonlinear corrections to classical beam models). Besides, it

is not clear at all if and how this model could be extended to account for shear

deformations in plates.

The goal of this paper is twofold. On one hand, we provide a detailed variational

derivation of the model equation; this is done in Sec. 2. On the other hand, we

solve (1.1), obtaining a closed-form solution for the postbuckling con¯gurations. To

this end, in Sec. 3, we actually consider an abstract generalization of the original

Eq. (1.1). The analysis of the homogeneous case is carried out in Sec. 4, where we

provide an explicit formula for the solutions, for all values of � and !. Finally, in

Sec. 5, we tackle the more complicated nonhomogeneous case. Here, besides � and !,

the multiplicity of solutions depends on the shape of the distributed lateral load g.

2. A Variational Derivation of the Model

In this section, we derive the physical model (1.1), following the classical variational

approach of the minimum energy principle.

Let us consider a thin cylindrical beam of natural length ‘ > 0, uniform cross

section and thickness h > 0. Assuming the beam homogeneous, with unitary mass

density and symmetric (along with all external loads) with respect to the vertical
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xy -plane, we can restrict our attention on its section lying in the plane z ¼ 0. In the

sequel, we identify the beam with the section and we assume that its middle line at

rest occupies the interval ½0; ‘� of the x -axis. The beam is subject to a distributed body

force

~gðx; yÞ; ðx; yÞ 2 ½0; ‘� � � h

2
;
h

2

� �
;

in the transversal y -direction only, and to a uniform boundary tension

~� ðxÞ; x 2 @½0; ‘� ¼ f0; ‘g;
in the axial x -direction only. On each cross x -section, their resultants amount to

gðxÞ ¼
Z h

2

� h
2

~gðx; yÞdy; x 2 ½0; ‘�

and

�ðxÞ ¼
Z h

2

� h
2

~� ðxÞdy ¼ h~� ðxÞ; x 2 f0; ‘g:

Introducing the displacement vector at a generic point ðx; yÞ of the beam

Uðx; yÞ ¼ ðW ðx; yÞ;Uðx; yÞÞ;
where W is the stretching component and U is the bending component, we consider

the symmetric strain tensor of ¯nite elasticity

" ¼ "11 "12

"21 "22

� �
¼ 1

2
½rU þrUT� þ 1

2
rUTrU: ð2:1Þ

Assuming the beam to be isotropic, according to the Hooke law, the stress�tensor is

given by

¾ ¼ �11 �12

�21 �22

� �
¼ E

1þ �
"þ �

1� 2�
trð"ÞI

h i
;

where E > 0 is the Young modulus and � 2 ð0; 12Þ is the Poisson ratio.

Besides the thinness of the beam, which amounts to require h � ‘, we make the

following further assumptions:

(i) The x -component of the gradient of the stretching W ðx; yÞ is small compared to

the other gradients.

(ii) The Kirchho® assumption is ful¯lled: any cross section remains perpendicular to

the deformed longitudinal axis of the beam during the bending.

Within this approximation scheme (cf. Ref. 12), the only nonzero component of the

stress tensor is

�11 ¼
E

1þ �
"11 þ

�

1� 2�
ð"11 þ "22Þ

h i
:
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On the other hand, the equality

0 ¼ �22 ¼
E

1þ �
"22 þ

�

1� 2�
ð"11 þ "22Þ

h i
yields the relation

"22 ¼
�

� � 1
"11

and we ¯nally obtain

�11 ¼
E

1� � 2
"11:

At this point, we assume for the components of the displacement vector U the

approximated forms

Wðx; yÞ ¼ wðxÞ � yu 0ðxÞ; Uðx; yÞ ¼ uðxÞ; ð2:2Þ
where we put

wðxÞ ¼ W ðx; 0Þ; uðxÞ ¼ Uðx; 0Þ:
In fact, (2.2) is rigorously justi¯ed in large de°ection theory by means of an

asymptotic expansion, as explained in Refs. 3 and 4. Therefore, from (2.1),

"11 ¼ w 0ðxÞ � yu 00ðxÞ þ 1

2
½u 0ðxÞ�2;

and, in turn,

�11 ¼
E

1� � 2
w 0ðxÞ � yu 00ðxÞ þ 1

2
½u 0ðxÞ�2

� �
:

The strain energy P within the beam is de¯ned as

P ¼ 1

2

Z ‘

0

Z h
2

� h
2

¾ : " dydx;

having set

¾ : " ¼
X
i;j

�ij"ij ¼ �11"11:

Hence, after an integration in y, we get

P ¼ Eh

2ð1� � 2Þ
Z ‘

0

1

2
½u 0ðxÞ�2 þ w 0ðxÞ

� �
2

dxþ Eh3

24ð1� � 2Þ
Z ‘

0

½u 00ðxÞ�2dx:

To compute the total energy, we need to consider the work done by the forces applied

to the beam, given by

W ¼
Z ‘

0

Z h
2

� h
2

~gðx; yÞUðx; yÞdydxþ
Z h

2

� h
2

½~� ð‘ÞWð‘; yÞ � ~� ð0ÞW ð0; yÞ�dy;
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which, exploiting (2.2) and integrating in y, reduces to

W ¼
Z ‘

0

gðxÞuðxÞdxþ �ð‘Þwð‘Þ � �ð0Þwð0Þ:

In order to force the last two terms on the right-hand side to vanish, we might assume

either homogeneous boundary conditions for w or the vanishing of the axial tension � .

Unfortunately, none of the two possibilities can be considered here. Indeed, an

accurate analysis of the buckling problem requires the assumption that one end of the

beam is ¯xed and the other moves as a thrust bearing on the x -axis under the action

of an axial load, the so-called Euler critical load. In essence, either the external

tension in the x -direction or the axial displacements of both ends of the beam must be

given and nonzero. Since we are interested in equilibrium rather than dynamics, we

are allowed to consider the latter occurrence. In particular, one end is assumed to be

nailed in its reference con¯guration at x ¼ 0, the other to displace in a position

x ¼ ‘þ C. Of course, it is understood that C represents the displacement ideally

produced by (and proportional to) the external tension in the x -direction. In other

words, we take into account the possible elongation of the beam by setting

wð0Þ ¼ 0; wð‘Þ ¼ C: ð2:3Þ
From the physical viewpoint, when C > 0 the beam behaves as it were compressed,

whereas for C < 0 as it were subject to traction. This choice leads to

W ¼
Z ‘

0

gðxÞuðxÞdxþ C�ð‘Þ;

and we are left to assign boundary conditions only for the bending component u, for

which we take the so-called hinged boundary conditions

uð0Þ ¼ uð‘Þ ¼ u 00ð0Þ ¼ u 00ð‘Þ ¼ 0: ð2:4Þ
We are now in a position to derive the equation describing the motions of u and w. To

this end, we have to minimize the Lagrangian functional

L ¼ P �W
over the class of functions satisfying (2.3) and (2.4). Hence, for any û and ŵ satisfying

the boundary conditions

ûð0Þ ¼ ûð‘Þ ¼ û 00ð0Þ ¼ û 00ð‘Þ ¼ ŵð0Þ ¼ ŵð‘Þ ¼ 0;

we consider the ¯rst variation

L0ðu;w; û; ŵÞ ¼ lim
s!0

Lðuþ sû;wþ sŵÞ � Lðu;wÞ
s

:

A straightforward calculation yields

L0ðu;w; û; ŵÞ ¼ aðu;w; ûÞ þ bðu;w; ŵÞ �
Z ‘

0

gðxÞûðxÞdx;
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where we set

aðu;w; ûÞ ¼
Z ‘

0

Eh3

12ð1� � 2Þ u
0000ðxÞ � Eh

1� � 2
w 0ðxÞ þ 1

2
½u 0ðxÞ�2

� �
u 0ðxÞ

� � 0� �
ûðxÞdx

and

bðu;w; ŵÞ ¼ � Eh

1� � 2

Z ‘

0

w 0ðxÞ þ 1

2
½u 0ðxÞ�2

� � 0
ŵðxÞdx:

The resulting Euler�Lagrange equations follow from the condition

aðu;w; ûÞ þ bðu;w; ŵÞ �
Z ‘

0

gðxÞûðxÞdx ¼ 0; 8 û; ŵ:

Due to the arbitrariness of û and ŵ, we end up with the system of two coupled

equations

Eh

1� � 2
w 0 þ 1

2
½u 0�2

� � 0
¼ 0;

Eh3

12ð1� � 2Þ u
0000 � Eh

1� � 2
w 0 þ 1

2
½u 0�2

� �
u 0

� � 0
¼ g:

8>>><
>>>:

The ¯rst equation tells that the quantity

w 0ðxÞ þ 1

2
½u 0ðxÞ�2

is constant. Hence, from (2.3),

w 0ðxÞ þ 1

2
½u 0ðxÞ�2 ¼ 1

‘

Z ‘

0

w 0ðxÞ þ 1

2
½u 0ðxÞ�2

� �
dx ¼ C

‘
þ 1

2‘

Z ‘

0

½u 0ðxÞ�2dx:

Substituting this expression into the second equation of the system, we are led to

Eh3

12ð1� � 2Þ u
0000 � Eh

1� � 2

C

‘
þ 1

2‘

Z ‘

0

½u 0ðxÞ�2dx
 !

u 00 ¼ g:

De¯ning the dimensionless quantities

xH ¼ x

‘
; uHðxHÞ ¼ 1

‘
uð‘xHÞ; � ¼ 2C

‘
; ! ¼ h2

6‘2
; gHðxHÞ ¼ 2‘ð1� � 2Þ

Eh
gð‘xHÞ;

we obtain the ¯nal form of the equation of motion for the bending component, which

reads (deleting the H)

!u 0000 � � þ
Z 1

0

½u 0ðxÞ�2dx
� �

u 00 ¼ g:
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Accordingly, the boundary conditions (2.4) become

uð0Þ ¼ uð1Þ ¼ u 00ð0Þ ¼ u 00ð1Þ ¼ 0:

3. An Abstract Problem

We now analyze an abstract problem, of which (1.1) is just a particular instance.

Let ðH; h�; �i; jj � jjÞ be a separable real Hilbert space, and let A be a strictly positive

self-adjoint linear operator on H with domain DðAÞ. For r 2 R, we de¯ne the Hilbert

spaces

Hr ¼ DðAr
2Þ; jjujjr ¼ jjAr

2ujj:
LetM 2 Cð½0;1ÞÞ, with Mð0Þ ¼ 0, be a strictly increasing (hence positive) function.

Given � 2 R and f 2 H�1, we consider the equation

Auþ ð� þMðjjujj21ÞÞu ¼ f: ð3:1Þ

De¯nition 3.1. A vector u 2 H 1 is a (weak) solution to (3.1) if

A
1
2u;A

1
2w

D E
þ ð� þMðjjujj21ÞÞ u;wh i ¼ A�1

2f;A
1
2w

D E
;

for every w 2 H 1.

Remark 3.1. Due to the structure of the equation, if f 2 H and u is a solution to

(3.1), then u 2 H 2, and so it is a solution in the strong sense.

Notation 3.1. We denote by �n, with n ¼ f1; 2; . . .g, the strictly positive (possibly

¯nite) sequence of the distinct eigenvalues of A, and by En the eigenspace

corresponding to �n, with (possibly in¯nite) orthogonal dimension dimðEnÞ ¼ dn.

For every n, let en;i, with i 2 f1; . . . ; dng, be an orthonormal basis of En. In particular,

the equality

Apen;i ¼ �p
nen;i

holds for every p 2 R. We call Pn the projection of H�1 onto En. Finally, setting

M1 ¼ lim
s!1MðsÞ 2 ð0;1�;

we introduce the subset of the natural numbers (depending on the given value of the

parameter �)

S ¼ fn : �� � �n 2 ð0;M1Þg:
Throughout this work, we will assume

jSj < 1; ð3:2Þ
namely, S has ¯nite cardinality.
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Remark 3.2. Condition (3.2) is certainly satis¯ed (in fact, for every � 2 R) if A is an

elliptic operator. In which case, �n can be ordered in such a way to be strictly

increasing. Moreover, dn < 1 for every n.

Our aim is to analyze the multiplicity of solutions to (3.1). In particular, we will

show that there is always at least one solution, and at most a ¯nite number of

solutions, whenever the eigenvalues not exceeding �� are simple.

Remark 3.3. The physical model (1.1) is recovered by setting MðsÞ ¼ s
!, � ¼ �

!,

H ¼ L2ð0; 1Þ,

A ¼ � d2

dx2
; DðAÞ ¼ H 2ð0; 1Þ \H 1

0ð0; 1Þ;

and taking f 2 H 2ð0; 1Þ \H 1
0ð0; 1Þ. Then,

g ¼ � 1

!
f 00 2 L2ð0; 1Þ:

In this case, the (strong) solutions to (3.1) are weak solutions to (1.1), and the other

way around. The eigenvalues of A are all simple and equal to

�n ¼ n2�2; n 2 N;

with corresponding eigenvectors

enðxÞ ¼
ffiffiffi
2

p
sinn�x:

Consequently,

S ¼ fn : n2�2! < ��g:

4. The Homogeneous Case

For the homogeneous case, we provide an accurate description of the solutions. To

this end, in light of (3.2), we introduce the (¯nite) number

nH ¼ jSj: ð4:1Þ
Then, we have

Theorem 4.1. Let f ¼ 0. If there exists an eigenvalue �n which is not simple and

n 2 S; then (3.1) has in¯nitely many solutions. Otherwise; it has exactly 2nH þ 1

solutions: the trivial one and

u�
n ¼ C�

n en;1;

for every n 2 S, where

C�
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1ð�� � �nÞ

�n

s
:
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Proof. If n 2 S and dn > 1, then any u 2 En satisfying

jjujj21 ¼ M�1ð�� � �nÞ

is a solution to (3.1). Clearly, there are in¯nitely many such u, given by

u ¼
X
i

uiei;n; ui 2 R;

with X
i

u2
i ¼

1

�n

M�1ð�� � �nÞ:

Assume then that �n is simple whenever n 2 S. Obviously, u ¼ 0 is a solution. Let

us look for a nontrivial solution u. Setting

	 ¼ � þMðjjujj 21Þ; ð4:2Þ
such a solution solves the equation

Auþ 	u ¼ 0:

Hence,

	 ¼ ��n

and

u ¼ Cen;1;

for some C 6¼ 0. In particular,

jjujj21 ¼ C 2�n:

The value C is determined by (4.2), which yields the relation

MðC 2�nÞ ¼ �� � �n:

Therefore, we have nontrivial solutions if and only if n 2 S. Namely, there are exactly

2nH nontrivial solutions, explicitly computed.

Remark 4.1. The nontrivial solutions to the homogeneous version of problem (1.1)

are given by (cf. Refs. 6 and 11)

u�
n ðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2�

n2�2
� 2!

r
sinn�x:

From the physical viewpoint, this means that when the beam compression exceeds

the ¯rst eigenvalue of the operator � d2

dx 2 , then nontrivial symmetric solutions pop up

(the buckling states).
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5. The Nonhomogeneous Case

In the nonhomogeneous case, the picture is much more complicated, and the shape of

f plays a crucial role. Let us set

fn;i ¼ hA�1
2f;A

1
2en;ii:

The fact that f 2 H�1 translates into the summability of the seriesX
n;i

1

�n

f 2
n;i:

Besides, fn;i 6¼ 0 for some n and some i, otherwise f ¼ 0. For every k 2 f1; 2; . . .g, we
de¯ne

Qk ¼
X
n 6¼k; i

�nf
2
n;i

ð�n � �kÞ2
:

Along with nH given by (4.1), we also need to introduce the numbers

kH ¼ jfk : �� � �k 2 ð0;M1Þ;MðQkÞ < �� � �k;Pkf ¼ 0gj;

k0
H ¼ jfk : �� � �k 2 ð0;M1Þ;MðQkÞ ¼ �� � �k;Pkf ¼ 0gj:

Observe that

kH þ k0
H � nH:

Denoting by

M 00ðsÞ ¼ lim inf
�!0

M 0ðsþ �Þ �M 0ðsÞ
�

the lower second derivative of M, the main result reads as follows.

Theorem 5.1. Let f 6¼ 0. In addition to the general assumptions on M; suppose that

. either M is a convex function; or

. M 2 C 1ðRþÞ ful¯lls the relation

2sM 00ðsÞ þ 3M 0ðsÞ 2 ð0;1�; 8 s > 0: ð5:1Þ
Then, Eq. (3.1) has in¯nitely many solutions if and only if the conditions

(i) dk > 1

(ii) Pkf ¼ 0

(iii) MðQkÞ < �� � �k

simultaneously hold for some k. Otherwise; there are mH solutions; with

1 � mH � 2nH þ 2kH þ k0
H þ 1:

Therefore, if there is an eigenvalue exceeding ��, whose multiplicity is greater

than one, then in¯nite solutions may appear, unless the projection of the external
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load f on the relative eigenspace is not zero. In which case, the degrees of freedom are

somehow frozen.

Remark 5.1. The most interesting case MðsÞ ¼ s is covered by the theorem.

Moreover, (5.1) is satis¯ed by a large class of strictly increasing concave functions,

such as MðsÞ ¼ s# (0 < # < 1) and MðsÞ ¼ logð1þ sÞ. Another example is

MðsÞ ¼ e
� 1ffiffiffiffi

sþc
p � e

� 1ffiffi
c

p
;

which ful¯lls (5.1) for all c � 0, is concave for c � 1
9 and has ¯nite limit as s ! 1.

Before proceeding, we state a straightforward corollary, which also subsumes the

analogous result for the homogeneous case.

Corollary 5.1. If � � �infn�n; then (3.1) has only one solution.

The proof of Theorem 5.1 requires a couple of preliminary results. The ¯rst one is

more like a simple remark.

Lemma 5.1. Let I 	 R be an open interval; and let � 2 C 1ðIÞ. If
� 00ðsÞ 2 ð0;1�; 8 s 2 InJ ;

where J 	 I is a discrete set, then � is strictly convex on I.

Lemma 5.2. Assume (5.1). Let an � 0 and bn 2 R be two sequences such thatX
n

anb
�
n ¼ %� 2 R; � ¼ 2; 3; 4;

with %3 6¼ 0 ðwhich implies %2 > 0 and %4 > 0Þ. Then;
2%2

3 M
00ð%2Þ þ 3%4M

0ð%2Þ > 0:

Proof. By (5.1),

2%2
3 M

00ð%2Þ > � 3%2
3

%2
M 0ð%2Þ:

Hence,

2%2
3 M

00ð%2Þ þ 3%4M
0ð%2Þ >

3

%2
M 0ð%2Þð%2%4 � %2

3Þ:

It is a standard matter to check that

%2%4 ¼
X
n

anb
2
n

 ! X
n

anb
4
n

 !
�

X
n

anb
3
n

 !
2

¼ %2
3:

Since M 0ð%2Þ � 0, the conclusion follows.

Proof. (of Theorem 5.1) As in the previous case, we set

	 ¼ � þMðjjujj 21Þ; ð5:2Þ
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which, since u ¼ 0 is not a solution anymore, yields the constraint

�� þ 	 2 ð0;M1Þ: ð5:3Þ
Writing

u ¼
X
n;i

un;ien;i;

with un;i ¼ u; en;i
� 	

, we have

jjujj21 ¼
X
n;i

�nu
2
n;i:

Thus, (5.2) turns into

	 ¼ � þM
X
n;i

�nu
2
n;i

 !
: ð5:4Þ

Projecting (3.1) on the orthonormal basis, we obtain, for every n; i,

�nun;i þ 	un;i ¼ fn;i: ð5:5Þ
The solution u is known once we determined all the coe±cients un;i appearing

in (5.5).

We begin to look for solutions u for which

	 6¼ ��n; 8n:

In that case, once 	 is ¯xed, the coe±cients un;i are uniquely determined by (5.5) as

un;i ¼
fn;i

�n þ 	
: ð5:6Þ

Setting

�ð	Þ ¼
X
n;i

�nf
2
n;i

ð�n þ 	Þ2 > 0

and

�ð	Þ ¼ � � 	þMð�ð	ÞÞ;

substituting (5.6) into (5.4), and recalling (5.3), we realize at once that the admissible

values of 	 are the solutions to the equation

�ð	Þ ¼ 0 with 	 2 D ¼ ð�; � þM1Þnf��ng:

The set D is the union (empty if nH ¼ 0) of nH bounded open interval and of the open

interval

I0 ¼ ð
; � þM1Þ;
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where


 ¼
inf
n2S

� �n if nH > 0;

� if nH ¼ 0:

(

For every 	 2 D, we have

� 0ð	Þ ¼ �2
X
n;i

�nf
2
n;i

ð�n þ 	Þ3

and

� 00ð	Þ ¼ 6
X
n;i

�nf
2
n;i

ð�n þ 	Þ4 > 0:

Thus, � is strictly convex on each bounded connected component ofD. We claim that

the same is true for � as well. Indeed, if M is convex, this is immediate: M 
 � is the

composition of a strictly increasing convex function with a strictly convex function.

Conversely, if M ful¯lls (5.1), for every 	 2 D such that � 0ð	Þ 6¼ 0 we have

� 00ð	Þ ¼ Mð�Þ 00ð	Þ � M 00ð�ð	ÞÞð� 0ð	ÞÞ2 þM 0ð�ð	ÞÞ� 00ð	Þ;

where the right-hand side can be possibly in¯nite. By applying Lemma 5.2 with

an ¼ �n

X
i

f 2
n;i and bn ¼ 1

ð�n þ 	Þ ;

we learn that

� 00ð	Þ 2 ð0;1�:

Since the equation � 0ð	Þ ¼ 0 has at most one solution on each bounded connected

component of D, Lemma 5.1 yields the claim. Accordingly, �ð	Þ ¼ 0 can have at

most two solutions on each bounded connected component of D. In the unbounded

interval I0, the function � is strictly decreasing. Moreover, setting Mð�ðM1ÞÞ ¼ 0 if

M1 ¼ 1,

lim
	!ð�þM1Þ�

�ð	Þ ¼ �M1 þMð�ðM1ÞÞ < 0;

and

lim
	!
þ

�ð	Þ ¼
M1 if nH > 0;

Mð�ð�ÞÞ if nH ¼ 0:

(

Noting that, if nH ¼ 0,

Mð�ð�ÞÞ ¼ lim
	!�þ

Mð�ð	ÞÞ > 0;
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we conclude that there is exactly one solution in I0. In summary, equation �ð	Þ ¼ 0

has at least one solution and at most 2nH þ 1 solutions in D. In turn, (3.1) possesses

the same number of solutions with the property that 	 6¼ ��n. Indeed, for every

	 2 D such that �ð	Þ ¼ 0, the vector u with Fourier coe±cients given by (5.6)

belongs to H 1. This is guaranteed by the convergence of the seriesX
n;i

�nf
2
n;i

ð�n þ 	Þ2 ;

since 	 cannot be a cluster point for ��n.

Next, we look for solutions u such that

	 ¼ ��k;

for some given k. We preliminarily observe that, due to (5.3), if �� � �k 62 ð0;M1Þ,
no such solutions exist. In the other case, for n 6¼ k, the values un;i are ¯xed by (5.6)

with 	 ¼ ��k. We are left to determine the values uk;i. But (5.4) now reads

M �k

X
i

u2
k;i þQk

 !
¼ �� � �k:

Therefore, we have no solutions whenever

MðQkÞ > �� � �k:

Assume then that MðQkÞ � �� � �k. From (5.5), we have no solutions unless

fk;i ¼ 0 for all i, that is, unless Pkf ¼ 0. In which case, we have one solution if

MðQkÞ ¼ �� � �k (namely, uk;i ¼ 0 for all i). If MðQkÞ < �� � �k, we have two

solutions provided that dk ¼ 1, corresponding to

uk;1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1ð�� � �kÞ �Qk

�k

s
;

and in¯nitely many solutions if dk > 1.
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