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NEW VARIATIONAL PRINCIPLES
IN QUASI-STATIC VISCOELASTICITY

C. GIORGI and A.MARZOCCHI (∗)

Summary. A ”saddle point” (or maximum-minimum) principle is set up for the quasi-
static boundary-value problem in linear viscoelasticity. The appropriate class of convolution-
type functionals for it is taken in terms of bilinear forms with a weight function involving
Fourier transform. The ”minimax” property is shown to hold as a direct consequence of the
thermodynamic restrictions on the relaxation function. This approach can be extended to
further linear evolution problems where initial data are not prescribed.

0. Introduction

By quasi-static problem we mean the problem to find a function u(x, t) satisfying

∇ ·T(u)(x, t) + f(x, t) = 0 (0.1)

in a cylinder Ω × IR, together with boundary conditions that, for the sake of simplicity, are
assumed to be homogeneous

u(x, t) = 0 on ∂Ω× IR. (0.2)

Here Ω is an open bounded connected subset of the Euclidean space IR3 with Lipschitz
boundary.

In particular, for linear viscoelastic materials the stress tensor T depends on the dis-
placement field u as follows

T(u)(x, t) = G0(x)∇u(x, t) +
∫ ∞

0

G′(x, s)∇u(x, t− s) ds, (0.3)

where G0 and G′ are fourth-order tensors such that

(G0)ijkl = (G0)jikl = (G0)ijlk (G′)ijkl = (G′)jikl = (G′)ijlk. (0.4)

Furthermore we assume

G0 ∈ C0(Ω) ∩ C1(Ω), G′ ∈ L1(IR+, C0(Ω) ∩ C1(Ω)) (0.5)

in order to comply with fading memory and spatial regularity requirements. Finally, since
we need dealing with variational formulations, G0 and G′ must be symmetric, namely
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(G0)ijkl = (G0)klij , (G′)ijkl = (G′)klij . (0.6)

Summarizing, we shall refer to


∇ ·

[
G0(x)∇u(x, t) +

∞∫
0

G′(x, s)∇u(x, t− s) ds
]
+ f(x, t) = 0 (x, t) ∈ Ω× IR

u(x, t) = 0 (x, t) ∈ ∂Ω× IR.

(0.7)

where G0 and G′ comply with (0.4)-(0.6), as quasi-static problem in linear viscoelasticity
(QSP).

Taking into account that G′ can be defined on the whole real line by assuming

G′(x, s) = 0 ∀(x, s) ∈ Ω× (−∞, 0),

we can get ∫ ∞

0

G′(x, s)∇u(x, t− s) ds = (G′ ∗ ∇u)(x, t),

where ∗ denotes convolution on IR, and (0.7) may be rewritten in the following compact form∇ ·
[
(G0 + G′∗)∇u

]
+ f = 0

u|∂Ω = 0.
(0.8)

Definition. A function u is called a strict solution to QSP with source function f in L1(IR, L2(Ω))
(or L2(IR, L2(Ω))) if u belongs to L1(IR,H1

0 (Ω)) (or L2(IR,H1
0 (Ω))) and satisfies (0.7) almost

everywhere in Ω× IR.

In the sequel we shall assume further conditions on G′ that are derived from Thermo-
dynamics. Mainly, we recall here Graffi’s inequality (1)

ωĜ′
s(x, ω) ≤ 0 ∀ω ∈ IR (0.9)

where Ĝ′
s(x, ω) =

∫∞
0

G′(x, s) sinωs ds. It is a necessary and sufficient condition that the
work in sinusoidal Λprocesses is non-negative. As proved by FABRIZIO & MORRO [5], (0.9) is
quite equivalent to the Second Law of Thermodynamics in the form of the Clausius property
for isothermal processes.

It is worth remarking that, according to [3], a stronger version of the Second Law can be
given so that the Clausius inequality reduces to an equality if and only if ”reversible” cycles
are considered. If such is the case, then (0.9) is replaced by

(1) For any fourth-order tensor A the notation A > 0 (A ≥ 0) means that A is positive-definite
(semi-definite) in the space of second-order symmetric tensors. For simplicity, henceforth 0
is understood as the zero element in any vector space.
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ωĜ′
s(x, ω) < 0. ∀ω ∈ IR \ {0} (0.10)

Finally, we may account for the body being a solid by letting

G∞(x)
def
= G0(x) +

∫ ∞

0

G′(x, s) ds > 0 ∀x ∈ Ω. (0.11)

As to the solvability of QSP, we recall the following existence and uniqueness result
proved by FABRIZIO in [3].

Proposition 1. If the viscoelastic material is a solid, i.e. (0.11) holds, then QSP has one
and only one strict solution provided that (0.10) is satisfied.

Remark. In the previous Proposition (0.10) cannot be weakened into (0.9) (see [4]). Never-
theless, it is a sufficient but not necessary condition (see [7]).

Concerning variational formulations, a minimum principle for QSP was established by
CHRISTENSEN in [1]. Roughly speaking, it states that a strict factorized solution u0(x, t) =
h(t)k(x) to QSP minimizes a suitable functional with respect to perturbations of the spatial
part k(x) only. Indeed, as noticed in [6], the convexity of the convolution-type functional
introduced by CHRISTENSEN follows from thermodynamic restrictions, but yet it does not
turn out to be stationary at the solution unless we assume the same time dependence for
all displacement fields. As a consequence, the converse statement of the principle cannot be
proved, that is to say, the whole solution u0 to QSP cannot be characterized as a minimum.

A new technique to obtain stationary and minimum principles for linear evolution
equations was early introduced by REISS [9] and further developed by many authors (e.g.
[10],[6],[2]). It rests upon the introduction of suitable bilinear forms of convolution type
involving Laplace transformation with respect to time and then applies to initial boundary-
value problems only. Thus QSP does not fit into this approach. Nevertheless, the technique
of REISS can be modified for this purpose.

In this paper we introduce a class of bilinear forms close to REISS’ one but involving
Fourier transform and use them to construct a suitable family of convolution-type functionals.
Thereby new variational principles for QSP are set up. The first (Th.1) states that a solution
u0(x, t) to QSP can be characterized as a stationary point of every functional in this family
with respect to general perturbations. It is worth noting that few mild assumptions are
required to prove it, namely (0.4)-(0.6).

Contrary to what happens in the corresponding dynamic initial boundary-value problem
[6], the addition of thermodynamic conditions does not lead to a minimum, but yields a
”maximum-minimum” principle. In fact, our main result (Th.2) states that a solution to
QSP can be characterized as a saddle point, with respect to an appropriate decomposition
of u, if (0.9) holds. This feature seems to be a typical property of our approach as sketched
by another example. So we hope that the ideas exposed here work as well for other linear
evolution problems in materials with memory where initial history data are not prescribed.

1. The bilinear forms < ·, · >y
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Let Y be a real function belonging to L1(IR+) and Ye be its odd extension, i.e.

Ye(s) =
{

Y (s), s ∈ IR+

−Y (−s), s ∈ IR−.

We define the function y on IR as

y(t)
def
= −iŶe(t) = −i

∫ ∞

−∞
Ye(s)e−ist ds (1.1)

where the hat denotes Fourier transform in IR. Now, since Ye(s) cos st is an even function of
s and Ye(s) sin st is an odd one, we have

y(t) = −i

∫ ∞

−∞
Ye(s)(cos st− i sin st) ds

= −2
∫ ∞

0

Y (s) sin st ds.

(1.2)

The function y is easily seen to be a real, odd, absolutely continuous function which vanishes
as |t| tends to infinity.

For any pair (p,q) of vector- or tensor-valued functions on Ω × IR we introduce the
following bilinear form

< p,q >y
def
=

∞∫
−∞

∞∫
−∞

y(t + τ)
∫
Ω

p(x, t) · q(x, τ) dx dt dτ. (1.3)

Substituting (1.1) into (1. 3), it follows

< p,q >y = −i

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ye(ω)
∫
Ω

p(x, t)e−iωt · q(x, τ)e−iωτ dx dt dτ dω

= −i

∞∫
−∞

Ye(ω)
∫
Ω

p̂(x, ω) · q̂(x, ω) dx dω.

Now, by definition, Ye is an odd function of ω and Re
(
p̂, q̂

)
an even one, hence it must be

< p,q >y=
∫ ∞

−∞
Ye(ω)Im

(
p̂(ω), q̂(ω)

)
dω (1.4)

where (·, ·) is the inner product of L2(Ω) and Im z (Re z ) denotes the imaginary (real) part
of the complex number z.

Of course, this bilinear form is well-defined on L1(IR, L2(Ω)) whenever Y ∈ L1(IR+)
as well as on L2(IR, L2(Ω)) whenever Y ∈ C∞

0 (IR+). Moreover, from (1.4) it is immediate
to notice that < ·, · >y is symmetric. Taking into account that by definition (2) f̂(ω) =
f̂c(ω)− if̂s(ω) one gets the alternative form

(2) In the sequel f̂s (resp.̂fc) will denote full-range Fourier sine (cosine) transform of a function
f defined on IR.
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< p,q >y= −2
∫ ∞

0

Y (ω)
[(

p̂c(ω), q̂s(ω)
)

+
(
p̂s(ω), q̂c(ω)

)]
dω. (1.5)

2. Variational and Saddle-point Principles

The aim of this section is to recover QSP from a variational principle. We do this in two
ways. First, under quite mild assumptions on G0 and G′, we characterize a solution to (0.7)
as a stationary point of every functional in a suitable family and we give sufficient conditions
for it to exist and be unique. Second, we introduce another family of functionals depending
on u through its even and odd parts and we prove, under thermodynamic restrictions, that
a solution to (0.7) turns out to be a saddle-point for them.

Remembering the compact form (0.8) of QSP and the bilinear form (1.3), we introduce
the following family of functionals

Φy(u)
def
=

1
2

< ∇u, (G0 + G′∗)∇u >y − < u, f >y, (2.1)

where G0 and G′ comply with (0.4)-(0.6), f ∈ L1(IR, L2(Ω)) and y is given by (1.2) for every
Y ∈ L1(IR+). From these assumptions it follows that each Φy is well-defined on

V = L1(IR,H1
0 (Ω)).

Owing to the convolution G′ ∗ ∇u it is worth observing that, by definition,

< p ∗ q, r >y=

∞∫
−∞

y(t + τ)
( ∞∫
−∞

p(τ − σ)q(σ) dσ, r(t)
)
dτ dt.

The change of variables λ = τ − σ, η = σ gives

< p ∗ q, r >y=

∞∫
−∞

∞∫
−∞

y(t + λ + η)
(
p(λ)q(η), r(t)

)
dλ dη dt

and from (1.4) it follows

< p ∗ q, r >y=

∞∫
−∞

Ye(ω)Im
(
p̂(ω)q̂(ω), r̂(ω)

)
dω. (2.2)

Now we state the first variational principle.

ΛTheorem 1. Let u0 ∈ V be a strict solution to QSP with f ∈ L1(IR, L2(Ω)). Then for
every Y ∈ L1(IR+), u0 is a stationary point for the functional ΛΦy. Conversely, if u0 is a
stationary point on V of every Φy, Y ∈ L1(IR+), then u0 is a strict solution to QSP.
Moreover, if conditions (0.10)− (0.11) are satisfied then the stationary point u0 exists and
is unique in V .
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Proof. Suppose that u0 ∈ V is a strict solution to QSP with f ∈ L1(IR, L2(Ω)). Then, for
any ω ∈ IR, its Fourier transform û0(ω) belongs to H1

0 (Ω) and satisfies

∇ ·
([

G0 + Ĝ′(ω)
]
∇û0(ω)

)
+ f̂(ω) = 0 a.e. on Ω. (2.3)

Letting

Lωu
def
= ∇ ·

([
G0 + Ĝ′(ω)

]
∇u

)
,

using (1.4), (2.2), (0.6) and the divergence theorem we have

d

dα
Φy(u0 + αv)|α=0 = −

∞∫
−∞

Ye(ω)Im
(
Lωû0(ω) + f̂(ω), v̂(ω)

)
dω

for every v ∈ V and Y ∈ L1(IR+). Hence from (2.3) it follows that u0 gives a stationary
point of every Φy in the space V .

Conversely, we suppose that for every Y ∈ L1(IR+)

d

dα
Φy(u0 + αv)|α=0 = 0 ∀v ∈ V.

In particular, letting v take the form v(x, t) = h(t)w(x), where h ∈ L1(IR), w ∈ H1
0 (Ω), we

have

0 =
d

dα
Φy(u0 + αv)|α=0 =

= −2

∞∫
0

Y (ω)
[
ĥc(ω)Im

(
Lωû0(ω) + f̂(ω),w

)
− ĥs(ω)Re

(
Lωû0(ω) + f̂(ω),w

)]
dω.

By the arbitrariness of w, Y ĥc and Y ĥs we obtain the real and the imaginary part of (2.3)
so that û0(ω) must be a weak solution to (2.3) for almost every ω. Finally, by the uniqueness
of the Fourier transform, u0 solves the original problem (0.8).

The last part of the theorem follows trivially from Proposition 1.

A different variational principle can be set up by charaterizing the solution as a saddle-
point. To do this, however, stronger assumptions than in Th.1 are required on G′.

At first, we observe that a function u belonging to

W = L2(IR,H1
0 (Ω))

can be split into its even and odd parts with respect to time, i.e. u = u1 + u2 where

u1(t)
def
=

1
2
(u(t) + u(−t)), u2(t)

def
=

1
2
(u(t)− u(−t)) a.e. in IR. (2.4)
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Moreover, the Fourier transforms û1 and û2 characterize respectively the real and imaginary
part of û, so that

û = û1 + û2 and û1 = ûc, û2 = −iûs. (2.5)

Let W1 be the subspace of W consisting of even functions and W2 that of odd ones.
Since W1 and W2 are orthogonal with respect to the inner product of L2(IR; L2(Ω)) we have
W1 ⊕W2 = W .

In view of (2.4) we can rewrite the functional (2.1) in the following form

Ψy(u1,u2)
def
=

1
2

< ∇(u1 + u2), (G0 + G′∗)∇(u1 + u2) >y − < (u1 + u2), f >y

where f ∈ L2(IR, (L2(Ω)) and y is given by (1.2). Assuming that Y ∈ C∞
0 (IR+), each Ψy is

well-defined on W1×W2 thanks to (1.4) and the bijectivity of the Fourier transform from L2

into itself.

Theorem 2. Let G′ satisfy (0.9) and u ∈ W be a strict solution to QSP with f ∈ L2(IR, L2(Ω)).
Then, for every positive ΛΛY ∈ C∞

0 (IR+), the pair (u1,u2) given by (2.4) is a saddle-point
for Ψy. Conversely, if (u1,u2) is a saddle-point on W1 × W2 of every Ψy, Y ∈ C∞

0 (IR+)
positive, then u = u1 + u2 is a strict solution to QSP.
If (0.10), (0.11) hold instead of (0.9) then the saddle-point exists and is unique in W .

Proof. If u ∈ W is a strict solution to QSP with f ∈ L2(IR, L2(Ω)) then its Fourier transform
û belongs to W and satisfies

∇ ·
([

G0(x) + Ĝ′(x, ω)
]
∇û(x, ω)

)
+ f̂(x, ω) = 0 a.e. on Ω× IR. (2.6)

Remembering that Ĝ′ = Ĝ′
c − iĜ′

s, the pair (ûc, ûs) ∈ W1 ×W2 given by (2.4), (2.5) must
satisfy a.e. the system 

∇ ·
([

G0 + Ĝ′
c

]
∇ûc − Ĝ′

s∇ûs

)
+ f̂c = 0

∇ ·
([

G0 + Ĝ′
c

]
∇ûs + Ĝ′

s∇ûc

)
+ f̂s = 0.

(2.7)

On the other hand, using (1.5), (2.2), (2.5) and the symmetry assumptions (0.6), a
straightforward calculation leads to

Ψy(u1,u2) =
∫ ∞

0

Y
[(
∇ûs, Ĝ′

s∇ûs

)
−

(
∇ûc, Ĝ′

s∇ûc

)
− 2

(
∇ûs, (G0 + Ĝ′

c)∇ûc

)
+

+ 2
(
ûc, f̂s

)
+ 2

(
ûs, f̂c

)]
dω

where the dependence on ω is understood. Thereby we have

d

dα
Ψy(u1 + αv1,u2)|α=0 = 2

∫ ∞

0

Y
(
∇ · {

[
G0 + Ĝ′

c

]
∇ûs + Ĝ′

s∇ûc}+ f̂s, v̂1

)
dω
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for every v1 ∈ W1, since v̂1 = v̂1c belongs to W1, and

d

dα
Ψy(u1,u2 + αv2)|α=0 = 2

∫ ∞

0

Y
(
∇ · {

[
G0 + Ĝ′

c

]
∇ûc − Ĝ′

s∇ûs}+ f̂c, iv̂2

)
dω

for every v2 ∈ W2, since iv̂2 = v̂2s belongs to W2.
Finally, from (2.7) it follows

d

dα
Ψy(u1 + αv1,u2)|α=0 = 0 ∀v1 ∈ W1

d

dα
Ψy(u1,u2 + αv2)|α=0 = 0 ∀v2 ∈ W2

(2.8)

for every Y ∈ C∞
0 (IR+), and from (0.9) we have

d2

dα2
Ψy(u1 + αv1,u2)|α=0 = −2

∫ ∞

0

Y (ω)
(
∇v̂1(ω), Ĝ′

s(ω)∇v̂1(ω)
)
dω > 0 ∀v1 ∈ W1

d2

dα2
Ψy(u1,u2 + αv2)|α=0 = −2

∫ ∞

0

Y (ω)
(
∇v̂2(ω), Ĝ′

s(ω)∇v̂2(ω)
)
dω =

= 2
∫ ∞

0

Y (ω)
(
∇v̂2s(ω), Ĝ′

s(ω)∇v̂2s(ω)
)
dω < 0 ∀v2 ∈ W2

(2.9)
for every positive Y ∈ C∞

0 (IR+). This proves that (u1,u2) is a saddle point on W1 ×W2 for
every Ψy.

Conversely, let assume that (2.8) and (2.9) hold for every Ψy, Y ∈ C∞
0 (IR+) positive.

From the arbitrariness of Yev̂1 in W2 and iYev̂2 in W1, it follows that the pair (ûc, ûs) =
(û1, iû2) ∈ W1 ×W2 solves (2.7), and so û = û1 + û2 satisfies (2.6). Finally, the bijectivity
of the Fourier transform from L2 into itself, u = u1 + u2 must be a strict solution to QSP in
W .

The last part of the theorem follows trivially from Proposition 1.

3. Concluding remarks

Some other evolution problem in linear viscoelasticity can be fitted into the present
approach, for instance the dynamical boundary-value problem on the whole time axis. It
consists in finding a function u defined on Ω× IR which satisfies a.e.utt −∇ ·

[
(G0 + G′∗)∇u

]
= f

u|∂Ω = 0.
(3.1)

where G0 and G′ comply with (0.4)-(0.6) and f ∈ L2(IR, L2(Ω)) (see [8]).

Following along the lines of previous sections, we introduce the functional
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Λy(u)
def
=

1
2

< ut,ut >y +
1
2

< ∇u, (G0 + G′∗)∇u >y − < u, f >y . (3.2)

In view of (1.4), (1.5) we have

< ut,ut >y = −
∫ ∞

−∞
ω2Ye(ω)Im

(
û(ω), û(ω)

)
dω =

= 4
∫ ∞

0

ω2Y (ω)
(
ûc(ω), ûs(ω)

)
dω.

(3.3)

For every Y ∈ C∞
0 (IR+) the functional Λy is well-defined on

H = L2(IR,H1
0 (Ω)) ∩H1(IR, L2(Ω)).

and is stationary at u0 ∈ H if and only if u0 is a weak solution to (3.1). This is easily seen
by taking the Fourier transform of (3.1), namely

ω2û(x, ω) +∇ ·
([

G0(x) + Ĝ′(x, ω)
]
∇û(x, ω)

)
+ f̂(x, ω) = 0, (3.4)

and paralleling the proof of Th.1.
Furthermore, if (0.9) holds, the pair (u0

1,u
0
2) obtained by (2.4) from the solution u0 is

a saddle point of every functional

Γy(u1,u2)
def
= Λy(u1 + u2)

defined on H1 ×H2 (the analog of W1 ×W2). Really, we have

d2

dα2
Γy(u0

1 + αv1,u0
2)|α=0 ≡

d2

dα2
Ψy(u0

1 + αv1,u0
2)|α=0 > 0 ∀v1 ∈ H1

d2

dα2
Γy(u0

1,u
0
2 + αv2)|α=0 ≡

d2

dα2
Ψy(u0

1,u
0
2 + αv2)|α=0 < 0 ∀v2 ∈ H2,

for every positive Y ∈ C∞
0 (IR+).
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