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Uniform Attractors for
a Phase-field Model with

Memory and Quadratic Nonlinearity

Claudio Giorgi, Maurizio Grasselli

& Vittorino Pata

Abstract. A phase-field system with memory which de-
scribes the evolution of both the temperature variation ϑ and
the phase variable χ is considered. This thermodynamically
consistent model is based on a linear heat conduction law of
Coleman-Gurtin type. Moreover, the internal energy linearly
depends both on the present value of ϑ and on its past history,
while the dependence on χ is represented through a function
with quadratic nonlinearity. A Cauchy-Neumann initial and
boundary value problem associated with the evolution system
is then formulated in a history space setting. This problem is
shown to generate a non-autonomous dynamical system which
possesses a uniform attractor. In the autonomous case, the at-
tractor has finite Hausdorff and fractal dimensions whenever
the internal energy linearly depends on χ.

1. Introduction

In this paper we investigate the well-posedness and the long time behavior
of a phase-field model with thermal memory based on a heat conduction law of
Coleman-Gurtin type [CG]. In a previous paper [GGP], the authors considered
a similar problem, after constructing the model equations on the basis of the
hereditary heat conduction theory of Gurtin and Pipkin [GuP]. The approach
we adopt here mainly differs from [GGP] for the heat flux vector depends on
the present value of the temperature gradient, besides its past history. As a
consequence, in the present framework a Fourier heat conduction law is recovered
when all memory terms are neglected.
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Let Ω ⊂ R3 be a fixed bounded domain occupied by a rigid, isotropic, and
homogeneous heat conductor, undergoing some temperature-dependent phase
transition. Along the lines of [GGP] (cf., in particular, Appendix) we consider
only small variations of the absolute temperature and its gradient, and we sup-
pose that at each point x ∈ Ω the state of the material is described by the triplet
(ϑ,ϑt,χ). Here ϑ(x,t) is the temperature variation field from the reference value
θc(at which transition occurs), namely (cf. Appendix in [GGP])

ϑ =
θ− θc
θc

,

where θ is the absolute temperature. Moreover, ϑt(x,s) = ϑ(x,t− s), s ≥ 0, is
the past history of ϑ up to time t, and χ(x,t) is the phase variable, describing
the kinetics of the solid-liquid transition.

The evolution of the temperature-dependent phase change phenomenon is
governed by the energy balance equation

(1.1) ∂te+ divq = f

where e is the internal energy, q is heat flux vector, and f is the external heat
source, along with some phase-field relationship. We will adopt a phase-field
equation of the Caginalp type (see [Cag])

(1.2) m∂tχ−m0∆χ+m1χ
3 = γ(χ) +λ′(χ)ϑ

where m, m0, and m1 are positive constants, while λ and γ are smooth functions.

Equation (1.2) can be obtained following two different, but thermodynami-
cally consistent strategies. If we adopt the Penrose-Fife point of view [PF], then
(1.2) represents a sort of constitutive equation for the internal variable χ, which
generalizes the Ginzburg-Landau equation to dynamical temperature-dependent
phenomena (see also [BS]). As shown in the Appendix of [GGP], this approach
is unaffected by the introduction of the past history of ϑ into the state variables.
Thus, using the Clausius-Duhem inequality, and linearizing in ϑ, a thermody-
namically consistent system containing equation (1.2) is obtained.

Alternatively, according to Gurtin-Fried theory [GF], the phase-field equa-
tion (1.2) can be deduced, by linearization in ϑ, from a balance equation involving
new constitutive quantities, called accretive sources and fluxes, which take into
account microscopic actions due to phase changes.

Since compatibility of (1.2) with hereditary constitutive equations is still an
open question, we adopt here the former approach. Thus, taking into consid-
eration a linearized version of the Coleman-Gurtin theory [CG] and paralleling
the procedure outlined in [GGP], we assume that e and q are described by the



Attractors for a Phase-field Model 1397

following constitutive equations

e(x,t) = ec + cvθcϑ(x,t) +

∫ ∞
0

a(σ)ϑ(x,t−σ)dσ+ θcλ(χ(x,t))(1.3)

q(x,t) = −kI∇ϑ(x,t)−

∫ ∞
0

k(σ)∇ϑ(x,t−σ)dσ

for (x,t) ∈ Ω×R, where ec > 0, cv > 0, and kI > 0 are the internal energy at
equilibrium, the specific heat, and the instantaneous heat conductivity, respec-
tively. Moreover, we require that the memory kernels k and a are smooth enough
and summable on (0,+∞), k and a′ vanish at infinity, and a(0) > 0.

In virtue of (1.3), the energy balance (1.1) reads

cvθc∂tϑ+ a(0)ϑ+

∫ ∞
0

a′(σ)ϑ(t−σ)dσ+ θcλ
′(χ)∂tχ(1.4)

− kI∆ϑ−

∫ ∞
0

k(σ)∆ϑ(t−σ)dσ = f.

Concerning initial conditions, we have to specify initial values at a given
time τ ∈ R for all the state variables. Thus, due to the presence of memory
dependent terms into the constitutive equations, besides the values of ϑ and χ
at τ , the whole past history of ϑ up to τ must be given, namely

ϑ(τ) = ϑ0 in Ω

χ(τ) = χ0 in Ω

ϑ(τ − s) = ϑ0(s) in Ω, for all s > 0

where ϑ0(s) is the initial past history of ϑ.

Quite natural boundary conditions for the phase-field system (1.2), (1.4)
are given assuming that the fluxes of both heat and phase-field gradients vanish
across the boundary. Namely, for χ we have

∂nχ = 0 on ∂Ω× (τ,+∞),

∂n being the usual outward normal derivative, while the adiabatic boundary
condition q ·n|∂Ω = 0 is expressed by the integral equation

kI∂nϑ(t) +

∫ ∞
0

k(σ)∂nϑ(t−σ)dσ = 0 on ∂Ω× (τ,+∞).
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In order to reformulate the resulting initial and boundary value problem in
a history space setting, we follow [GGP] (see also [Daf]) and we introduce the
additional variable ηt, which is defined by

ηt(x,s) =

∫ s

0

ϑt(x,τ)dτ =

∫ t

t−s
ϑ(x,τ)dτ s > 0.

This variable η is easily seen to satisfy the equation

∂tη
t(s) + ∂sη

t(s) = ϑ(t) in Ω, (t,s) ∈ (τ,+∞)× (0,+∞)

along with the initial condition

ητ = η0 in Ω× (τ,+∞), where η0(s) =

∫ s

0

ϑ0(y)dy

is the initial summed past history of ϑ.

According to the assumed asymptotic behavior of kernels k and a′, we ob-
serve that formal integration by parts yields

∫ ∞
0

k(σ)∇ϑ(t−σ)dσ = −

∫ ∞
0

k′(σ)∇ηt(σ)dσ in Ω, t > τ

and ∫ ∞
0

a′(σ)ϑ(t−σ)dσ = −

∫ ∞
0

a′′(σ)ηt(σ)dσ in Ω, t > τ.

Thus, setting

µ(s) = −k′(s) and ν(s) = −a′′(s)

for any s > 0, and taking for simplicity all the (positive) constants equal to 1,
the above choice of variables leads to the following initial and boundary value
problem.

Problem P. Find (ϑ,χ,η) solution to the system

∂t
(
ϑ(t) +λ(χ(t))

)
−∆ϑ(t) +ϑ(t) +

∫ ∞
0

ν(σ)ηt(σ)dσ−

∫ ∞
0

µ(σ)∆ηt(σ)dσ = f(t)

∂tχ(t)−∆χ(t) +χ3(t) = γ(χ(t)) +λ′(χ(t))ϑ(t)

∂tη
t(s) + ∂sη

t(s) = ϑ(t)
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in Ω, for any t > τ and any s > 0, which satisfies the initial and boundary
conditions

∂nϑ+

∫ ∞
0

µ(σ)∂nη
t(σ)dσ = 0 on ∂Ω× (τ,+∞)

∂nχ = 0 on ∂Ω× (τ,+∞)

ϑ(τ) = ϑ0 in Ω

χ(τ) = χ0 in Ω

ητ = η0 in Ω× (0,+∞).

Problems like P when λ is a quadratic nonlinearity, which are also useful
to describe ferromagnetic transformations (see, e.g., [HHM]), have been studied
firstly in [BL1, BL2], where existence and uniqueness results have been proved
via energy methods. In this framework, it is also worth quoting some papers
which are devoted to the case kI = 0, assuming both γ and λ linear. Using
a semigroup approach, existence, uniqueness, and longtime results have been
proved firstly in [AB]. Quite general well-posedness results have then been ob-
tained in [CGG1, CGG2, CGG3] (cf. also [CGG4]) again via energy methods.
Recently, in [CL1, CL2] a thorough investigation along the lines of [AB], for a
more general model, has been carried out. In particular, existence and unique-
ness when λ is a quadratic nonlinearity as well as a detailed characterization of
the ω-limit set have been shown. Regarding the longtime behavior and existence
of a maximal attractor for other phase transition models without memory ef-
fects, the reader is referred, e.g., to [Ken1, Ken2, KNZ, Lau, SZ] and references
therein.

In all the mentioned papers about phase-field models with memory, the
(summed) past history of ϑ (and, possibly, of χ) is simply incorporated in the
source term f and, sometimes, in the boundary data. As a consequence, the
Lyapunov stability analysis (i.e., with respect to perturbations of the initial data)
does not involve the initial (summed) past history, which must be kept fixed
(a different stability analysis, called structural stability, is required if we want
perturb the past history of ϑ, and then f). This approach seems not appropriate
to study the longtime behavior of solutions from a more general point of view,
namely, the stability of sets of trajectories under perturbation of all initial data.
Instead, a formulation in the history space setting, which regards η as a variable
of the evolution phenomenon, has been proved to be effective in analyzing such
issue (see [GGP, GMP2, PZ]). In particular, in [GGP] we have considered a
problem similar to P, but based on a heat conduction law with null istantaneous
heat conductivity, i.e., kI = 0. This implies that the equation for ϑ does not
contain the regularizing term −∆ϑ (cf. (1.4)). Working in the history space
formulation, we have been able to prove, besides some well-posedness results,
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the existence of uniform absorbing sets. Here, taking advantage of the presence
of −∆ϑ, we can say more about the asymptotic behavior of the solutions to
P. Indeed, the main purpose of this work is to prove that problem P defines a
strongly continuous process which possesses a uniform attractor.

The plan of the paper follows. In Section 2, we introduce some preliminary
tools, while in Section 3 we formulate P in a proper functional setting, and we
state well-posedness results, which are then proved in Section 4 and Section 5.
These results allow to express the solution to P in terms of a strongly continuous
process of continuous operators. Section 6 is devoted to show the existence of
a uniform absorbing set, as the time-dependent functional symbol f is allowed
to vary in a suitable Banach space. In Section 7, we present the main result,
namely the existence of a uniform attractor for the process. In addition, when
λ is linear, we show in Section 8 that the attractor has finite fractal dimension.

Finally, it is worth noting that some thermal dissipation is supported by
the hereditary term into the constitutive equation (1.3) for the internal energy.
However, unlike the crucial role played by this term (and especially by a(0))
in the main result of [GGP] when kI = 0, here it merely compensates the ab-
sence of heat outflow due to the adiabatic (Neumann) boundary condition. As a
consequence, all the results of the following sections remain still valid, with mi-
nor modifications, if we neglect either or both memory contributions into (1.4),
provided that the Dirichlet boundary condition for the temperature is assumed
rather than the Neumann one, so to exploit Poincaré inequality. From a physical
point of view, this is quite natural, since such a boundary condition can act as
a thermal pump in a dissipative way. Indeed, if the temperature inside grows
beyond the value at the boundary, then the external environment removes heat
from the boundary surface in order to keep fixed its temperature value.

It is interesting to observe that when all memory terms are neglected in
the model equations and Dirichlet boundary condition for the temperature is
considered, then a Fourier heat conduction law is recovered, and the state vari-
ables reduce to ϑ and χ. Therefore P degenerates into the following initial and
Dirichlet-Neumann boundary value problem.

Problem P′. Find (ϑ,χ) solution to the system

∂t
(
ϑ(t) +λ(χ(t))

)
−∆ϑ(t) = f(t)

∂tχ(t)−∆χ(t) +χ3(t) = γ(χ(t)) +λ′(χ(t))ϑ(t)

in Ω, for any t > τ , which satisfies the initial and boundary conditions
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ϑ = 0 on ∂Ω× (τ,+∞)

∂nχ = 0 on ∂Ω× (τ,+∞)

ϑ(τ) = ϑ0 in Ω

χ(τ) = χ0 in Ω.

Hence, we are dealing with a thermally induced phase-field model of the Caginalp
type for which it is possible to prove well posedness as well as longtime behavior
results analogous to those obtained for P, included the existence of a uniform
attractor.

2. Terminology and Basic Tools

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω (e.g., of class
C2,1). We set

H = L2(Ω), V = H1(Ω), W = H2(Ω)

and denote by V ∗ the dual spaces of V . As usual, we identify H with its dual
space H∗ and we recall the compact and dense embeddings

W ↪→ V ↪→ H ≡ H∗ ↪→ V ∗.

We will always denote the norm and the inner product on a Hilbert space X
by 〈·, ·〉X and ‖ · ‖X , respectively. Moreover, 〈·, ·〉X∗X will indicate the duality
pairing between X ∗ and X .

Given a positive summable function α defined on R+ = (0,+∞) and a real
Hilbert space X , let L2

α(R+,X ) be the Hilbert space of X -valued functions on
R+, endowed with the inner product

〈ψ1,ψ2〉L2
α(R+,X ) =

∫ ∞
0

α(σ)〈ψ1(σ),ψ2(σ)〉X dσ.

It is worth recalling that, given two Hilbert spaces X and Y, the space X ∩Y
turns out to be a Hilbert space endowed with the inner product

〈·, ·〉X∩Y = 〈·, ·〉X + 〈·, ·〉Y .

In order to describe the asymptotic behavior of the solutions to P, we also
need to introduce the Banach space T1 of L1

loc-translation bounded functions with
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values in H, namely,

T1 =

{
f ∈ L1

loc(R,H) : ‖f‖T1 = sup
r∈R

∫ r+1

r

‖f(y)‖H dy <∞

}
.

Similarly, we define the Banach space T2 of L2
loc-translation bounded functions

with values in V ∗, that is,

T2 =

{
f ∈ L2

loc(R,V ∗) : ‖f‖2T2
= sup

r∈R

∫ r+1

r

‖f(y)‖2V ∗ dy <∞

}
.

Definition 2.1. A function g ∈ L1
loc(R,H) is said to be translation com-

pact in L1
loc(R,H) if the hull of g, defined as

H(g) = {gr}r∈R
L1

loc(R,H)

is compact in L1
loc(R,H), where gr(·) = g(·+ r) is the translate of g by r.

The reader is referred to [CV3] and references therein for a more detailed
presentation of the subject. Here we just recall that if g is translation compact
in L1

loc(R,H), then g ∈ T1 and

‖f‖T1 ≤ ‖g‖T1 for all f ∈ H(g).

We also remark that the class of translation compact functions in L1
loc(R,H)

is quite general. For example, it contains Lp(R,H) for all p ≥ 1, the constant
H-valued functions, and the class of almost periodic functions (see [AP]).

Throughout the paper, the symbol c will stand for a generic positive con-
stant, which may vary even in the same line within a proof. If not otherwise
specified, c will depend only on Ω, ν, µ, γ, and λ.

Finally, for the reader’s convenience, we report here below some technical
results which will be useful in the course of the investigation, namely, a compact-
ness lemma (see Lemma 5.5 in [PZ]), the uniform Gronwall lemma (see Lemma
III.1.1 in [Tem]), and two Gronwall-type lemmas, which subsume Lemma A.5 in
[Bre] and some results in [PPV].

Lemma 2.2. Let α ∈ C0(R+)∩L1(R+) be a non-negative non-increasing
function, and let X0, X , X1 be three Hilbert spaces such that

X0 ↪→ X ↪→ X1
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the first injection being compact. Let E ⊂ L2
α(R+,X ) satisfy the following hy-

potheses:

(i) E is bounded in L2
α(R+,X0)∩H1

α(R+,X1)

(ii) sup
η∈E
‖η(s)‖2X ≤ h(s) a.e. for some h ∈ L1

α(R+).

Then E is relatively compact in L2
α(R+,X ).

Lemma 2.3. Let ϕ, m1, and m2 be three non-negative locally summable
functions on [τ,+∞) satisfying

d

dt
ϕ(t) ≤ m1(t)ϕ(t) +m2(t) for a.e. t ∈ [τ,+∞)

and such that

∫ t+1

t

mj(s)ds ≤ aj and

∫ t+1

t

ϕ(s)ds ≤ a3

(j = 1, 2) for some positive constants a1, a2, a3. Then

ϕ(t+ 1) ≤ (a2 + a3)ea1

for any t ∈ [τ,+∞).

Lemma 2.4. Let ϕ, m1, m2, and m3 be three non-negative summable
functions on the interval [τ,T ] ⊂ R. Then the differential inequality

d

dt
ϕ2(t) ≤ m1(t)ϕ2(t) +m2(t)ϕ(t) +m3(t) for a.e. t ∈ [τ,T ]

implies

ϕ2(t) ≤ 2eβϕ2(τ) + e2β

(∫ t

τ

m2(y)dy

)2

+ 2eβ
∫ t

τ

m3(y)dy

for any t ∈ [τ,T ], where β =
∫ T
τ
m1(y)dy.
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Lemma 2.5. Let ϕ, m1, and m2 be three non-negative locally summable
functions on [τ,+∞) which satisfy, for some ε > 0, the differential inequality

d

dt
ϕ2(t) + εϕ2(t) ≤ m1(t)ϕ(t) +m2(t) for a.e. t ∈ [τ,+∞).

Then

ϕ2(t) ≤ 2ϕ2(τ)e−ε(t−τ) +

(∫ t

τ

m1(y)e−ε/2(t−y)dy

)2

+ 2

∫ t

τ

m2(y)e−ε(t−y)dy

for any t ∈ [τ,+∞). Moreover, the inequality

∫ t

τ

m(y)e−ε(t−y)dy ≤
eε

1− e−ε
sup
r≥τ

∫ r+1

r

m(y)dy

holds for every non-negative locally summable function m on [τ,+∞) and every
ε > 0.

3. Well-Posedness

Before stating the main results, we must introduce a rigorous formulation
of problem P. First of all, some assumptions are in order. As far as the kernels
ν and µ are concerned, we suppose

ν, µ ∈ C1(R+)∩L1(R+)(K1)

ν(s) ≥ 0, µ(s) ≥ 0 for all s ∈ R+(K2)

ν′(s) ≤ 0, µ′(s) ≤ 0 for all s ∈ R+(K3)

ν′(s) + δν(s) ≤ 0, µ′(s) + δµ(s) ≤ 0 for some δ > 0, for all s ∈ R+.(K4)

Assumption (K4), which basically implies the exponential decay of the memory
kernel (see, e.g., [GMP1]), is used only to prove the results related to longterm
behavior (see Section 6 and Section 7 below). Then, we set

(K5) a0 =

∫ ∞
0

ν(σ)dσ ≥ 0 and k0 =

∫ ∞
0

µ(σ)dσ ≥ 0
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and, in view of (K1)-(K2), we introduce the Hilbert spaces

N = L2
ν(R+,V ∗)∩L2

µ(R+,H)

M = L2
ν(R+,H)∩L2

µ(R+,V )

L = L2
ν(R+,V )∩L2

µ(R+,W )

and we denote

H = H ×V ×M and V = V ×W ×L.

Furthermore, we assume

γ ∈ C1(R) and γ′ ∈ L∞(R)(H1)

λ ∈ C2(R) and λ′′ ∈ L∞(R)(H2)

f ∈ L1
loc(R,H) +L2

loc(R,V ∗)(H3)

ϑ0 ∈ H(H4)

χ0 ∈ V(H5)

η0 ∈M.(H6)

Definition 3.1. Let (K1) and (K2) hold. Pick τ , T ∈ R such that T > τ
and set I = [τ,T ]. A triplet (ϑ,χ,η) which fulfills

ϑ ∈ C0(I,H)∩L2(I,V )(3.1)

ϑt ∈ L
2(I,V ∗) +L1(I,H)(3.2)

χ ∈ H1(I,H)∩C0(I,V )∩L2(I,W )(3.3)

η ∈ C0(I,M)(3.4)

ηt + ηs ∈ L
2(I,M)∩C0(I,N )(3.5)

is a solution to problem P in the time interval I provided that
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〈ϑt,v〉V ∗V + 〈λ′(χ)χt,v〉H + 〈ϑ,v〉V +

∫ ∞
0

ν(σ)〈η(σ),v〉H dσ(3.6)

+

∫ ∞
0

µ(σ)〈∇η(σ),∇v〉H3 dσ = 〈f,v〉V ∗V for all v ∈ V, a.e. in I

χt−∆χ+χ3 = γ(χ) +λ′(χ)ϑ a.e. in Ω× I(3.7)

〈ηt + ηs,ψ〉M = 〈ϑ,ψ〉M for all ψ ∈M, a.e. in I(3.8)

∂nχ = 0 a.e. on ∂Ω× I(3.9)

ϑ(τ) = ϑ0 a.e. in Ω(3.10)

χ(τ) = χ0 a.e. in Ω(3.11)

ητ = η0 a.e. in Ω×R+.(3.12)

The well-posedness of P is ensured by the following:

Theorem 3.2. Let (K1)-(K3) and (H1)-(H6) hold. Then, given any initial
time τ ∈ R and any T > τ , problem P has a unique solution (ϑ,χ,η) in the
interval I = [τ,T ]. Moreover, let {fi,ϑ0i,χ0i,η0i}, i = 1, 2, be two sets of
data satisfying (H3)-(H6), indicate by {ϑi,χi,ηi} the corresponding solutions to
problem P, and set

ωi = ϑi +λ(χi) a.e. in Ω× I(3.13)

ω0i = ϑ0i +λ(χ0i) a.e. in Ω.(3.14)

Then there exists a positive constant Λ1 such that, for any t ∈ I,

(3.15)
∥∥ω1(t)−ω2(t)

∥∥2

V ∗
+

∫ t

τ

∥∥ω1(y)−ω2(y)
∥∥2

H
dy+

∥∥χ1(t)−χ2(t)
∥∥2

H

+

∫ t

τ

∥∥∇χ1(y)−∇χ2(y)
∥∥2

H3 dy+
∥∥ηt1− ηt2∥∥2

N

≤ Λ1

(∥∥ω01−ω02

∥∥2

V ∗
+
∥∥χ01−χ02

∥∥2

H
+
∥∥η01− η02

∥∥2

N
+
∥∥f1− f2

∥∥2

L1(I,V ∗)

)
.

Remark 3.3. As we shall see in Sec. 3, existence and uniqueness can still be
proved even if the term χ3 in equation (3.7) is replaced by a maximal monotone
graph β in R2, provided that ϕ(χ0) ∈ L1(Ω), where ϕ : R→ [0,+∞] is the
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proper, convex, and lower-semicontinuous function whose subdifferential coin-
cides with β (see [BL1] and [GGP]). Also, it is worth noting that the existence
proof can be extended to functions λ with cubic growth (see Section 4 below and
Remark 4.1 in [BL1]).

When the nonlinearity is just χ3, a stronger continuous dependence estimate
holds. Indeed, we have

Theorem 3.4. Assume that (K1)-(K3) and (H1)-(H2) hold. Let
{fi, ϑ0i, χ0i, η0i}, i = 1, 2, be two sets of data satisfying (H3)-(H6), and let
{ϑi, χi, ηi} denote the two corresponding solutions to problem P in the interval
I = [τ,T ]. Then there exists a positive constant Λ2 such that, for any t ∈ I,

∥∥ϑ1(t)−ϑ2(t)
∥∥2

H
+
∥∥χ1(t)−χ2(t)

∥∥2

V
(3.16)

+

∫ t

τ

∥∥χ1(y)−χ2(y)
∥∥2

W
dy+

∥∥ηt1− ηt2∥∥2

M

≤ Λ2

(∥∥ϑ01−ϑ02

∥∥2

H
+
∥∥χ01−χ02

∥∥2

V

+
∥∥η01− η02

∥∥2

M
+
∥∥f1− f2

∥∥2

L1(I,H)+L2(I,V ∗)

)
.

Remark 3.5. A careful look at the proof of Theorem 3.4 (see Section 5
below) shows that a control of ‖ϑ1(t)−ϑ2(t)‖H for any t ∈ I can be obtained
even though χ3 is replaced by a maximal monotone graph β in R2 (cf. Remark
3.3) provided that λ′ is bounded.

In the sequel, we will denote by Uf (t,τ)z0 the solution (ϑ,χ,η) to problem
P at time t with source term f and initial data z0 = (ϑ0,χ0,η0) ∈ H given at
time τ .

Remark 3.6. As an immediate consequence of Theorem 3.2 and Theorem
3.4, for any fixed f ∈ L1

loc(R,H) +L2
loc(R,V ∗), the two-parameter family of

operators Uf (t,τ), with t ≥ τ , τ ∈ R, satisfies the following properties:

Uf (t,τ) : H → H for any t ≥ τ, τ ∈ R;(i)

Uf (τ,τ) is the identity map on H for any τ ∈ R;(ii)

Uf (t,s)Uf (s,τ) = Uf (t,τ) for any t ≥ s ≥ τ, τ ∈ R;(iii)

Uf (t,τ)z → z as t ↓ τ for any z ∈ H, τ ∈ R;(iv)

Uf (t,τ) ∈ C0(H,H) for any τ ∈ R, t ≥ τ.(v)

Thus, Uf (t,τ) is a (strongly continuous) process with symbol f , according to the
usual definition (see, e.g., [Har], Chapter 6).
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4. Proof of Theorem 3.2

The proof is divided into four subsections. The first is devoted to prove
estimate (3.15), which entails uniqueness. The latter are concerned with exis-
tence, which is obtained by means of a Faedo-Galerkin approximating scheme
(see [BL1] and [GGP]).

4.1. Estimate (3.15). Consider two possible solutions {ϑi,χi,ηi}, i = 1, 2,
to problem P corresponding to the source terms and initial data {fi,ϑ0i,χ0i,η0i}.
Moreover, set λ̃ = λ(χ1)−λ(χ2) and (cf. (3.13)-(3.14))

ω = ω1−ω2, ω0 = ω01−ω02

χ = χ1−χ2, χ0 = χ01−χ02

η = η1− η2, η0 = η01− η02.

Then, according to Definition 3.1, (ω,χ,η) fulfills the system

〈ωt,v〉V ∗V + 〈ω,v〉V = 〈∇λ̃,∇v〉H3 −

∫ ∞
0

ν(σ)〈η(σ),v〉H dσ(4.1)

−

∫ ∞
0

µ(σ)〈η(σ),v〉V dσ+ 〈f,v〉V ∗V

for all v ∈ V, a.e. in I

χt−∆χ+χ3
1−χ

3
2 = γ(χ1)− γ(χ2) +λ′(χ1)(ω1−λ(χ1))(4.2)

− λ′(χ2)(ω2−λ(χ2)) a.e. in Ω× I

〈ηt + ηs,ψ〉M = 〈ω− λ̃,ψ〉M for all ψ ∈M, a.e. in I(4.3)

and initial and boundary conditions (3.9), (3.11)-(3.12), and

(4.4) ω(τ) = ω0 a.e. in Ω.

Consider the Riesz map J = −∆ + I from V onto V ∗, being I the identity
mapping, and set v = J−1ω in (4.1). We obtain

1

2

d

dt

∥∥ω∥∥2

V ∗
+
∥∥ω∥∥2

V ∗
+
∥∥ω∥∥2

H
=

∫ ∞
0

µ(σ)〈η(σ),ω〉V ∗ dσ−

∫ ∞
0

ν(σ)〈η(σ),ω〉V ∗ dσ

−

∫ ∞
0

µ(σ)〈η(σ),ω〉H dσ+ 〈λ̃,ω〉H + 〈f,ω〉V ∗ .



Attractors for a Phase-field Model 1409

Recalling (K5) and using Young inequality, from the above relation we deduce

d

dt

∥∥ω∥∥2

V ∗
+
∥∥ω∥∥2

H
≤ (k0 + a0− 2)

∥∥ω∥∥2

V ∗
+
∥∥λ̃∥∥2

H
+
∥∥η∥∥2

N
(4.5)

− 2

∫ ∞
0

µ(σ)〈η(σ),ω〉H dσ+ 2
∥∥f∥∥

V ∗

∥∥ω∥∥
V ∗
.

We now multiply (4.2) by χ and integrate over Ω. We obtain

1

2

d

dt

∥∥χ∥∥2

H
=−

∥∥∇χ∥∥2

H3 −〈χ
3
1−χ

3
2,χ〉H + 〈γ(χ1)− γ(χ2),χ〉H(4.6)

+ 〈λ′(χ2)ω,χ〉H −〈λ
′(χ2)λ̃,χ〉H

+ 〈
(
λ′(χ1)−λ′(χ2)

)(
ω1−λ(χ1)

)
,χ〉H .

Observe at once that

(4.7) −〈χ3
1−χ

3
2,χ〉H ≤ 0

and (cf. (H1))

(4.8) 〈γ(χ1)− γ(χ2),χ〉H ≤ Γ
∥∥χ∥∥2

H

where Γ = ‖γ′‖L∞(R). On the other hand, recalling (H2), we can find a positive
constant c such that

|λ(r)| ≤ c(1 + r2) for all r ∈ R(4.9)

|λ(r1)−λ(r2)| ≤ c(1 + |r1|+ |r2|) |r1− r2| for all r1, r2 ∈ R(4.10)

|λ′(r)| ≤ c(1 + |r|) for all r ∈ R(4.11)

|λ′(r1)−λ′(r2)| ≤ c|r1− r2| for all r1, r2 ∈ R.(4.12)

Hence, using (4.10)-(4.11) and Young inequality, we get

〈λ′(χ2)ω,χ〉H ≤
1

2

∥∥ω∥∥2

H
+ c
(
1 +

∥∥χ2

∥∥2

C0(Ω̄)

)∥∥χ∥∥2

H
(4.13)

〈λ′(χ2)λ̃,χ〉H ≤ c
(
1 +

∥∥χ1

∥∥2

C0(Ω̄)
+
∥∥χ2

∥∥2

C0(Ω̄)

)∥∥χ∥∥2

H
(4.14)



1410 C. Giorgi, M. Grasselli & V. Pata

Moreover, note that

〈(λ′(χ1)−λ′(χ2))(ω1−λ(χ1)),χ〉H(4.15)

≤ c
(∥∥ω1

∥∥
H

+
∥∥λ(χ1)

∥∥
H

)∥∥χ∥∥2

L4(Ω)

≤ c
(
1 +

∥∥ω1

∥∥
H

+
∥∥χ1

∥∥2

L4(Ω)

)∥∥χ∥∥2

L4(Ω)

≤ c
(
1 +

∥∥ω1

∥∥
H

+
∥∥χ1

∥∥2

V

)∥∥χ∥∥2

L4(Ω)

where we used (4.9) and (4.12). Then, setting (cf. (3.1), (3.3), and (3.13))

Λ3 = sup
t∈I

(
1 +

∥∥ω1(t)
∥∥
H

+
∥∥χ1(t)

∥∥2

V

)
and using Gagliardo-Nirenberg and Young inequalities, we infer from (4.15)

(4.16) 〈(λ′(χ1)−λ′(χ2))(ω1−λ(χ1)),χ〉H ≤
1

2

∥∥∇χ∥∥2

H3 + (1 + cΛ3)
∥∥χ∥∥2

H
.

On account of the injection W ↪→ C0(Ω̄) and combining (4.7)-(4.8), (4.13)-(4.14),
(4.16), with (4.6), we deduce

(4.17)
d

dt

∥∥χ∥∥2

H
+
∥∥∇χ∥∥2

H3 ≤
1

2

∥∥ω∥∥2

H
+ c(1 + Λ3 + ζ)

∥∥χ∥∥2

H

where

(4.18) ζ(t) =
∥∥χ1(t)

∥∥2

W
+
∥∥χ2(t)

∥∥2

W
for a.e. t ∈ I.

Note that ζ ∈ L1(I) due to (3.3). Recalling (4.3), we have, by density,

(4.19) 〈ηt + ηs,ψ〉N = 〈ω− λ̃,ψ〉N for all ψ ∈ N , a.e. in I.

Then, we can formally take ψ = η and we end up with (see [GGP] for the
justification)

(4.20)
d

dt

∥∥η∥∥2

N
≤ a0

∥∥ω∥∥2

V ∗
+ (k0 + a0)

∥∥λ̃∥∥2

H
+ 2
∥∥η∥∥2

N
+ 2

∫ ∞
0

µ(σ)〈η(σ),ω〉H dσ.
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Adding together (4.5) and (4.20), we get

d

dt

(∥∥ω∥∥2

V ∗
+
∥∥η∥∥2

N

)
+
∥∥ω∥∥2

H
≤ (k0 + 2a0− 2)

∥∥ω∥∥2

V ∗
+ (k0 + a0 + 1)

∥∥λ̃∥∥2

H

+ 3
∥∥η∥∥2

N
+ 2
∥∥f∥∥

V ∗

∥∥ω∥∥
V ∗

which yields, thanks to (4.10) and recalling (4.18),

d

dt

(∥∥ω∥∥2

V ∗
+
∥∥η∥∥2

N

)
+
∥∥ω∥∥2

H
(4.21)

≤ c
(∥∥ω∥∥2

V ∗
+ (1 + ζ)

∥∥χ∥∥2

H
+
∥∥η∥∥2

N
+
∥∥f∥∥

V ∗

∥∥ω∥∥
V ∗

)
.

Hence, we can combine (4.21) with (4.17). This gives

(4.22)
d

dt
Φ2 ≤ c

(∥∥ω∥∥2

V ∗
+ (1 + Λ3 + ζ)

∥∥χ∥∥2

H
+
∥∥η∥∥2

N
+
∥∥f‖V ∗∥∥ω∥∥V ∗)

where

Φ2(t) = ‖ω(t)‖2V ∗ +

∫ t

τ

∥∥ω(y)
∥∥2

H
dy+

∥∥χ(t)
∥∥2

H
+

∫ t

τ

∥∥∇χ(y)
∥∥2

H3 dy+
∥∥ηt∥∥2

N

for any t ∈ I. Finally, from (4.22) we derive

d

dt
Φ2(t) ≤ c(1 + ζ(t))Φ2(t) + c

∥∥f(t)
∥∥
V ∗

Φ(t) for a.e. t ∈ I

and an application of Lemma 2.4 yields (3.15). Of course, we get ω = χ = η ≡ 0
and therefore ϑ1 ≡ ϑ2, whenever the two sets of data coincide.

4.2. Faedo-Galerkin approximation. Let {vj}∞j=1 be a complete set of
normalized eigenfunctions of −∆ in V satisfying Neumann boundary conditions,
that is

−∆vj = αjvj in Ω

∂nvj = 0 on ∂Ω

where αj is the eigenvalue corresponding to vj . We recall that {vj}∞j=1 is a
smooth orthonormal basis of H which is orthogonal in V as well. Take now a or-
thonormal basis {lj}∞j=1 ⊂ D(R+) (compactly supported infinitely differentiable
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functions) of L2
µ+ν(R+) and consider the set of vectors {lkvh}∞k,h=1. One can eas-

ily check that the chosen set forms a orthonormal basis {zj}∞j=1 ⊂ D(R+,V ) of
M. For any integer n, denote by Pn and Qn the projections onto the subspaces

Vn = Span{v1, . . . ,vn} ⊂ V and Mn = Span{z1, . . . ,zn} ⊂ M

respectively. Observe that, for any j,

vj ∈W and zj ∈ L
2
ν(R+,W )∩L2

µ(R+,W ).

It is convenient to approximate f with a sequence {fn} such that

{fn} ⊂ C
0(I,H)(4.23)

fn = f1
n + f2

n with f1
n → f1 in L1(I,H), f2

n → f2 in L2(I,V ∗)(4.24)

where (f1,f2) is some fixed decomposition of f , that is f = f1 + f2.

We are now ready to introduce the sequence of approximating problems.

Problem Pn. Find tn ∈ (τ,T ] and aj, bj, cj ∈ C1([τ,tn]), (j = 1, . . . , n),
such that, setting

ϑn(t) =
n∑
j=1

aj(t)vj , χn(t) =
n∑
j=1

bj(t)vj , ηtn(s) =
n∑
j=1

cj(t)zj(s)

the triplet (ϑn,χn,ηn) fulfills

ϑn,χn ∈ C
1([τ,tn],W )(4.25)

ηn ∈ C
1
(
[τ,tn],L2

ν(R+,W )∩L2
µ(R+,W )

)
(4.26)

〈∂t
(
ϑn(t) +λ(χn(t))

)
,v〉V ∗V + 〈∇ϑn(t),v〉V(4.27)
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+

∫ ∞
0

ν(σ)〈ηtn(σ),v〉H dσ+

∫ ∞
0

µ(σ)〈∇ηtn(σ),v〉H3 dσ

= 〈fn(t),v〉V ∗V for all v ∈ Vn, a.e. in (τ,tn)

〈∂tχn,v〉V ∗V + 〈∇χn,∇v〉H3 + 〈χ3
n,v〉H = 〈γ(χn) +λ′(χn)ϑn,v〉H(4.28)

for all v ∈ Vn, a.e. in (τ,tn)

〈∂tηn + ∂sηn,z〉M = 〈ϑn,z〉M for all z ∈Mn, a.e. in (τ,tn)(4.29)

ϑn(τ) = ϑ0n = Pnϑ0 a.e. in Ω(4.30)

χn(τ) = χ0n = Pnχ0 a.e. in Ω(4.31)

ητn = η0n = Qnη0 a.e. in Ω×R+.(4.32)

Observe that

∂sη
t
n(s) =

{
ϑn(t− s) if 0 < s ≤ t− τ,

∂sη0n(s− t+ τ) if s > t− τ.

Then, we can easily realize that system (4.27)-(4.29) can be put in normal form.
Therefore, an application of a standard fixed-point argument implies that Pn

has a (unique) solution with tn small enough.

4.3. A priori estimates. Let us take v = ϑn in equation (4.27), v = ∂tχn
in equation (4.28), and z = ηn in equation (4.29). Adding the three relations
together, we obtain

(4.33)
1

2

d

dt

(∥∥ϑn∥∥2

H
+ 2

∫ t

τ

∥∥∇ϑn(y)
∥∥2

H3 dy+
∥∥∇χn∥∥2

H3 +
∥∥ηn∥∥2

M
+ 2
∥∥χn∥∥4

L4(Ω)

)
= −

∥∥ϑn∥∥2

H
−
∥∥∂tχn∥∥2

H
+ 〈fn,ϑn〉H + 〈γ(χn),∂tχn〉H

+

∫ ∞
0

µ(σ)〈ηn(σ),ϑn〉H dσ−〈∂sηn,ηn〉M.

Recall now that (see [GMP1] for details)

(4.34) 〈∂sηn,ηn〉M = −
1

2

∫ ∞
0

ν′(σ)
∥∥ηn(σ)

∥∥2

H
dσ−

1

2

∫ ∞
0

µ′(σ)
∥∥ηn(σ)

∥∥2

V
dσ ≥ 0.

Then, taking (H1), (K5), (4.24), (4.34) into account, and using Young inequality,
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we deduce

(4.35)
1

2

d

dt

(∥∥ϑn∥∥2

H
+

∫ t

τ

∥∥∇ϑn(y)
∥∥2

H3 dy+
∥∥∇χn∥∥2

H3 +
∥∥ηn∥∥2

M
+ 2
∥∥χn∥∥4

L4(Ω)

)
≤ c

(
1 +

∥∥ϑn∥∥2

H
+
∥∥χn∥∥2

V
+
∥∥ηn∥∥2

M

)
+
∥∥f1
n

∥∥
H

∥∥ϑn∥∥H
+

1

2

∥∥f2
n

∥∥2

V ∗
−

3

4

∥∥∂tχn∥∥2

H
.

Hence, adding to (4.35) the elementary inequality

1

2

d

dt

∥∥χn∥∥2

H
≤

1

4

∥∥∂tχn∥∥2

H
+ c
∥∥χn∥∥2

H

we infer

(4.36)
d

dt
Φ2 ≤ c

(
1 +

∥∥ϑn∥∥2

H
+
∥∥χn∥∥2

V
+
∥∥ηn∥∥2

M
+
∥∥f1
n

∥∥
H

∥∥ϑn∥∥H +
∥∥f2
n

∥∥2

V ∗

)
where

Φ2(t) = 1 +
∥∥ϑn(t)

∥∥2

H
+

∫ t

τ

∥∥∇ϑn(y)
∥∥2

H
dy+

∥∥χn(t)
∥∥2

V

+
∥∥ηtn∥∥2

M
+
∥∥χn(t)

∥∥4

L4(Ω)
+

∫ t

τ

∥∥∂tχn(y)
∥∥2

H
dy.

Therefore, from (4.36) we derive the inequality

d

dt
Φ2(t) ≤ cΦ2(t) + c

∥∥f1
n(t)

∥∥
H

Φ(t) + c
∥∥f2
n(t)

∥∥2

V ∗
for a.e. t ∈ I

and applying Lemma 2.4 we get the a priori estimates

‖ϑn‖L∞(I,H)∩L2(I,V ) ≤ c(4.37)

‖χn‖L∞(I,V )∩H1(I,H) ≤ c(4.38)

‖ηn‖L∞(I,M) ≤ c(4.39)

for some positive constant c independent of n, tn, and λ. In particular, the
above estimates imply that tn = T for any n. Thus, (ϑn,χn,ηn) solves Pn on
the whole I.
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Let us now take v = −∆χn in equation (4.28). We have

1

2

d

dt

∥∥∇χn∥∥2

H3 +
∥∥∆χn

∥∥2

H
= −〈3χ2

n∇χn,∇χn〉H3 −〈γ(χn),∆χn〉H(4.40)

− 〈λ′(χn)ϑn,∆χn〉H .

Observe that, using Young and Gagliardo-Nirenberg inequalities and recalling
(H1), (4.11), (4.38)-(4.39), we obtain

〈3χ2
n∇χn,∇χn〉H3 ≥ 0(4.41)

〈γ(χn),∆χn〉H ≤ c+
1

4

∥∥∆χn
∥∥2

H
(4.42)

〈λ′(χn)ϑn,∆χn〉H ≤ c
(
1 +

∥∥ϑn∥∥2

V

)
+

1

4

∥∥∆χn
∥∥2

H
.(4.43)

Combining (4.40) with (4.38) and (4.41)-(4.43), we find c > 0 independent of n
such that

(4.44) ‖χn‖L2(I,W ) ≤ c.

4.4. Passage to the limit. In force of (4.37)-(4.39) and (4.44), we can
find a triplet (ϑ,χ,η) such that, up to subsequences,

ϑn → ϑ weakly star in L∞(I,H), weakly in L2(I,V )(4.45)

χn → χ weakly star in L∞(I,V ), weakly in H1(I,H)∩L2(I,W )(4.46)

ηn → η weakly star in L∞(I,M).(4.47)

In addition, on account of (4.46), a classical compactness argument entails

(4.48) χn → χ strongly in C0(I,H)∩L2(I,V ).

Recalling (H1), (H2), (4.10), (4.12), and (4.38), owing to (4.48), we have

γ(χn)→ γ(χ) strongly in C0(I,H)(4.49)

λ(χn)→ λ(χ) strongly in C0(I,H)(4.50)

λ′(χn)→ λ′(χ) strongly in L2(I,L4(Ω))(4.51)

χ3
n → χ3 strongly in C0(I,H).(4.52)
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Here we also use Hölder inequality and the injection V ↪→ L6(Ω).
Collecting all the convergences (4.45)-(4.52), and recalling (4.24), we easily

realize that (ϑ,χ,η) fulfills (3.3), (3.7)-(3.11).
In order to get (3.6), let us integrate equation (4.27) with respect to time

over (τ,t). We obtain

〈ϑn,v〉V ∗V + 〈λ(χn),v〉H +

〈∫ t

τ

ϑn(y)dy,v

〉
V

(4.53)

+

∫ ∞
0

ν(σ)

〈∫ t

τ

ηn(σ,y)dy,v

〉
H

dσ

+

∫ ∞
0

µ(σ)

〈
∇

∫ t

τ

ηn(σ,y)dy,∇v

〉
H3

dσ

= 〈ϑ0n +λ(χ0n),v〉H +

〈∫ t

τ

fn(y)dy,v

〉
V ∗V

for all v ∈ Vn, a.e. in I.

Thanks to (4.24), (4.30)-(4.32), (4.45), (4.46), (4.50), we can easily pass to the
limit in (4.53). This yields

〈ϑ,v〉V ∗V + 〈λ(χ),v〉H +

〈∫ t

τ

ϑ(y)dy,v

〉
V

(4.54)

+

∫ ∞
0

ν(σ)

〈∫ t

τ

η(σ,y)dy,v

〉
H

dσ

+

∫ ∞
0

µ(σ)

〈
∇

∫ t

τ

η(σ,y)dy,∇v

〉
H3

dσ

= 〈ϑ0 +λ(χ0),v〉H +

〈∫ t

τ

f(y)dy,v

〉
V ∗V

for all v ∈ V, a.e. in I.

Thus, from (4.54), we easily recover (3.6) and, by comparison, (3.2), thank to
(H3). Consequently, since ϑ ∈ L2(I,V ), we deduce ϑ ∈ C0(I,H) so that (3.1)
and (3.5) hold as well. Finally, we have

(4.55) ηt(s) =


∫ t

t−s
ϑ(y)dy if 0 < s ≤ t− τ

η0(s− t+ τ) +

∫ t

τ

ϑ(y)dy if s > t− τ

from which, thanks to (3.1), relations (3.4) and (3.12) follow.
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We conclude observing that, owing to uniqueness, the whole sequence
{ϑn,χn,ηn} converges to the solution according to (4.45)-(4.52).

5. Proof of Theorem 3.4

With the notation of Subsection 4.1, consider equations (4.1)-(4.3). Take
v = ω in equation (4.1), to obtain

1

2

d

dt

∥∥ω∥∥2

H
= −

∥∥ω∥∥2

H
−
∥∥∇ω∥∥2

H
+ 〈∇λ̃,∇ω〉−

∫ ∞
0

ν(σ)〈η(σ),ω〉H dσ(5.1)

−

∫ ∞
0

µ(σ)〈∇η(σ),∇ω〉H3 dσ−〈λ̃,ω〉H + 〈f,ω〉.

Then, taking ψ = η in (4.3) we formally deduce

(5.2)
1

2

d

dt

∥∥η∥∥2

M
= −〈∂sη,η〉M+

∫ ∞
0

ν(σ)〈η(σ),ω〉H dσ+

∫ ∞
0

µ(σ)〈η(σ),ω〉V dσ

−

∫ ∞
0

ν(σ)〈η(σ), λ̃〉H dσ−

∫ ∞
0

µ(σ)〈η(σ), λ̃〉V dσ.

To make this argument rigorous, we should perform it in a Faedo-Galerkin
scheme (cf. Section 4 and, in particular, (4.29)). Adding (5.1) and (5.2) to-
gether, and observing that 〈∂sη,η〉M ≥ 0 (see (4.34)), we derive the inequality

1

2

d

dt

(∥∥ω∥∥2

H
+
∥∥η∥∥2

M

)
(5.3)

≤ −
∥∥ω∥∥2

H
−
∥∥∇ω∥∥2

H
+ 〈∇λ̃,∇ω〉−

∫ ∞
0

ν(σ)〈η(σ),ω〉H dσ

−

∫ ∞
0

µ(σ)〈∇η(σ),∇ω〉H3 dσ−〈λ̃,ω〉H

+

∫ ∞
0

ν(σ)〈η(σ),ω〉H dσ+

∫ ∞
0

µ(σ)〈η(σ),ω〉V dσ

−

∫ ∞
0

ν(σ)〈η(σ), λ̃〉H dσ−

∫ ∞
0

µ(σ)〈η(σ), λ̃〉V dσ+ 〈f,ω〉.
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Let us now multiply equation (4.2) by −∆χ. We get

1

2

d

dt

∥∥∇χ∥∥2

H3 +
∥∥∆χ

∥∥2

H
(5.4)

= 〈χ3
1−χ

3
2,∆χ〉H −〈γ(χ1)− γ(χ2),∆χ〉H

− 〈λ′(χ1)(ω1−λ(χ1))−λ′(χ2)(ω2−λ(χ2)),∆χ〉H .

Recalling (7.4) in [GGP], we have

∥∥χ3
1−χ

3
2

∥∥2

H
≤ c
(
1 +

∥∥χ1

∥∥4

V
+
∥∥χ2

∥∥4

V

)∥∥χ∥∥2

V

and setting

(5.5) Λ4 = sup
t∈I

(
1 +

∥∥χ1(t)
∥∥4

V
+
∥∥χ2(t)

∥∥4

V

)
we deduce

(5.6)
∥∥χ3

1−χ
3
2

∥∥2

H
≤ cΛ4

∥∥χ∥∥2

V
.

Moreover, using (H1), we easily realize that

(5.7) 〈γ(χ1)− γ(χ2),∆χ〉H ≤ c
∥∥χ∥∥2

H
+

1

4

∥∥∆χ
∥∥2

H
.

Consider now the identity in Ω× I

λ′(χ1)(ω1−λ(χ1))−λ′(χ2)(ω2−λ(χ2))(5.8)

= λ′(χ1)ω+ (λ′(χ1)−λ′(χ2))ω2

+ (λ′(χ2)−λ′(χ1))λ(χ1) +λ′(χ2)(λ(χ2)−λ(χ1)).

Observe that (cf. (4.11) and (4.18))

(5.9)
∥∥λ′(χ1)ω

∥∥2

H
≤ c(1 + ζ)

∥∥ω∥∥2

H
.

Besides, thanks to (4.12), Hölder inequality, and the injection V ↪→ L4(Ω)

(5.10)
∥∥(λ′(χ1)−λ′(χ2))ω2

∥∥2

H
≤ c
∥∥ω2

∥∥2

V

∥∥χ∥∥2

V
.
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Then, on account of (4.9)-(4.12), using Hölder inequality, and recalling (4.18)
and (5.5), we have

∥∥(λ′(χ1)−λ′(χ2))λ(χ1)
∥∥2

H
≤ c
∥∥χ1−χ2

∥∥2

L6(Ω)

(
1 +

∥∥χ1

∥∥4

L6(Ω)

)
(5.11)

≤ cΛ4

∥∥χ1−χ2

∥∥2

V

and

∥∥λ′(χ2)(λ(χ2)−λ(χ1))
∥∥2

H
≤ c(1 + ζ)(1 + Λ4)

∥∥χ1−χ2

∥∥2

L6(Ω)
(5.12)

≤ c(1 + ζ)(1 + Λ4)
∥∥χ1−χ2

∥∥2

V

where we have also used the injections L6(Ω) ↪→ V and W ↪→ C0(Ω). Conse-
quently, collecting (5.9)-(5.12), from (5.8) we infer

∥∥λ′(χ1)(ω1−λ(χ1))−λ′(χ2)(ω2−λ(χ2))
∥∥2

H
(5.13)

≤ c
(
(1 + ζ)

∥∥ω∥∥2

H
+
(
1 + ζ +

∥∥ω2

∥∥2

V

)∥∥χ∥∥2

V

)
.

Therefore, thanks to (5.13), we have

〈λ′(χ1)(ω1−λ(χ1))−λ′(χ2)(ω2−λ(χ2)),∆χ〉H(5.14)

≤ c
(
(1 + ζ)

∥∥ω∥∥2

H
+
(
1 + ζ +

∥∥ω2

∥∥2

V

)∥∥χ∥∥2

V

)
+

1

4

∥∥∆χ
∥∥2

H
.

Combining now (5.6)-(5.7) with (5.14), from (5.4) we derive the inequality

(5.15)
d

dt

∥∥∇χ∥∥2

H3 +
∥∥∆χ

∥∥2

H
≤ c
(
(1 + ζ)

∥∥ω∥∥2

H
+
(
1 + ζ +

∥∥ω2

∥∥2

V

)∥∥χ∥∥2

V

)
.

On the other hand, recalling (4.10) and (5.5), we have

(5.16)
∥∥λ̃∥∥2

H
≤ cΛ4

∥∥χ∥∥2

V
.

Also, observe that (cf. (H2))

∇λ̃ = λ′(χ1)∇χ+
(
λ′(χ1)−λ′(χ2)

)
∇χ2 a.e. in Ω× I.
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Hence, on account of (4.11)-(4.12) and (4.18), we have, by Hölder inequality,

(5.17)
∥∥∇λ̃∥∥2

H
≤ c
(∥∥χ1

∥∥2

C0(Ω)
+
∥∥χ2

∥∥2

W

)∥∥χ∥∥2

V
≤ cζ

∥∥χ∥∥2

V
.

Consequently, using (5.17) ad Young inequality, we get

(5.18) 〈∇λ̃,∇ω〉 ≤ cζ
∥∥χ∥∥2

V
+

1

4

∥∥∇ω∥∥2

H
.

In addition, note that

(5.19) 〈f,ω〉 ≤
∥∥f1

∥∥
H

∥∥ω∥∥
H

+
∥∥f2

∥∥2

V ∗
+

1

4

∥∥ω∥∥2

V

for an arbitrary decomposition (f1,f2) of f (cf. (H3)). Adding (5.3) to (5.15)
and using (5.16), (5.18)-(5.19), we obtain, via Young inequality,

d

dt
Φ2 ≤ c

(
(1 + ζ)

∥∥ω∥∥2

H
+
(
1 + Λ4 + ζ +

∥∥ω2

∥∥2

V

)∥∥χ∥∥2

V
+
∥∥η∥∥2

M
(5.20)

+
∥∥f1

∥∥
H

∥∥ω∥∥
H

+
∥∥f2

∥∥2

V ∗

)
where, for any t ∈ I,

Φ2(t) =
∥∥ω(t)

∥∥2

H
+

∫ t

τ

∥∥∇ω(y)
∥∥2

H3 dy+
∥∥∇χ(t)

∥∥2

H3 +

∫ t

τ

∥∥∆χ(y)
∥∥2

H
dy+

∥∥ηt∥∥2

M
.

Inequality (5.20) yields

(5.21)
d

dt
Φ2 ≤ c

(
1 + Λ4 + ζ +

∥∥ω2

∥∥2

V

)
Φ2 + c

∥∥f1
∥∥
H

Φ + c
∥∥f2

∥∥2

V ∗
.

On the other hand, recalling (3.13) and (5.16), we have

(5.22)
∥∥ϑ∥∥2

H
≤ 2
∥∥ω∥∥2

H
+ 2cΛ4

∥∥χ∥∥2

V
.

Finally, (3.16) follows applying Lemma 2.4 to (5.21) and taking advantage of
(3.15) and (5.22).

6. Existence of a Uniform Absorbing Set

The first step towards the existence of a uniform attractor is to prove
the existence of a uniform absorbing set. In the sequel, let F ⊂ L1

loc(R,H) +
L2

loc(R,V ∗). To get interesting asymptotic properties, we shall require the expo-
nential decays of the kernels ν and µ, i.e., condition (K4).
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Definition 6.1. A set B0 ⊂ H is said to be uniformly absorbing (with
respect to f ∈ F) for the family {Uf (t,τ), f ∈ F} if, for any bounded set
B ⊂ H, there exists t0 = t0(B) such that

⋃
f∈F

Uf (t,τ)B ⊂ B0

for every τ ∈ R and every t ≥ τ + t0.

We now state and prove some uniform in time estimates.

Lemma 6.2. Let (K1)-(K4) and (H1)-(H6) hold, and let f ∈ T1 + T2.
Then there exist ε > 0 and two continuous increasing functions Cj : R+ → R+,
j = 1, 2, such that

∥∥Uf (t,τ)z0

∥∥2

H
≤ C1(‖z0‖H)e−ε(t−τ) +C2(‖f‖T1+T2)

for every t ≥ τ , τ ∈ R.

Proof. Let f = f1 + f2 be a fixed decomposition of f such that ‖f j‖Tj ≤
2‖f‖T1+T2 . We perform some a priori estimates, which clearly hold in a Faedo-
Galerkin scheme (see Section 4). Thus, we can proceed formally. Take v = ϑ in
equation (3.6); multiply equation (3.7) by χt and then integrate over Ω. Adding
the resulting equations, we get

1

2

d

dt

(∥∥ϑ∥∥2

H
+
∥∥∇χ∥∥2

H3 +
1

2

∥∥χ∥∥4

L4(Ω)

)
+
∥∥ϑ∥∥2

H
+
∥∥∇ϑ∥∥2

H3 +
∥∥χt∥∥2

H
(6.1)

= 〈γ(χ),χt〉H + 〈f1,ϑ〉H + 〈f2,ϑ〉V ∗V −

∫ ∞
0

ν(σ)〈η(σ),ϑ〉H dσ

−

∫ ∞
0

µ(σ)〈∇η(σ),∇ϑ〉H3 dσ.

Then, multiply equation (3.7) by κχ, for κ > 0, and integrate over Ω, so obtaining

1

2

d

dt
κ
∥∥χ∥∥2

H
+κ
∥∥χ∥∥2

H
+κ
∥∥∇χ∥∥2

H3 +κ
∥∥χ∥∥4

L4(Ω)
(6.2)

= κ〈γ̃(χ),χ〉H +κ〈λ′(χ)ϑ,χ〉H

where γ̃(r) = r+ γ(r). Notice that, by (H1), γ̃′ ∈ L∞(R). Besides, define

(6.3) ρ(η) =

∫ ∞
0

ν(σ)
∥∥η(σ)

∥∥2

H
dσ+

∫ ∞
0

µ(σ)
∥∥∇η(σ)

∥∥2

H3 dσ.
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Multiply equation (3.8) (considered in the strong sense, i.e., almost everywhere
in I ×Ω×R+) by νη, then take the gradient of (3.8) and multiply it by µ∇η;
add the resulting equations and integrate on Ω×R+. This procedure yields

1

2

d

dt
ρ(η) = −

1

2

∫ ∞
0

ν(σ)
d

dσ

∥∥η(σ)
∥∥2

H
dσ−

1

2

∫ ∞
0

µ(σ)
d

dσ

∥∥∇η(σ)
∥∥2

H3 dσ(6.4)

+

∫ ∞
0

ν(σ)〈ϑ,η(σ)〉H dσ+

∫ ∞
0

µ(σ)〈∇ϑ,∇η(σ)〉H3 dσ.

Using (K4) and performing an integration by parts, we have that

(6.5)

∫ ∞
0

ν(σ)
d

dσ

∥∥η(σ)
∥∥2

H
dσ+

∫ ∞
0

µ(σ)
d

dσ

∥∥∇η(σ)
∥∥2

H3 dσ ≥ δρ(η).

Set

Φ2(t) =
∥∥ϑ(t)

∥∥2

H
+κ
∥∥χ(t)

∥∥2

H
+
∥∥∇χ(t)

∥∥2

H3 +
1

2

∥∥χ(t)
∥∥4

L4(Ω)
+ ρ(ηt)

and let ε(κ) = min{1, 2κ, δ}. Addition of (6.1)-(6.2) and (6.4), with the help of
(6.5), leads to

d

dt
Φ2 + ε(κ)Φ2 +

∥∥ϑ∥∥2

H
+ 2
∥∥∇ϑ∥∥2

H3 + 2
∥∥χt∥∥2

H
(6.6)

≤ 2〈γ(χ),χt〉H + 2κ〈γ̃(χ),χ〉H + 2κ〈λ′(χ)ϑ,χ〉H

+ 2〈f1,ϑ〉H + 2〈f2,ϑ〉V ∗V .

By (H1)-(H2) and Young inequality,

2〈γ(χ),χt〉H + 2κ〈γ̃(χ),χ〉H ≤
∥∥χt∥∥2

H
+ c+ c

∥∥χ∥∥2

L4(Ω)
≤
∥∥χt∥∥2

H
+ c+ cΦ

and

2κ〈λ′(χ)ϑ,χ〉H ≤ κc
∥∥ϑ∥∥2

H
+
ε(κ)

4

∥∥χ∥∥4

L4(Ω)
≤ κc

∥∥ϑ∥∥2

H
+
ε(κ)

2
Φ2.

Then choose κ small enough so that κc ≤ 1
2 . Since

2〈f1,ϑ〉H ≤ 2
∥∥f1

∥∥
H

∥∥ϑ∥∥
H
≤ 2
∥∥f1

∥∥
H

Φ



Attractors for a Phase-field Model 1423

and

2〈f2,ϑ〉V ∗V ≤ 2
∥∥f2

∥∥
V ∗

∥∥ϑ∥∥
V
≤ 2
∥∥f2

∥∥2

V ∗
+

1

2

∥∥ϑ∥∥2

V

setting ε = ε(κ)/4, from (6.6) we conclude that

(6.7)
d

dt
Φ2 + 2εΦ2 +

∥∥∇ϑ∥∥2

H3 +
∥∥χt∥∥2

H
≤ c+ 2

∥∥f2
∥∥2

V ∗
+
(
c+ 2

∥∥f1
∥∥
H

)
Φ

and, in particular,

(6.8)
d

dt
Φ2 + 2εΦ2 ≤ c+ 2

∥∥f2
∥∥2

V ∗
+ (c+ 2

∥∥f1
∥∥
H

)Φ.

Through the end of the proof, let C1 and C2 be two generic continuous, positive,
increasing functions of ‖z0‖H and ‖f‖T1+T2 , respectively. Exploiting Lemma 2.5,
we get

(6.9) Φ2(t) ≤ 2Φ2(τ)e−2ε(t−τ) +C2

for any t ∈ [τ,+∞). Finally, define

Ψ2(t) =
∥∥ϑ(t)

∥∥2

H
+κ
∥∥χ(t)

∥∥2

H
+
∥∥∇χ(t)

∥∥2

H3 +
1

2

∥∥χ(t)
∥∥4

L4(Ω)
+
∥∥ηt∥∥2

M

Notice that, for every t ≥ τ , Φ(t) ≤ Ψ(t), and

1

c
Ψ(t) ≤ ‖Uf (t,τ)z0‖H ≤ cΨ(t) for some c > 1.

Repeat then the same arguments leading to (6.8), the only difference being that
we have to consider (3.8) with η in place of ψ, instead of (6.4). The result is the
following inequality, similar to (6.8),

(6.10)
d

dt
Ψ2 + 2εΨ2 ≤ c+ 2

∥∥f2
∥∥2

V ∗
+ (c+ 2‖f1‖H)Ψ + 2

∫ ∞
0

µ(σ)〈η(σ),ϑ〉H .

On the other hand, Young inequality yields

2

∫ ∞
0

µ(σ)〈η(σ),ϑ〉H dσ ≤ ε
∥∥η∥∥2

M
+ c
∥∥ϑ∥∥2

H
≤ εΨ2 + cΦ2

and therefore (6.10) turns into

(6.11)
d

dt
Ψ2 + εΨ2 ≤ c+ 2

∥∥f2
∥∥2

V ∗
+ (c+ 2‖f1‖H)Ψ + cΦ2
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Observe that (6.9) reads

(6.12) Φ2(t) ≤ C1e
−2ε(t−τ) +C2

and ∫ t

τ

e−2ε(y−τ)e−ε(t−y)dy ≤
1

ε
e−ε(t−τ).

Thus, a further application of Lemma 2.5 to (6.11) entails

∥∥Uf (t,τ)z0

∥∥2

H
≤ C1e

−ε(t−τ) +C2

for any t ∈ [τ,+∞).

Lemma 6.3. Let (K1)-(K4) and (H1)-(H6) hold, and let f ∈ T1. Then
there exists a continuous function C3 : R+×R+ → R+, increasing in both vari-
ables, such that

sup
τ∈R

sup
t≥τ

∫ t+1

t

(∥∥∇ϑ(y)
∥∥2

H3 +
∥∥χt(y)

∥∥2

H

)
dy ≤ C3(‖z0‖H,‖f‖T1)

where ϑ(y) and χ(y) are the first and the second component, respectively, of
Uf (y,τ)z0.

Proof. With reference to Lemma 6.2, integrate (6.7) over [t, t+ 1], for t ≥ τ ,
to get

∫ t+1

t

(∥∥∇ϑ(y)
∥∥2

H3 +
∥∥χt(y)

∥∥2

H

)
dy(6.13)

≤ Φ2(t) + c+ c

∫ t+1

t

Φ(y)dy+ 2

∫ t+1

t

‖f(y)‖HΦ(y)dy.

In virtue of (6.12), Φ2(t) ≤ C1 +C2 for every t ≥ τ . Hence (6.13) bears

∫ t+1

t

(∥∥∇ϑ(y)
∥∥2

H3 +
∥∥χt(y)

∥∥2

H

)
dy

≤ C1 +C2 + c+ c(C1 +C2)1/2 + 2(C1 +C2)1/2‖f‖T1

as desired.

An immediate consequence of Lemma 6.2 is the existence of a uniform ab-
sorbing set, when f is allowed to move in a bounded subset of T1 + T2.
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Theorem 6.4. Let (K1)-(K4) and (H1)-(H6) hold, and let F ⊂ T1 + T2 be
a bounded set. Denote MF = supf∈F ‖f‖T1+T2 . For every ρ > 0, the ball of H of
radius C2(MF ) + ρ is a uniform absorbing set for the family {Uf (t,τ), f ∈ F}.

Remark 6.5. Theorem 6.4 can still be proved when χ3 is replaced by a
more general monotone nonlinearity (see [GGP]). It is also worth noting that
a non-homogeneous Neumann boundary conditions for the temperature can be
handled since f may have a component in T2.

The following lemma will be crucial in the course of the investigation.

Lemma 6.6. Let (K1)-(K4) and (H1)-(H6) hold, and let f ∈ T1. Then
there exists a continuous function C4 : R+ → R+ such that

sup
τ∈R

sup
t≥τ+1

(‖χt(t)‖H + ‖χ(t)‖W ) ≤ C4(R)

whenever ‖z0‖H ≤ R and ‖f‖T1 ≤ R, where χ(y) is the second component of
Uf (y,τ)z0.

Proof. Along this proof, the generic constant c will depend on R. Take the
inner product in H of equation (3.7) with χ, χt, −∆χ, and −∆χt, respectively.
Adding the results we get

d

dt

∥∥χ∥∥2

W
+
∥∥χt∥∥2

H
+
∥∥∆χ

∥∥2

H
+ 2
∥∥∇χ∥∥2

H3 + 2
∥∥∇χt∥∥2

H3 =
4∑
j=1

Ij

where

I1 = −2〈χ3,χ〉H + 2〈γ(χ),χ〉H + 2〈λ′(χ)ϑ,χ〉H

I2 = −〈χ3,χt〉H + 〈γ(χ),χt〉H + 〈λ′(χ)ϑ,χt〉H

I3 = 〈χ3,∆χ〉H −〈γ(χ),∆χ〉H −〈λ
′(χ)ϑ,∆χ〉H

I4 = −6〈χ2∇χ,∇χt〉H3 + 2〈γ′(χ)∇χ,∇χt〉H3

+ 2〈λ′′(χ)∇χϑ,∇χt〉H3 + 2〈λ′(χ)∇ϑ,∇χt〉H3 .

To control Ij , we have to use Lemma 6.2, the generalized Hölder inequality,
Young inequality, and the usual embeddings (in particular, V ↪→ L6(Ω) and
W ↪→ C0(Ω̄)). Notice first that, given u ∈ H, and ρ > 0

〈λ′(χ)ϑ,u〉H ≤ ‖λ
′(χ)‖L3(Ω)‖ϑ‖L6(Ω)‖u‖H ≤ c‖ϑ‖V ‖u‖H ≤ c

∥∥ϑ∥∥2

V
+ ρ
∥∥u∥∥2

H
.
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Thus it is clear that

I1 + I2 + I3 ≤ c+ c
∥∥ϑ∥∥2

V
+
∥∥χt∥∥2

H
+
∥∥∆χ

∥∥2

H
.

Concerning I4, we have

−6〈χ2∇χ,∇χt〉H3 ≤ c
∥∥χ∥∥2

V

∥∥χ∥∥
W

∥∥∇χt∥∥H3 ≤ c
∥∥χ∥∥2

W
+

1

2

∥∥∇χt∥∥2

H3

2〈γ′(χ)∇χ,∇χt〉H3 ≤ c+
1

2

∥∥∇χt∥∥2

H3

2〈λ′′(χ)∇χϑ,∇χt〉H3 ≤ c
∥∥χ∥∥

W

∥∥ϑ∥∥
V

∥∥∇χt∥∥H3 ≤ c
∥∥χ∥∥2

W

∥∥ϑ∥∥2

V
+

1

2

∥∥∇χt∥∥2

H3

and

2〈λ′(χ)∇ϑ,∇χt〉H3 ≤ ‖λ′(χ)‖L∞(Ω)‖ϑ‖V ‖∇χt‖H3

≤ c(1 + ‖χ‖W )‖ϑ‖V ‖∇χt‖H3

≤ c
∥∥ϑ∥∥2

V
+ c
∥∥χ∥∥2

W

∥∥ϑ∥∥2

V
+

1

2

∥∥∇χt∥∥2

H3 .

Thus

4∑
j=1

Ij ≤
∥∥χt∥∥2

H
+
∥∥∆χ

∥∥2

H
+ 2
∥∥∇χt∥∥2

H3 + c+ c
∥∥χ∥∥2

W
+ c
∥∥ϑ∥∥2

V
+ c
∥∥χ∥∥2

W

∥∥ϑ∥∥2

V

and we conclude that

d

dt

∥∥χ∥∥2

W
≤ c
(
1 +

∥∥ϑ∥∥2

V

)∥∥χ∥∥2

W
+ c
(
1 +

∥∥ϑ∥∥2

V

)
.

Since

(6.14) ∆χ = χt +χ3− γ(χ)−λ′(χ)ϑ a.e. in Ω× (τ,+∞)

in virtue of Lemma 6.2 and Lemma 6.3 we see that, for every τ ∈ R and every
t ≥ τ , there exist two positive constants c1 and c2 (depending only on R), such
that ∫ t+1

t

∥∥χ(y)
∥∥2

W
dy ≤ c1 and

∫ t+1

t

(
1 +

∥∥ϑ(y)
∥∥2

V

)
dy ≤ c2.

The result follows then from Lemma 2.3, using again (6.14).
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7. Existence of a Uniform Attractor

In the sequel we consider a translation compact function g in L1
loc(R,H), and

we study the asymptotic behavior of the family of processes Uf (t,τ) as f ∈ H(g).
We first recall some basic definitions. The reader is referred to [BV,Tem] and
[Har] for a detailed presentation of the theory of attractors for autonomous and
non-autonomous systems, respectively.

Definition 7.1. A set K ⊂ H is said to be uniformly attracting for the
family {Uf (t,τ), f ∈ H(g)} if, for any τ ∈ R and any bounded set B ⊂ H,

(7.1) lim
t→∞

[
sup

f∈H(g)

dist(Uf (t,τ)B,K)
]

= 0,

where

dist(B1,B2) = sup
z1∈B1

inf
z2∈B2

‖z1− z2‖H

denotes the semidistance of two sets B1 and B2 in H. A family of processes that
possesses a uniformly attracting compact set is said to be uniformly asymptoti-
cally compact.

Definition 7.2. A closed set A ⊂ H is said to be a uniform attractor for
the family {Uf (t,τ), f ∈ H(g)} if it is at the same time uniformly attracting and
contained in every closed uniformly attracting set.

As a direct consequence of the above definition, the uniform attractor of a
family of processes (if it exists) is unique.

We shall exploit the following result from [CV1, CV2] (see also the mono-
graph [Vis]).

Theorem 7.3. Let g be a translation compact function in L1
loc(R,H), and

assume that U•(t,τ) is continuous as a map H×H(g)→ H, for every τ ∈ R and
t ≥ τ . If the family {Uf (t,τ), f ∈ H(g)} is uniformly asymptotically compact,
then it possesses a compact uniform attractor given by

(7.2) A =

∣∣∣∣ z(0) such that z(t) is any bounded complete tra-
jectory of Uf (t,τ) for some f ∈ H(g).

It is easy to see that if the system is autonomous, i.e., f ∈ H independent
of time, then Uf (t,0) is a semigroup, and A is the global attractor of Uf (t,0) on
H. Notice that in this case H(g) = {g}. We recall that the global attractor is
the (unique) compact attracting set which is fully invariant for the semigroup.

For later convenience, we introduce the triplets

z0 = (ϑ0,χ0,η0) and z(t) = Uf (t,τ)z0 = (ϑ(t),χ(t),ηt).
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Then we can rewrite problem P in the compact form

zt = Lz+N(z,zt) +F (t), z(τ) = z0(7.3)

+ boundary conditions.

The linear operator L has the (formal) expression

L =


−I+ ∆ 0 −

∫ ∞
0

ν(σ)I · dσ+

∫ ∞
0

µ(σ)∆ · dσ

0 −I+ ∆ 0

I 0 −∂s


and N and F are given, respectively, by

N(z,zt) = (−λ′(χ)χt , −χ
3+γ̃(χ)+λ′(χ)ϑ , 0)

and

F (t) = (f(t),0,0),

where γ̃(r) = r+ γ(r). Again, from (H1), γ̃′ ∈ L∞(R).
In view of applying Theorem 7.3, we write the solution z = (ϑ,χ,η) to (7.3)

as

z = zL + zE + zN

with zL = (ϑL,χL,ηL), zE = (ϑE ,χE ,ηE), and zN = (ϑN ,χN ,ηN ), where,
neglecting the boundary conditions for the sake of simplicity,

∂tzL = LzL, zL(τ) = z0,(7.4)

∂tzE = LzE +F (t), zE(τ) = 0,(7.5)

∂tzN = LzN +N(z,zt), zN (τ) = 0.(7.6)

It is now apparent to check, along the lines of Theorem 3.2, that systems (7.4)-
(7.6) admit unique solutions which belong to the space C0(H,H). In particular,
being (7.4) a linear system, there exists a strongly continuous semigroup S(t) of
bounded linear operators on H such that

(7.7) zL(t) = S(t− τ)z0.

The following lemmas show some basic properties of zL, zE , and zN .
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Lemma 7.4. The semigroup S(t) has an exponential decay, that is,

‖S(t)z0‖H ≤Me−ε0t‖z0‖H for all z0 ∈ H

for some M ≥ 1 and ε0 > 0.

Proof. Notice first that the second equation of system (7.4) reads

∂tχL = ∆χL−χL a.e. in Ω× (τ,+∞)

and it is well known that the solution to the above parabolic equation has an
exponential decay in V . Let then T (t) be the semigroup associated to the first
and the third equation of system (7.4) acting on H ×M, namely, (ϑL(t),ηtL) =
T (t− τ)(ϑ0,η0). We are left to show that T (t) has an exponential decay. Since
the system is linear, there is no harm to assume τ = 0. Denote

Φ2(t) =
∥∥ϑL(t)

∥∥2

H
+ ρ(ηtL)

and

Ψ2(t) =
∥∥T (t)(ϑ0,η0)

∥∥2

H×M
=
∥∥ϑL(t)

∥∥2

H
+
∥∥ηtL∥∥2

M

with ρ given by (6.3). Recasting the argument used in Lemma 6.2 (here we do
not have the nonlinear term and the source term), we find the inequalities

(7.8)
d

dt
Φ2 + 2ε0Φ2 + 2

∥∥∇ϑL∥∥2

H3 ≤ 0

and

(7.9)
d

dt
Ψ2 + ε0Ψ2 ≤ cΦ2

with ε0 = min{1,δ}. Applying Gronwall lemma to (7.8), inequality (7.9) becomes

(7.10)
d

dt
Ψ2(t) + ε0Ψ2(t) ≤ cΦ2(0)e−2ε0t ≤ cΨ2(0)e−2ε0t

A further application of Gronwall lemma to (7.10) leads to

(7.11) Ψ2(t) ≤

(
1 +

c

ε0

)
Ψ2(0)e−ε0t

for any t ∈ R+, which yields the required exponential decay.
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We now turn our attention to (7.5). In force of (7.7), the solution zE is
given by the Duhamel integral

(7.12) zE(t) =

∫ t

τ

S(t− y)(f(y),0,0)dy =

∫ t−τ

0

S(t− τ − y)(fτ (y),0,0)dy

for any t ≥ τ . We have

Lemma 7.5. There exists a compact set KE ⊂ H such that

⋃
f∈H(g)

⋃
τ∈R

⋃
t≥τ

zE(t) ⊂ KE .

Proof. Introduce

CE =

{∫ t

0

S(t− y)(f(y),0,0)dy, t ∈ R+, f ∈ H(g)

}
.

It is clear from (7.12) that zE(t) ∈ CE , whenever f ∈ H(g), τ ∈ R, and t ≥ τ .
Repeating the argument used in the proof of Lemma 4.3 in [GP] (see also [CV1]),
one shows that CE is relatively compact in H. Hence, let KE be the closure of
CE in H.

Finally, we analyze the solution zN to (7.6). In the sequel, let B0 be a uni-
form absorbing set for the family {Uf (t,τ), f ∈ H(g)} (which exists by Theorem
6.4), and denote R0 = supz0∈B0

‖z0‖H.

Lemma 7.6. Assume that z0 ∈ B0. Then there exists a constant K
(depending only on R0 and ‖g‖T1) such that

(7.13) ‖zN (t)‖V ≤ K

for every τ ∈ R and every t ≥ τ + 1.

Proof. It is convenient to write down (7.6) explicitly, namely,

(7.14) ∂tϑN = −ϑN + ∆ϑN −

∫ ∞
0

ν(σ)ηN (σ)dσ+

∫ ∞
0

µ(σ)∆ηN (σ)dσ−λ′(χ)χt

(7.15) ∂tχN = −χN + ∆χN −χ
3 + γ̃(χ) +λ′(χ)ϑ

(7.14) ∂tηN + ∂sηN = ϑN

(7.16) zN (τ) = 0.
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Fix τ ∈ R, and let t ≥ τ + 1. Throughout the proof, c will depend only on R0 and
‖g‖T1 . To get estimate (7.13) we will proceed formally. Of course, the argument
can be justified using the Faedo-Galerkin scheme introduced in Section 4 (see
4.2). Take the inner product in H of (7.14) and ϑN and −∆ϑN , respectively.
Adding the results,

1

2

d

dt

(∥∥ϑN∥∥2

H
+
∥∥∇ϑN∥∥2

H3

)
+
∥∥ϑN∥∥2

H
+ 2
∥∥∇ϑN∥∥2

H3 +
∥∥∆ϑN

∥∥2

H
(7.18)

= −〈ηN ,ϑN 〉L+

∫ ∞
0

µ(σ)〈ηN (σ),ϑN 〉H dσ−〈λ
′(χ)χt,ϑN 〉H

+ 〈λ′(χ)χt,∆ϑN 〉H .

Lemma 6.6 and (4.11) entail

‖λ′(χ)χt‖H ≤ ‖λ
′(χ)‖L∞(Ω)‖χt‖H ≤ c for all t ≥ τ + 1.

In light of Lemma 6.2, Lemma 7.4, and (7.12), it is also apparent that

(7.19) ‖zN (t)‖H ≤ c for all t ≥ τ.

Thus, from Young inequality,

∫ ∞
0

µ(σ)〈ηN (σ),ϑN 〉H dσ−〈λ
′(χ)χt,ϑN 〉H(7.20)

+ 〈λ′(χ)χt,∆ϑN 〉H ≤ c+ ‖∆ϑN‖
2
H .

Then take the inner product in L of (7.16) and ηN and integrate by parts using
(K4), to get

(7.21)
1

2

d

dt

∥∥ηN∥∥2

L
+
δ

2

∥∥ηN∥∥2

L
≤ 〈ηN ,ϑN 〉L.

Summation of (7.18) and (7.21), with the aid of (7.20), bears

1

2

d

dt

(∥∥ϑN∥∥2

V
+
∥∥ηN∥∥2

L

)
+
∥∥ϑN∥∥2

V
+
δ

2

∥∥ηN∥∥2

L
≤ c.

and we get at once the thesis for the first and the third component of zN . Finally,
denote

Φ2(t) =
∥∥χN∥∥2

H
+

3

2

∥∥∇χN∥∥2

H3 +
1

2

∥∥∆χN
∥∥2

H
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and take the inner product in H of (7.15) with χN , ∂tχN , −∆χN , and −∂t∆χN ,
respectively. Adding the resulting equations we get

d

dt
Φ2 + Φ2 +

1

2

(∥∥∇χN∥∥2

H3 +
∥∥∆χN

∥∥2

H

)
(7.22)

+
∥∥∂tχN∥∥2

H
+
∥∥∂t∇χN∥∥2

H3 =
4∑
j=1

Ij

with

I1 = −〈χ3,χN 〉H + 〈γ̃(χ),χN 〉H + 〈λ′(χ)ϑ,χN 〉H

I2 = −〈χ3,∂tχN 〉H + 〈γ̃(χ),∂tχN 〉H + 〈λ′(χ)ϑ,∂tχN 〉H

I3 = 〈χ3,∆χN 〉H −〈γ̃(χ),∆χN 〉H −〈λ
′(χ)ϑ,∆χN 〉H

I4 = −3〈χ2∇χ,∂t∇χN 〉H3 + 〈γ̃′(χ)∇χ,∂t∇χN 〉H3

+ 〈λ′(χ)∇ϑ,∂t∇χN 〉H3 + 〈λ′′(χ)∇χϑ,∂t∇χN 〉H3 .

Using (7.19) and Lemma 6.6 (which, in particular, ensures that ‖λ′(χ)ϑ‖H ≤ c),
one easily sees that

I1 + I2 + I3 ≤
1

2

∥∥∇χN∥∥2

H3 +
∥∥∂tχN∥∥2

H
+

1

2

∥∥∆χN
∥∥2

H
+ c.

Concerning I4, one can repeat the calculations of Lemma 6.6, recalling that now
(since Lemma 6.6 holds) ‖χ‖W ≤ c. Therefore

I4 ≤ c+ c
∥∥ϑ∥∥2

V
+
∥∥∂t∇χN∥∥2

H3 .

Hence

4∑
j=1

Ij ≤
1

2

∥∥∇χN∥∥2

H3 +
∥∥∂tχN∥∥2

H
+

1

2

∥∥∆χN
∥∥2

H
+
∥∥∂t∇χN∥∥2

H3 + c+ c
∥∥ϑ∥∥2

V

and (7.22) turns into

d

dt
Φ2 +

1

2
Φ2 ≤ c

(
1 +

∥∥ϑ∥∥2

V

)
.

But, from Lemma 6.2 and Lemma 6.3, supt≥τ+1

∫ t+1

t
‖ϑ(y)‖2V dy < ∞, and the

conclusion of the proof follows from Lemma 2.5 (applied for t ≥ τ + 1). Indeed,
Φ(τ) = 0, in virtue of (7.17), and ‖χN‖2W ≤ 2Φ2.
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Our aim is to show that zN runs in a compact subset of H. Unfortunately,
the embedding V ↪→ H is not compact, since the embedding L ↪→M is not. Let
us dwell for a moment on the third component ηN of zN .

Lemma 7.7. The set

E =
⋃

f∈H(g)

⋃
z0∈B0

⋃
τ∈R

⋃
t≥τ

ηtN

is relatively compact in M.

Proof. It is clear from Lemma 7.6 that E is bounded in L2
ν(R+,V )∩

L2
µ(R+,W ). Observe that ηN can be computed explicitly from (7.6) as follows

(cf. (4.55))

(7.23) ηtN (s) =



∫ s

0

ϑN (t− y)dy 0 < s ≤ t− τ,

∫ t−τ

0

ϑN (t− y)dy s > t− τ.

Differentiating (7.23) with respect to s yields

(7.24) ∂s η
t
N (s) =

{
ϑN (t− s) 0 < s ≤ t− τ,

0 s > t− τ.

Therefore (7.19) and (7.24) give at once

∫ ∞
0

µ(s)
∥∥∂sηtN (s)

∥∥2

H
ds =

∫ t−τ

0

µ(s)
∥∥ϑN (t− s)

∥∥2

H
ds ≤ c

and, analogously ∫ ∞
0

ν(s)
∥∥∂sηtN (s)

∥∥2

H
ds ≤ c.

We conclude that E is bounded in

L2
ν(R+,V )∩H1

ν (R+,H)∩L2
µ(R+,W )∩H1

µ(R+,H).
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Finally, from (7.23),

(7.25) ‖ηtN (s)‖V ≤



∫ t

t−s
‖ϑN (y)‖V dy , τ + 1 ≤ t− s < t,

∫ τ+1

t−s
‖ϑN (y)‖V dy+

∫ t

τ+1

‖ϑN (y)‖V dy , τ ≤ t− s < τ + 1,

∫ τ+1

τ

‖ϑN (y)‖V dy+

∫ t

τ+1

‖ϑN (y)‖V dy , t− s < τ.

Notice that, integration of (7.8) over [t, t+ 1] and Lemma 6.2 entail

(7.26) sup
τ∈R

sup
t≥τ

∫ t+1

t

‖ϑN (y)‖V dy ≤ c.

Thus, from (7.13) and (7.25)-(7.26),

∥∥ηN (s)
∥∥2

V
≤ (c+Ks)2 ∈ L1

ν(R+)∩L1
µ(R+)

in force of the exponential decays of ν and µ. Applying Lemma 2.2, we get the
thesis (notice that c depends only on R0 and ‖g‖T1).

Denote now KN = BK × Ē , where BK is the closed ball of V ×W of radius
K, and Ē is the norm-closure of E in M. Then, from the compact embedding
V ×W ↪→ H ×V , Lemma 7.6, and Lemma 7.7, we conclude that KN is compact
in H. Finally, define

(7.27) K = KE +KN ⊂ H.

Since KE (from Lemma 7.5) and KN are compact, K is compact. Moreover, by
construction,

(7.28)
⋃

f∈H(g)

⋃
z0∈B0

⋃
τ∈R

⋃
t≥τ+1

(zE(t) + zN (t)) ⊂ K.

We are now able to state and prove the main result of the paper.

Theorem 7.8. Let (K1)-(K4), (H1)-(H2), (H4)-(H6) hold and let g be
a translation compact function in L1

loc(R,H). Then the family of processes
{Uf (t,τ), f ∈ H(g)} associated with P possesses a compact uniform attractor A
which has the explicit form given by (7.2).
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Proof. The proof of the continuity of U•(t,τ) as a map H×H(g) → H
follows from Theorem 3.2 and Theorem 3.4. Thus, in view of Theorem 7.3, we
are left to show that the set K given by (7.27) is uniformly attracting for the
family {Uf (t,τ), f ∈ H(g)}. Let B ⊂ H be a bounded set, and let t0 = t0(B) be
as in Definition 6.1. There is no harm to suppose t0 ≥ 1. For any t1 > 0, and
every τ ∈ R, we have

Uf (t1 + t0 + τ,τ)B = Uf (t1 + t0 + τ,t0 + τ)Uf (t0 + τ,τ)B

⊂ Uf (t1 + t0 + τ,t0 + τ)B0.

By Lemma 7.4 and (7.28),

sup
f∈H(g)

dist(Uf (t,τ)B,K) ≤MR0 e
ε0(t0+τ) e−ε0t

for every t ≥ t0 + τ , and (7.1) follows at once.

Proposition 7.9. The uniform attractor A for the family {Uf (t,τ), f ∈
H(g)} given by Theorem 7.8 is connected.

Proof. The set A×H(g) turns out to be the global attractor of the semi-
group V (t) on the complete metric space H×H(g) defined by

V (t)(z,f) = (Uf (t,0)z,f t)

(see [CV1] for more details). In the course of the investigation, we showed that
B0×H(g) is a bounded absorbing set for the semigroup V (t) defined above. In
particular, B0 can be chosen to be a ball. Moreover, it is immediate to see
that {gr}r∈R is path connected, and therefore its closure H(g) is connected; we
conclude that B0×H(g) is connected. Hence (see, e.g., [Har], Proposition 5.2.7)
the attractor A×H(g) of V (t) is connected too, and so is its projection on H,
that is, A.

8. Finite Dimension of the Attractor

Here, we prove that the uniform attractor found in the previous section has
finite Hausdorff and fractal dimensions, provided that λ is linear.

We recall that the Hausdorff dimension of a subset X ⊂ H is defined by

dimHX = sup
{
d > 0 : sup

ε>0
inf
Cε

∑
i∈J

rdi <∞
}

where Cε = {Bi(ri)}i∈J is a covering of X of balls of radii ri ≤ ε. The fractal
dimension of X is defined by

dimFX = sup
{
d > 0 : limsup

ε>0
εdnX (ε) <∞

}
,
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where nX (ε) is the minimum number of balls of radius ε which is necessary to
cover X . It follows directly from the definition that

dimHX ≤ dimFX .

Let us replace conditions (H1)-(H3) with

γ ∈ C2(R) and γ′ ∈ L∞(R)(H7)

λ(r) = λ0r, λ0 ∈ R(H8)

f ∈ H(H9)

When (H9) holds, the dynamical system is autonomous and Uf (t,0) is a strongly
continuous semigroup on H. Setting ω = ϑ+λ0χ and introducing the triplets

ζ0 = (ω0,χ0,η0) and ζ(t) = (ω(t),χ(t),ηt)

we can rewrite problem P as

ζt = L1z+N1(ζ), ζ(τ) = ζ0(8.1)

+ boundary conditions

where the linear operator L1 has the (formal) expression

L1 =


−I+ ∆ λ0I−λ0∆ −

∫ ∞
0

ν(σ)I · dσ+

∫ ∞
0

µ(σ)∆ · dσ

λ0I −λ2
0I+ ∆ 0

I −λ0I −∂s


and

N1(ζ) = (f,β(χ),0)

having set β(r) = −r3 + γ(r). Note that, from (H7), β ∈ C2(R). Clearly, the
boundary conditions might be read defining properly the domain of the operator
L1.

System (8.1) generates a strongly continuous semigroup U(t) on H, which
is related to Uf (t,0) as follows

U(t)ζ0 = Uf (t,0)z0 whenever ω0 = ϑ0 +λ0χ0.

Therefore, all the previous results hold for U(t) as well. In particular, the set

A1 = {(ϑ0 +λ0χ0,χ0,η0) such that (ϑ0,χ0,η0) ∈ At}
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is the global attractor of U(t) on H.
Let now z0 = (ϑ0,χ0,η0) ∈ H be fixed, and let ζ0 = (ω0 +λ0χ0,χ0,η0).

Select an arbitrary r > 0, and let z = (ϑ,χ,η) ∈ H be such that ‖z− z0‖H ≤ r.
Then, setting ζ = (ω+λ0χ, χ, η), we easily get that ‖ζ − ζ0‖H ≤ cr for some
c > 0. Thus, nA(cr) ≤ nA1(r), which entails dimFA ≤ dimFA1. Hence, in
order to show that dimFA <∞, we will proceed showing that dimFA1 <∞.

Before going any further, we recall some definitions and a basic result due
to Constantin, Foias and Temam [CFT]. Let B(H) denote the space of bounded
linear operators on H.

Definition 8.1. A (nonlinear) continuous map U from a subset X ⊂ H
into H is said to be uniformly quasidifferentiable on X if for any ζ0 ∈ X there
exists U ′(ζ0) ∈ B(H) (the quasidifferential of U at ζ0 with respect to H) such
that

‖Uζ0−Uζ −U
′(ζ0)(ζ0− ζ)‖H ≤ σ(‖ζ0− ζ‖H)‖ζ0− ζ‖H for all ζ ∈ X ,

where σ : R→ R+ is independent of ζ0, and σ(y)→ 0 as y → 0+. The operator
U ′(ζ0) might not be unique.

Definition 8.2. Let M be a linear operator on H. For any positive integer
m, the m-dimensional trace of M is defined as

TrmM = sup
Q

m∑
j=1

〈Mζj ,ζj〉H,

where the supremum ranges over all possible orthogonal projections Q in H on
the m-dimensional space QH belonging to the domain of M , and {ζ1, . . . ,ζm} is
an orthonormal basis of QH.

Theorem 8.3. Let X ⊂ H be a compact fully invariant set for U(t), i.e.,
U(t)X = X for all t ≥ 0. Assume also that U(t) is uniformly quasidifferentiable
on X for all t ≥ 0, and

sup
ζ0∈X

‖U ′(t,ζ0)‖B(H) <∞ for all t ≥ 0

where U ′(t,ζ0) is the quasidifferential of U(t) at ζ0. It is also assumed that
U ′(t,ζ0) is generated by the equation in variation

Zt = M(ζ)Z, Z(0) = Z0

that is, U ′(t,ζ0)Z0 = Z(t), with ζ(t) = U(t)ζ0, where M(ζ) is a linear operator
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on H, for every fixed ζ ∈ X . Introducing the number qm by the formula

qm = liminf
T→∞

sup
ζ0∈X

{
1

T

∫ T

0

TrmM(U(t)ζ0)dt

}

if there exists m ≥ 2 such that qm < 0, then

dimHX ≤ m and dimFX ≤ m max
1≤j≤m−1

(
1 +

max{qj , 0}

|qm|

)
.

We now apply this general result to system (8.1).

Proposition 8.4. Let (K1)-(K4) and (H4)-(H9) hold. Then the semigroup
U(t) acting on H is uniformly quasidifferentiable on A1 for every t ≥ 0, and the
quasidifferential U ′(t,ζ0) at the point ζ0 = (ω0,χ0,η0) ∈ A1 satisfies the equation
in variation

(8.2) Zt = L1Z +N ′1(ζ)Z, Z(0) = Z0

where

U ′(t,ζ0)Z0 = Z(t) = (Θ(t),X(t),Y t),

ζ(t) = (ω(t),χ(t),ηt) = U(t)ζ0,

and

N ′1(ζ)Z = (0,β′(χ)X,0)

being N ′1 the Fréchet differential of N1. Furthermore

sup
ζ0∈A1

∥∥U ′(t,ζ0)
∥∥
B(H)

<∞ for all t ≥ 0.

Proof. Arguing as in Theorem 3.2 and Theorem 3.4, it is possible to show
that (8.2) has a unique solution Z ∈ C0(R+,H). Notice that (8.2) is a linear
(non-autonomous) system.

Let now ζ and ζ∗ be solutions to problem (8.1) with initial data ζ0 and ζ∗0 ,

respectively, with ζ0, ζ∗0 ∈ A1. The difference ζ̃ = (ω̃, χ̃, η̃) = ζ∗− ζ satisfies the
problem

ζ̃t = L1ζ̃ +N1(ζ∗)−N1(ζ)

ζ̃(0) = ζ̃0 = ζ∗0 − ζ0.
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Pick T ∈ R+. In the remaining of the proof, the generic constant c will depend
on T . Recalling estimate (3.16), we have

(8.3)
∥∥ζ̃(t)∥∥2

H
≤ c
∥∥ζ̃0∥∥2

H
for all t ∈ [0,T ].

Finally, let Z be the solution to (8.2) with initial data Z(0) = ζ̃0. Our aim is to

show that Z(t) = U ′(t,ζ0)ζ̃0. Set

ξ = ζ∗− ζ −Z = ζ̃ −Z.

Clearly, ξ satisfies

(8.4) ξt = L1ξ+N ′1(ζ)ξ−h(χ∗,χ), ξ(0) = 0

where

h(χ∗,χ) = (0,β(χ)−β(χ∗) +β′(χ)χ̃,0).

As a consequence of Lemma 6.6, the projection of A1 on V is bounded in L∞(Ω).
Indeed, due to the embedding W ↪→ L∞(Ω), we get at once that the projection
on V of U(1)A1 is bounded, but for the invariance property of the attractor,
A1 = U(1)A1. Exploiting the argument used in Theorem 6.4 of [PZ] (based on
the uniform continuity of β′ on closed intervals), and (8.3), it is not hard to see
that

(8.5)
∥∥β(χ)−β(χ∗) +β′(χ)χ̃

∥∥2

H
≤
∥∥ζ̃0∥∥2

H
σ
(∥∥ζ̃0∥∥H)

where σ(y) ↓ 0 as y ↓ 0. Multiply now (8.4) by ξ, to get

(8.6)
d

dt

∥∥ξ∥∥2

H
= 2〈L1ξ,ξ〉H+ 2〈N ′1(ζ)ξ,ξ〉H+ 2〈h(u∗,u),ξ〉H.

Denoting ξ = (ξ1,ξ2,ξ3), applying repeatedly Young inequality one can show
show that

(8.7) 2〈L1ξ,ξ〉H ≤ −δ0

(∥∥ξ1∥∥2

V
+
∥∥ξ2∥∥2

W
+
∥∥ξ3∥∥2

M

)
+ c
(∥∥ξ1∥∥2

H
+
∥∥ξ2∥∥2

V

)
for any fixed δ0 < min{2, δ}. Moreover, since χ is bounded in L∞(Ω),

2〈N ′1(ζ)ξ,ξ〉H = 2〈β′(χ)ξ2,ξ2〉H + 2〈β′(χ)∇ξ2,∇ξ2〉H(8.8)

+ 2〈β′′(χ)∇χξ2,∇ξ2〉H

≤ c
∥∥ξ2∥∥2

V
+ c
∥∥∇χ∥∥

L3(Ω)

∥∥ξ2∥∥L6(Ω)

∥∥∇ξ2∥∥H ≤ c∥∥ξ∥∥2

H
.
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For further use, notice that the constant c appearing in (8.7) and (8.8) is inde-
pendent of T (though it depends on δ0). Finally, from (8.5),

2〈h(χ∗,χ),ξ〉H = 2〈β(χ)−β(χ∗) +β′(χ)χ̃,ξ2〉V(8.9)

≤ 2
∥∥β(χ)−β(χ∗) +β′(χ)χ̃

∥∥
H

∥∥ξ2∥∥W
≤ c
∥∥β(χ)−β(χ∗) +β′(χ)χ̃

∥∥2

H
+ δ0

∥∥ξ2∥∥2

W

≤ c
∥∥ζ̃0∥∥2

H
σ
(∥∥ζ̃0∥∥H)+ δ0

∥∥ξ2∥∥2

W
.

Collecting (8.7)-(8.9), inequality (8.6) turns into

d

dt

∥∥ξ∥∥2

H
≤ c
∥∥ξ∥∥2

H
+ c
∥∥ζ̃0∥∥2

H
σ
(∥∥ζ̃0∥∥H)

and Gronwall Lemma yields

∥∥ξ(T )
∥∥2

H∥∥ζ̃0∥∥2

H

≤ cσ(‖ζ̃0‖H).

We conclude that, for every T ∈ R+,

lim
‖ζ̃0‖H→0

‖ξ(T )‖H

‖ζ̃0‖H
= 0

which entails the required differentiability. Finally, taking the inner product of
(8.2) and Z, and performing similar calculations, we obtain the estimate

∥∥Z(T )
∥∥2

H
≤ c
∥∥Z0

∥∥2

H

which yields the last assertion of the proposition.

We now report a classical result, which will be exploited in the next theorem
(for the proof see [CH] and Lemma VI.2.1 in [Tem]).

Lemma 8.5. There exists a positive constant ` such that, for any given
m vectors {v1, . . . ,vm} in V and {w1, . . . ,wm} in W which are orthonormal in
H and in V , respectively, it follows that

m∑
j=1

∥∥vj∥∥2

V
≥ `m5/3 and

m∑
j=1

∥∥wj∥∥2

W
≥ `m5/3.
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Theorem 8.6. Let (K1)-(K4) and (H4)-(H9) hold. Then the attractor A
of the semigroup Uf (t,0) acting on H has finite fractal (and Hausdorff) dimen-
sion.

Proof. As anticipated, we will show that the attractor A1 of the semigroup
U(t) acting on H has finite fractal dimension. Let ζ0 ∈ A1 (so that ζ(t) ∈ A1 for
every t ≥ 0). Given any unitary vector Z = (Θ,X,Y ) belonging to the domain
of L1 +N ′1(ζ), using (8.7)-(8.8), we have

〈(L1 +N ′1(ζ))Z,Z〉H ≤ −δ0

(∥∥Θ
∥∥2

V
+
∥∥X∥∥2

W
+
∥∥Y ∥∥2

M

)
+ c
(∥∥Θ

∥∥2

H
+
∥∥X∥∥2

V

)
.

Therefore we conclude that L1 +N ′1(ζ) ≤M , where M is the diagonal operator
acting on H ⊕V ⊕M defined by

M =

cI− δ0(I−∆) 0 0
0 cI− δ0(I−∆) 0
0 0 −δ0I

 .
Directly from the definition of Trm, it is apparent that Trm(L1 +N ′1(ζ)) ≤
Trm(M). Finally, since M is diagonal,

Trm(M) = sup
Q

m∑
j=1

〈MZj ,Zj〉H,

where the supremum is taken over the projections Q of the form Q1⊕Q2⊕Q3.
This amounts to considering vectors Zj where only one of the three components
is non-zero (and in fact of norm one in its space). Let then m1, m2, m3, with
m1 +m2 +m3 = m, be the numbers of vectors Zj of the form (Θ,0,0), (0,X,0),
and (0,0,Y ), respectively. Applying Lemma 8.5, we get

Trm(M) ≤ −m1(δ0`m
2/3
1 − c)−m2(δ0`m

2/3
2 − c)− δ0m3

which gives at once

qm ≤ −m1(δ0`m
2/3
1 − c)−m2(δ0`m

2/3
2 − c)− δ0m3

Since as m goes to infinity at least one of the mi’s goes to infinity, it is clear
that there exists m∗ big enough such that qm∗ < 0. Thus the desired conclusion
follows from Theorem 8.3 and Proposition 8.4.
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Remark 8.7. With minor modifications, it is possible to extend the above
results to a particular non-autonomous case (see, e.g., [GMP2]). Indeed, the
uniform attractor A of the family {Uf (t,τ),f ∈ H(g)} has finite fractal dimen-
sion, when the time-dependent function g is quasiperiodic, namely, a function
g : Ω×R→ R of the form (see, e.g., [AP])

g(x,t) = G(x,κt) = G(x,κ1t, . . . ,κmt)

where G(·,$) ∈ C1(Tm,H) is a 2π-periodic function of $ on the m-dimensional
torus Tm and κ = (κ1, . . . ,κm) are rationally independent numbers. It is imme-
diate to check that g is translation compact in L1

loc(R,H), and f ∈ H(g) if and
only if

f(x,t) = G(x,κt+$0) $0 ∈ Tm.

Therefore H(g) might be identified with Tm, and the translation semigroup
acting on H(g) is equivalent to the translation (modulus 2π) semigroup R(t) on
Tm, defined by

R(t)$0 = [κt+$0] = κt+$0 mod 2π.
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[Lau] P. Laurençot, Long-time behaviour for a model of phase-field type, Proc.

Roy. Soc. Edinburgh Sect. A 126 (1996), 167-185.

[PPV] V. Pata, G. Prouse & M. I. Vishik, Traveling waves of dissipative non-auto-

nomous hyperbolic equations in a strip, Adv. Differential Equations 3 (1998),

249-270.

[PZ] V. Pata & A. Zucchi, Attractors for a damped hyperbolic equations with

linear memory, submitted.

[PF] O. Penrose & P. C. Fife, Thermodynamically consistent models of phase-field

type for the kinetics of phase transitions, Physica D 43 (1990), 44-62.

[SZ] J. Sprekels & S. Zheng, Maximal attractor for the system of a Landau-

Ginzburg theory for structural phase transitions in shape memory alloys,

Physica D 121 (1998), 252-262.

[Tem] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,

Springer, New York, 1988.

[Vis] M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations,

Cambridge University Press, Cambridge, 1992.

This work has been partially supported by the Italian MURST ’98 Research Projects “Modelli
Matematici per la Scienza dei Materiali”, “Equazioni Differenziali: Metodi Analitici, Geo-
metrici e Funzionali, e Applicazioni”, and “Problemi e Metodi nella Teoria delle Equazioni
Iperboliche”.

C. Giorgi

Dipartimento di Matematica
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