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1. Introduction

Representation of two and three-dimensional objects by tree structures has been used extensively in solid modeling, computer graphics,
computer vision and image processing. (See for example [Mantyla] [Chen] [Hunter] [Rosenfeld] [Leonardi].) Quadtrees, which are used to
represent objects in 2-D space, and octrees, which are the extension of quadtrees in 3-D space, have been studied thoroughly for
applications in graphics and image processing. Binary Space Partitioning (BSP) trees have besn used in computer graphics applications as
an efficient representation of polyhedra in d-dimensional space (a polyhedron is defined as a boundary with only planar faces [Mantyla]).
For example, BSP trees provide an effective tool in determining visible surlaces for polygon rendering and ray tracing applications [Naylor].
To our knowledge, no work has yet been reported on using the BSP tree representation for image processing or computer vision
applications.

In this work we present a Hough transform-based method for generating the BSP tree representations of images In 2-D space. It is
expected that BSP tree-based segmentation of images will provide an effective tool for achieving (1) high compression rates for image
coding applications, (2) ideal representation for natural object manipulation (set operation, affine transformation) in computer graphics
applications, and (3) compact representation of objects for computer vision applications.

In the next sub-section, we explain the BSP tree representations of polyhedra. The rest of the paper is organized as follows: Section 2
describes a hierarchical recursive algorithm for building a BSP tree on an arbitrary image. Section 3 discusses some simulation results and
gives a rough estimate of the efficiency of this representation for image compression. Finally, Section 4 summarizes the main results of this

work.

1.1 The BSP Tree Representation

A BSP tree can be formed in 2D by using lines to recursively partition the 2D space. Figure 1a shows a BSP tree induced partitioning of
the plane and 1b shows the corresponding binary tree. The root node represents the entire plane. A binary partitioning of the plane is
formed by the line labeled u, resulting in a negative halispace and a positive halfspace. These two halfspaces are represented respectively
by the left and right children of the root. A binary partitioning of each of these two halfspaces may then be performed, as in the figure, and
so on recursively. When, along any path of the tree, subdivision is terminated, the leaf node will correspond to an unpartitioned region,

called a cell.

For any node of the tree, the corresponding region is defined by the intersection of the set of open haifplanes determined by each line
associated with a node on the path to that region. Since a halfplane is a convex set, and the intersection of convex sets yields a convex
set, each region of the tree is convex. The resuit then is a hierarchical decomposition of 2-space into a binary tree of convex regions,
represented combinatorially by a graph forming a binary tree. This scheme just outlined can be easily extended to arbitrary dimensions if
we simple use the concept of hyperplanes as the generalization of lines by which to partition a D-dimensional space.

The primary use of BSP trees to date has been to represent polytopes, L.e. polygons in 2D and polyhedra in 3D. This is accomplished be
simply associating with each cell of the tree a single boolean attribute classification = { interior ,exterior }. I, in figure 1, we assign to cells
1 and 5 the value interior, and to the rest exterior, we will have determined a concave polygon of six sides. This method, while
conceptually very simply, Is capable of representing the entire domain of polytopes. Moreover, the algorithms that use the BSP tree
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Figure 1. Partitioning of « 2D BSP Tree (a), and its binary tree (b).

representation are simple and uniform, i.e the algorithms for dealing with a triangle are identical to those dealing with a colfection of
arbitrary polytopes.

As an introduction to BSP tree algorithms, we show how to solve one of the simplest of problems, classifying a point with respect to a
polygon. An arbitrary point can be classified with respect to a BSP tree by performing a binary search on the tree [Naylor 87]. Location of
a point P with respect to a hyperplane H is given by the dot product :

CASE P*H
<0 -> InNegativeHalfspace
> 0 -> InPositiveHalfspace
=0 -> OnHyperplane

By successively determining in which of the two children the point lies, one will arrive at the cell containing the point. If the point lies on a
hyperplane, both subtrees are searched. A point is on the boundary of the set if and only i its epsilon neighborhood is found to include
both interior and exterior cells. Thus, the boundary of the set lies on the hyperplanes. It is often the case that the boundary is represented
explicitly, in 2D by line segments and in 3D by convex polygons, where each segment/polygon is stored at the internal node whose region
contains them. Many BSP tree algorithms are known, including affine transformations, set operations, visualization/rendering, and metric
properties (see e.g. [Naylor 90bj).

BSP trees partition space into convex sub-domains, i.e the cells, so that one can define a separate continuous function over each sub-
domain. Thus, one may construct a discontinuous, but piecewise-continuous, function over the 2D-space. Note howsver, that this does not
preciude the function being chosen to be continuous on any subset of a hyperplane. Such piecewise continuous functional representation
is sultable for images [Kunt 85}.

2. A Hough Transtorm-Based Method for BSP tree Generation

As explained above, the BSP tree approach partitions the space (that surrounds the desired object to be presented) by hyperplanes
passing through the boundary of the object. This is an easy task when the shape, size, and other attributes of the object are known. On
the other hand, partitioning an image that consists of several objects of unknown shapes and sizes would require the segmentation of the
various objects in the scene. Without performing the difficult segmentation process, one way to solve the problem is to base the binary
partition on the image contour information. Two steps will be needed for generating such a BSP tree representation (see Figure 2): (1)
extract the boundary locations of each object in the image. (2) determine the linear characteristics of these boundaries, in order to match

them with a minimum set of straight lines.

-~
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Figure 2

Each hyperplane which is associated with (1) a non-leaf node of the BSP tree, and (2} a convex region (sub-space) of the original image
should fit a maximum number of boundary points. The partitioning hyperplane of a given sub-space has to match the largest set of collinear
edge points in that sub-space. In addition, it is desirable to inciude a connectivity weighting of these edge points [Wang]. We emphasize on
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the notion of connectivity since the human visual system is particularly sensitive to linear segments of connected points [Hubel]. Edge
points that lie on a hyperplane and yet do not belong to one connected edge will be referred to "uncorrelated” collinear edges.

As a consequence, the hyperplanes associated with high level nodes (close to the reot) in the BSP tree should fit the boundaries of large
objects whereas low level nodes (close to the leaves) represent fine details and small objects. This defines a natural hierarchical
description of the image.

It is clear that the boundary points of the various objects in the image can be located by an edge detaction process. The performance of
the edge extraction can significantly influence the tree structure. After a reliable edge detection process, hyperplanes are built on collinear

edge segments.

The Hough transform is a very useful tool to extract hyperplanes and other geometrical features in edge images [Hough, Dudal. In the
sequel, as we focus on images in 2-dimensional space, we shall use the words hyperplane and line interchangeably. The concepts
presented below can be easily extonded to spaces of higher dimensions.

Our BSP tree generation method starts by applying the Hough transform (HT) on all edge points in the image, and selects the csll with the
maximum number of votes (corresponding to the hyperplane that passes through the maximum number of edge points) to partition the
image. Then, the HT of one of the two regions (half spaces) resulting from the division is computed. Again, a search for the cell with
maximum number of votes is performed. Now, the hyperplane corresponding to this cell will partition the selected half space. The same
thing is done to the other haif space. This process is repeated till a termination criterion is reached. This criterion could be one or both of
the followings: (1) The area of the region to be partitioned is smaller than a certain threshold (2) the number of boundary points within the
region Is lower than some other threshold. These thresholds will determine the degree of accuracy of the representation. The lower the
threshold values, the largest the number of nodes in the tree and the more accurate the image description.

it is important to note that a hyperplane k), (associated with a node 1 and a convex region R)), classifies each point xe Ry, into one of the
following three convex sets:

hyt={XeRy . X .8a>p,}
hy—={xeRy,:x.8@, <p,}
Shy=hy YRy={xe Ry :x.8y=py}

where &, is a unit vector normal to h,, and p, is the normal distance between and the origin. Here hy* and hy- represent the pesitive
and negative sub-regions of Ry, and are associated with the right and left children of p, respectively. Shy, represents a sub-hyperplane (of
hy) that lies in R, After selecting 4, as the partitioning hyperplane of R, it is crucial to eliminate all edge points € Sy, (i.e., that lie on the
hyperplans) and process just those points that belong to the half-spaces hy* and hy-. Otherwise, these points (that are € Shy,) may
contribute to one or both of the regions, and subsequently an infinite recursion may occur.

To summarize, we propose a BSP tree generation method based on the following: {1) perform an edge detection process, (2) compute a
series of Hough Transforms, one for each node in the tres, (3) select each hyperplane as the peak of the corresponding Hough transform.
The sub-sections below describe in detail each one of these steps.

2.1 The Edge Detection Process

As mentioned above, the input to this Hough Transform-based BSP tree generation method Is an edge image which can be represented as
a binary function E(x, y). The structure of the resulting tree (i.e., the set of straight lines used to partition the original image) is strongly
dependent on E(x,y). E{x,y) can be obtained from the original image through a numerical differentiation process followed by a simple
thresholding strategy. However, it is well known that differentiation amplifles high frequency noise. Edge detection is a mildly ill-posed
problem which can be transformed into a well-posed problem by convolving the original image (before differentiation) with a smoothing fitter
f x, 6) whose Fourier Transform F (o, o) satisfles the conditions [Torre] [Micheli]:

limF(w,0)=1
30

,oF(® 0)e L2

where L is the set of square integrable functions. The Gaussian function satisfles the above conditions, and therefore is used as a pre-
differentiation filter in most edge detection methods. Gaussian filttering, however, introduces uncertainty in the actual edge location. The
larger the standard deviation @, the better the smoothing at the expense of poorer edge localization. This dilemma has been studied and
analyzed in the literature (e.g., [Shah] [Torre] [Bergholm]). An edge focusing algorithm was introduced by [Bergholm] to achieve both the
fittering of high frequency noise and good localization of the original edges. In this work, we limited ourselves to a Gaussian function with
small ¢ as a pre-differentiation filter.

After filtering the original signal, one can locate edge points in the filtered image by looking for zero crossings of the second derivative or
maxima of the first derivate (gradient) [Marr] [Canny 86]. Although both methods are equivalent, it has been shown that the maximum
gradient approach is less sensitive to noise [Micheli].
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2.1.1 The Gradlent Edge Detector

In this work our edge detection process consists of (1) Filtering the image with a Gaussian function, (2) Computing the gradient magnitude
and direction of the filtered image, (3) Locating the maxima of the gradient magnitudes in the direction of the gradient vector 2, and (4)
Performing adaptive thresholding.

We have selected the Sobel operator for computing the gradient image since it performs better than other numerical differentiation
operators (e.g.. Roberts) based on Abdou and Pratt's figure of merit [Abdou] [Pratt}.

To locate edges from the gradient magnitude image gm (x: y), one can estimate the directional derivate 4 omix, y) at every point (x, y):

Ao (x,y) =cos8, D gn(x,y)+sing, S gn(x,y)
gm s axg s ayg

where 8, is the direction of the gradient vector 2’ at (x, y). By making the substitutions cos8, = g. /gm(x, y) and sind, = g, / g (x, ) in the
above equation and equating the result to zero, one can show that the maximum gradient points of gm{x, y) in the direction of @ satisfy the

following equation:
dlg*g"'("' ¥) = 8:% Bux + 2828y 8y + 8% 8y =0

For the implementation of the above equation, we have used a non-maximum gradient suppression algorithm proposed by Canny [Canny
83]. In this algorithm, a gradient magnitude gn(x, y) at position 7= (x, y) is marked as a maximum ff its value is larger than the gradient
magnitudes g1 and g» at B = P + 2 and p; = P - @, respectively, where @ is a unit vector in the direction of the gradient 2. If 7 (or 72)
does not lie on one of the discrate points of the image 2-dimensional grid, then g, at Py and P will have to be interpolated from the nine-
pixel neighborhood surrounding 7. An example of this algorithm is shown in Figure 3. The interpolation is performed by weighting the
gradient magnitudes at the two nearest neighbors.

X f(x+1,y-1)
[ Y .
T g1 = —— g(x+1,y-1) - W g(x+1,y)
y 1 u, u,
]
g1, y® gix,y) “x ®gixe1,y)
uy u .y
2 ga= —— g0ctiysl) o gix-1, )

g =
Uy Uy

g(x-1 ’ Y+1 ) [ ] [ ] [ J
Figure 3

To eliminate irrelevant maxima in the gradient magnitude image, a thresholding strategy with hysteresis is chosen. We derive a low
threshold T, from the histogram of the maxima in the gradient image. I; is selected to be 80% of the cumulative histogram. Then, a high
threshold T, = BT; is set, where 2 < f <3. We use both T; and T}, to perform thresholding with hysteresis on the maxima gradient points as
explained in [Canny 86]. Our implementation of this method is as follows:

1. Al maxima gradient points with gradient magnitudes above T are marked as strong edges.

2. Any point (in the maxima gradient image) that is (a) connected to a strong edge, and (b) higher than T, is marked as a strong edge.
Points that are higher than T; but not connected to a strong edge are marked as low edge points.
The low edge points are removed from the firfal edge image.

2.2 The Hough Transtorm

The standard Hough transform (HT) maps each edge point (x., y.) into a curve in the line parameter space. It acts as a voting process,
where (x., y.) votes for all lines passing through it. These lines are represented by two parameters in the Hough space (also known as the
parameter space). Here we use the (8, p) parametrization to represent straight lines in the Hough space. @ is the direction (with respect to
the x-axis) of the vector # normal to the line (8, p), and p is the distance between the fine and the origin [Duda). With this parametrization,

the line equation is given by:

p=xcos(0)+ysin(8)
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The HT at a point (8, p) in the Hough space can be expressed as follows:

ht(0,p) =X Y 8p - xcosd +ysing) E(x, y)
xy

where E(x, y) is a 2-dimensional binary function representing the edge image, and &(x) = 1 for x = 0 and zero otherwise. In practice, the
Hough space is divided into a finite number of cells organized as an accumulation array, where each cell is associated with a discrete pair
of the coordinates (6, p).

The standard HT is computed as follows. First, 8 is sampled at N values between zero and 180 degrees. For each sample of 8, p is
calculated and quantized to one of N, possible levels, and the corresponding cell in the HT space is incremented by one vote. Therefore,
an edge point (x,, y,) in the image space is mapped into a sinusoidal function in the (8, p) parameter space. The intersection of two
sinusoidal functions (corresponding to two edge points) gives the (8, p) parameterization of the straight line that connects the two points in
the image space. In other words, the element of the accumulation array that receives v votes represents a straight line that passes through
the same number (v) of edge points in the image space (Figure 4). The detection of straight lines in the edge image can be accomplished
by searching for (8, p) cells that posses large number of votes (peaks) in the parameter space. The HT literature is plentiful. A
comprehensive survey can be found in {illingworth].

y image Space Hough Space

p = cosO +sinb

p = 2cos@

Figure 4

Improvements have been suggested to this simple approach as the standard HT is sensitive to background noise and texture in the image
[Wang] [Brown]. Here are some possible solutions.

2.2.1 Using Gradlent Direction Information

It is shown in this sub-section that the use of gradient direction information significantly reduces the range of 6 values need to be
considered when computing the Hough transform.

If an edge point (x,, y,) belongs to a connected edge which lies on the straight fine (8, p) in the image space, then it is easy to see that the
gradient direction 6, at (x, y.) is the same as the angle @ of the line (8, p). Here we assume that (x., y.) is not a corner, trihedral, or any
crossing point.

Without the use of this apriori information (about the edge point gradients in the image space), it can be shown (under certain assumptions)
that it is necessary to compute the HT for all 8 values within 180 degrees (e.g., from -Z to X). This Is true even with apriori knowledge

about the probability density function of the gradient vector. To show this, let us assume that the x and y components of the gradient
vector @ are two jointly distributed Gaussian random variables gy and gy, respectively. The marginal probability distribution functions are
assumed to have zero mean and a standard deviation g,. Since the gradient direction angle 8, = arctan (g, / g.), we define the random

variable z = %E . It can be shown that z has the following distribution function [Papoulis}:

Fa(z) = 0.5 + 3 arctan—2=t
! v’r 31_,2

where r is the correlation coefficient between gx and gy. The probability density function of the random variable © = arctan{6) can be
easily obtained from Fg(z):
V1 - r2

e:1 —_— .
feol®)=x 1 - r sin(20)

It is important to note that f o(@) is independent of the standard deviation o,. Here we assume that g, and gy are uncorrelated (i.e., r = 0)
which leads to the uniform density fe = 4. Therefore, without any apriori gradient direction information, and regardiess of the amount of
dispersion of the random variables gx and gy around their zero mean, all values are equally likely under the above assumptions.
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Given the gradient direction at (x,, y.), ideally, one needs to compute the HT of (x., y.) only for 8 = 8,. However, the uncertainty in 8,
(which is a computed estimate of the actual gradient direction) makes it necessary to compute the HT for a small range of 8 values
centered around §,. Common edge operators (e.g., Sobel) are usually used to compute 8,. Here we use the 6 range 0.2 radians
proposed in [Princen]. (However, the 8 range (around 6, ) required for computing the HT, can be determined through a probabilistic model.
This model will be shown in a future work.)

Limiting the Hough transform estimation process to a small range of 6 values centered around the gradient direction is more
computationally efficient and reduces background noise inherent to the Hough transform formulation [Brown]. The improvement for
incorporating gradient direction information is shown in Section 3.

2.2.2 Weighting the HT Votes

Real life images may contain a large number of uncorrelated collinear edge points that do not belong to the same edge (object boundary).
An example of this scenario is shown in Figure 5. By using the standard HT, these uncorrelated collinear points will cause the occurrence
of false peaks in the Hough space [Wang]. One way to solve this problem is to associate a weight for each vote that an edge point cast (in
the parameter space) for a given cell (8, p). If the edge point (x,., y.) is part of an edge segment ¢ that lies on the line (8, p), then the vote
of (x., y.) for (8, p) should weight more heavily than other edge points which also lie on (6, p) but do not belong to the edge segment e.
Here we are assuming that ¢ is either the only or most significant edge that lies on the line (8, p).

To quantify this concept, we define the variable v.(8,p) as the line integral [along the line (8, p)] of the product
E@xy).wllx-x |, |y —y.|), where E(x, y) is the edge image, and w(r, s) is a 2-dimensional non-negative function that is symmetric
and monotonically decreasing in all directions away from the origin. Therefore, instead of contributing only one vote to 4¢(6, p) under the
standard HT, an edge point (., y.) will increase A(8, p) by v, (8, p) under this technique:

ht(8,p)=3. 3 8(p — xcosb + ysind) E(x, y) v.(6, p)
x y

The line integration as performed is a natural way of measuring connaectivity along the edge being considered. We chose w{r, s) to be a
Gaussian-shaped function with a standard deviation o;. For a given value of o;, the line integral is carried over a finite length I = 24, where
! is proportional to ;. The integral along the line (8, p) can be expressed using the following parametric forms for x and y, assuming
w4 <0< w2 and -2 <0 < w4

x(t)=t +x, —dsin () S t <dsin(0)

y{t)=—t cotan(8) +y,  —dsin(0) <t <dsin(6)
= —x(t) — x.] cotan(8) + y.

Now v, (8, p) can be expressed as follows:

dein(8)
ve(6, p) = Veoran2@) + 1 | E[x(e), y(r)] e Txlr=t+ 00050202 4
~dsin{6)

For other values of @, the x coordinate is expressed as a function of y. This is done to avoid aliasing when implementing the line integration
on a discrete sampling lattice. In such a case, the following equations were used to compute v, (8, p):

)=t +y. ~dcos (8) S t < dcos(8)

x(t)=~t tan(0) + x, —dcos (8) < t < dcos ()
=—{y(t) - y.} tan(6) + x,

dcos(s)

ve(8, p) = ‘jtanZ(e) +1 J' Efx(t), y(t)] e ==+ ey, )%020,2 4,
~dcos (0)

The above integrations were implemented by incrementing + by 1 within the specified ranges. The performance of such technique are
explicitly described in Section 3.

2.2.3 Post Filtering the Hough Space

The effect of the parameter space resolution (i.e., Ag = NL and A,) on both the accuracy and computational complexity of the HT has been
)
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studied thoroughly in the literature [Veen] [Svabe]. If large quantization increments are used, there will be a large degree of inaccuracy in
the location of straight lines in the image space. On the other hand, by using very small quantization increments 4, (l.e., oversampling) for
a given Ag, a peak for a straight line could be extended over several cells in the p direction. We can express the maximum number of HT
cells over which a peak can be distributed in the p direction as follows [Veen]:

)
np=.:l_smA(P._-Zi+2

where [ is the line length. Based on this peak distribution phenomenon one may assume that a better result can be achieved by fitering
{smoothing) the Hough space (in the p direction) with a_linear (averaging) filter whose size Sy = n,. If the image dimension is 5;, then the
maximum length of a line in the image space is /max = V2S;. Therefore, in a worst case scenario, the maximum fliter size is:

-

r 2
s,=£ﬂﬂ1_)+2

4

This approach was tested using different filter sizes, but did not provide any improvement to the standard HT. The main reason for the
failure of this method is its dependency on the line size /. For example, a given filter (with size Sy) that is capable of smoothing a
distributed peak due to a line L with length /, may cause other peaks corresponding to much smaller lines (than L) to be merged into one
major false peak in the Hough space. Moreover, it is difficult to estimate the true length of a line consisting of a set of disconnected
segments.

Figure 6

Figure 5

2.3 A Preorder Tree Traversal Algorithm

We outline three methods that are commonly used for traversing tree-like data structures. Let T be a tree with root r and subtrees Ty, T,...
T+ as shown in Figure 6 (for binary trees, k = 2). The preorder, inorder, and postorder traversal of a tree are as follows [Aho]:

1. The preorder traversal or (listing) of T s the root r followed by the preorder traversal of the nodes of T, then the preorder traversal of
the nodes of T3, and so on, up to the traversal of T in a preorder manner.

2. The inorder traversal or (listing) of T is the inorder traversal of the nodes of Ty followed by the root r, then the inorder traversal of the
nodes of Ty,... , T}, each subtree inorder.

3. The postorder traversal or (listing) of T is the postorder traversal.of the nodes of Ty followed by the inorder traversal of the nodes of T,
and so on, up to the traversal of T, in postorder all followed by the root r.

A useful way to visualize these traversal schemes is to draw a path around the tree T starting from the root node and staying as close as
possible to the nodes of the trees. For the preorder (pgstorder) case we list a node the first (last) time we pass it. For inorder traversing,
we list a leaf the first time we pass it, but list an intermediate (interior) node the second time we pass it, where the root node is considered
as an interior node.

It is clear that the preorder and postorder traversings follow top-bottom and bottom-up approachs, respectively. In our case we are
attempting to generate a tree, by first searching for the "best" hyperplane that can be used to partition the edge image into two halfspaces,
and associating this hyperplane with the root node of our BSP tree. Since the same process (searching for the "best" hyperplane) will be
repeated on one of the two halfspaces after generating the root node, it is clear that we are attempting to generate our tree in a preorder
manner.
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3. Simulation Resuits and Compression Aspects

3.1 BSP Segmentation Performance

The algorithm described in the previous section was implemented in C, and tested on a 256x256 original image with 256 gray levels
(Figure 7). The image was selected due to its complexity. As seen from the figure, the image contains a fair amount of texture (e.g., the hat
surface and the flowers) in addition to very low contrast edges (the right side of the lady's face). Moreover, it represents a human face for
which distortion are particularly noticeable.

We first applied the algorithm on the
edge image of Figure 8a. The edge
image was obtained (without any
fitering) using a non-linear edge
detector proposed in [Radha] in
combination with a thinning process. In
this case we computed the HT using
the standard method, i.e. considering
all @ values between zero and 180
degrees.  Therefore, under this
scenario we did not use any gradient
information for the HT. Figure &b
shows the output which is a labeled,

segmented image, where the darkest Original Image Edge Image
and brightest regions represent the Al 8
right-most and left-most leaf nodes in Flgure 7 gure Sa

the resulting BSP tree.

It is clear that this BSP tree does not represent the original image (except for
the face region) due to the occurrence of a large number of false peaks in the
Hough space. These false peaks are caused by the large number of
uncorrelated collinear texture points.

Figure 9 shows three edge images obtained with the maximum gradient edge
detector described in Section 2.1. These edge images were derived from a
Gaussian-filtered version of the original image. Figure 9a and 9b show the
resulting edges when only a low threshold T; or a high threshold T} is used,
respectively. Figure 9c shows the edges obtained when both T; and T} are
applied using the thresholding with hysteresis aigorithm. It is clear that
significant improvements can be achieved by using the hysteresis approach
versus a simple thresholding strategy. All the simulation results discussed
below were obtained using the edge image of Figure 9¢ as an input to our BSP
tree algorithm.

BSP Labelled Image
using standard Hough transform

Figure 8b
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Figure 10 shows the results of applying the algorithm and using the gradient direction information when computing the HT. The labeled
image (which visualizes our BSP tree representation of the original image) of Figure 10a illustrates a significant improvement when
compared with the image of Figure 8b. This improvement is mainly due to the usage of gradient direction information in the HT. Figures
10b and 10c show the images resufting from filling the leaf node regions with the mean value of the corresponding regions of the original
image. Figure 10b also shows the BSP tree hyperplanes used to partition the image.

(using gradient direction information)
(a) BSP labelled image (d) Mean value image with hyperplanes (c) Mean value image

Figure 10.

Although the gradient direction information has helped in eliminating a large number of false peaks due to the uncorrelated collinear edge
points, yet more improvements can be achieved when applying the line integration process (in combination with the gradient direction
information) as shown in Figure 11. The most obvious example of these improvements is the root node hyperplane. From the edge image
of Figure 9c, one would expect that the straight line corresponding to the hat edge to be the first partitioning hyperplane. (The first selocted
hyperplane partitions the whole image into two segments, and represents the root node of the binary tree.) This desired result is obtained
in Figure 11 (due to line integration) but not in Figure 10.

using gradient information and line integration
(a) BSP labelled image } (b) Mean value image with hyperplanes (c) Mean value image

Figure 11.
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To further improve the quality of our BSP tree representation, we have used within our HT-based algorithm a parent.child minimum distance
constraint. Under this approach the hyperplane (8,, p,) associated with a parent node p, has to be a minimum distance (in the Hough
space) from its child hyperplane (6., p.). This minimum distance requirement can be expressed as follows:

|8 -6 | >84 or |pp —pc} >pa

where 9, and p, are the desired minimum distances in the 6 and p directions, respectively. The results of using this strategy is shown in
Figure 12. It is clear that the minimum distance constraint has improved the images by guiding the segmentation process in areas with high
texture density (e.g., the flowers’ region).

{using gradient direction information, line integration,
and parent-child minimum distance strategy)
(a) BSP labelled image (b) Mean value image with hyperplanes (c) Mean value image

Figure 12.

Figure 13 shows mean value images
resulting from using this strategy for the
two cases (1) 8, > ps (Figures 13a and
b), and (2) 8; < ps. Both 8; and p; are
measured in terms of the number of HT
cells in the @ and p directions,
respectively. In figure 12, we set
04=ps=10, for figures 13a and 13b,
04=2p4=20, and for figures 13c and 13d,
pd=294=20.

For each of the two cases we also show
the results of performing the line
integration process across and within the
regions. Selecting a large minimum
distance in the p direction (see Figure
13d) has helped in partitioning some of {c}
the large polygons appearing as artifacts

across the right side of the face, at the
expense of poorer segmentation of the
finer objects (e.g., the flower) in the'
image. On the other hand, performing the
line integration across the regions
provided a better segmentation of the
finer objects (e.g., the flower and the
lady’s nose) but at the expense of
introducing some artifacts on the larger
object (the right side of the face).
Overall, the segmentation of Figure 12
provided the best resuits (see, for
example, the preserving of the flower in
the hat), as it uses good threshold values
for 8; and p,.

integraticn iniegﬂﬁw
‘ : ; winy () 4

Figure 13.
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3.2 BSP Trees for Inage Compression

Recently, image compression was given a new life by designing more representative messages of typical image sources. Among the most
promising techniques, let us mention pyramidal coding [Burt], anisotropic nonstationary predictive coding [Wilson], sketch based
representation of images [Carlsson], contour-texture coding [Kunt 85), [Kunt 87), fractal based coding [Jacquin]. Significant improvements
were made possible thanks to models that could handle the non-slationary behavior of images. Within the contour-texture approach,
segmentation based techniques have been given a-great attention. Images are described as a set of regions with their own luminance
modsl (often of polynomial type). Limits were reached due to the high cost in describing accurately reglon boundaries. Even with a very
timited number of regions, the boundary information represents 75% of the total cost. With more rigid partition of the images such as
quadtree based representation, the tree structure Is simple to encode at the expense of a large number of regions (cells). BSP tree have
the advantage of providing a compact representation of images in terms of number of polygons (of the order of 150 for images of Figure 11
to 13), with a simple and diversified description of the region shape. -

The simple data structure of BSP trees makes the decoding of images represented by BSP trees particularly simple. Encoding an image
using its BSP trea representation, requires the description of the tree structure, the M hyperplane equations assigned to each internal node
of the tree and a luminance model for each convex polygonal domain defined by a leaf in the tree. In what follows, we assume the BSP
tree contains M internal nodes (including the root) and N leaves. The tree structure can be encoded using 1 bit per node, l.e. a total of
M+N bits. The hyperplane equations are parametrized by the two parameters 8 and p. Without any entropy consideration, the encoding
can be optimized by noticing that each hyperplane is represented by two points. For each node in the tres, these points belong to the
polygon that this node describes. This will however make the decoding of the entire BSP representation rather tedious. For simplicity, we
choose to represent every hyperplane with 2 points on separate image borders. If the image size is 2¢x2', the first point requires
max (k,{)+2 bits. The other point can appear at any location on one of the three remaining borders of the image. its location can be encoded
with less than max (k /)+2 bits as well. In our example, this corresponds to a cost of at most 20 bits per hyperplane. Given the synthetic
quality of the reconstructed images when the number of polygons is kept low, each polygon was assigned the mean value of the pixels it
contains. 5 bits were sufficient to encode this mean value. Hencs, the overall cost to reconstruct any image using a BSP encoding strategy
is bounded by:

C =21M + €N
Using this strategy, the image of Figure 12 was coded using 0.055 bit per pixel. This represents a compression ratio of about 150 to 1.

4. Conclusion and Future Work

In this paper we have introduced a Hough transform-based method for genserating a BSP tree representation of an arbitrary image. A
recursive algorithm (that implements the method) was successful in partitioning a complex image consisting of several objects (of different
sizes and shapes), and in generating efficient segmentation using BSP trees. :

Due to the good segmentation performance of BSP tree representations of natural images, and the BSP tree efficient data structure, itis
expected that a great variety of applications ranging from Computer Graphics to Image Processing and Computer Vision would take
advantage of this approach. In effect, we have shown the potential of this representation for High Compression Image Coding (see Section
3). For Computer Graphics purposes, we are considering this approach for easy object manipulation of natural scenes. Finally, Image
Understanding or Feature Point Classification could benefit from this representation.

In a future work, we will show a sub-band based, hierarchical method for generating the BSP tree from several scale-space images derived
from an original image. This new approach will include the introduction of a hyperplane focusing algorithm used to combine the trees
representing the different scale-space images. The theoretical development of the optimum (in the minimum mean square error sense)
binary segmentation of 2-dimensional domains is also underway.
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