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Abstract:

The purpose of this paper is to present an
adaptive algorithm to find the best approximation in
the least square sense of a given signal.

The proposed method takes advantage of the
fact that the least square approximation of a given
signal over a chosen domain D can be directly
>btained from the corresponding optimal least
square approximations of this signal over any set of
domains that constitutes a partition of D. The
approximation characteristics and a parameter that
iakes into account of the relative position and
zeometry of these domains are sufficient to provide
he overall best approximation over D. This property
is shown to be independent of the basis functions
used in the approximation. It is also shown how the
otal least square error can be obtained from the
least square errors that define a partition of D.

The paper presents as well the computational
sfficiency of the algorithm. As an example, an
application in the context of image segmentation is
presented.

ntr ion:

Least square approximation (LSA) has been

videly applied in Science for a great variety of ’

rroblems. Even if its use has been sometimes
criticized in the context of some specific ‘application
such as Image Processing, its computational
:fficiency, the good adequacy that exists between
nost of the original data and the approximated ones
still  makes it popular. Besides, no other
ipproximation criterion has been shown to be more
dapted to such a great number of applications.

Various properties of the LSA can be
iemonstrated. In this paper, we shall present how
o obtain the LSA of a signal over a domain D from
mny set of regions that defines a partition of D. This
roperty will be used to obtain an adaptive
\pproximation of the original data. As an example,
he strategy is then applied to segment images.

In section II, the basis of LSA is summarized.
Section III demonstrates the above mentionned
property. Section IV discusses how to use it to make
the approximation adaptive. Finally, section V
presents an adaptive split-and-merge algorithm
coupled with a least square approximation by means
of 2-D polynomial functions to segment images.

L s !

Let us consider a digital signal x(k) (k=1,...,N) to
be approximated by a set of r complex valued
functions ¥;(t). k=1,...,N defines a discrete interval I.
The approximated signal x,(k) can be expressed by:

r
xak) = X u¥i(k) (1)
i=1

or using a vectorial notation with
uT=[uj up _ ug, ¥(K)T=[¥(k) ¥2(k) .. ¥k)],

x5(k) = uT ¥(k) 2)

u; define the r parameters of the
approximation. The optimal LSA is obtained by
minimizing the square error:

N
E2= 2 [x(k) - x,(k)]2 3
k=1

or using a vectorial notation with
xT=[x(1) x(2) ... x(N)] and x,T=[x,(1) X,(2) ... x,(N)] :

E2 = [x-x,)T[x-x,)
= [x-Zu]T[x-Zu) 4)

where the rxN transpose matrix of Z is defined
by ZT = [¥(1) ¥(2) ... ¥(N)].
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The optimal solution is given by setting to O the
derivative of E2 with respect to u, which is
equivalent to solve the linear equation system [1]:

(ZTZ).u = ZTx )

(ZTZ) defines an rxr symmetric square matrix
that will be called for simplicity S. Similarly, vector
ZT.x will be called h.

In the most general case, the computation of (5)
requires :

1) the evaluation of vectors ¥(k) (k=1,2,...,N).

2) Nr(r-1)/2 multiplications and (N-1)r(r-1)/2
additions to compute the rxr matrix S. O(Nr2)
operations will be considered as sufficient.

3) the matrix vector multiplication to estimate
vector h, which requires O(Nr) operations.

4) Solving the equation S.u =h as long as § is
regular, which corresponds to O(r3) operations [2]..

Therefore, it can be said that step 1 to 3
represent the most important cost as in general N»r.

The property that will be proved in the next
section will reduce the computation of the LSA to
step 4 if the LSA is known for a set of intervals that
define a partition of I.

1 ination_of

The LSA criterion has the following interesting
property: Given a domain D, the optimal LSA over
this domain can be obtained from the LSA over the
domains that define a partition of D.

To prove this, let us consider a one-dimensional
discrete interval I that is composed from two
disjoint intervals Ij and Ip. I; and I, can be
separated by a certain number of points. Using a
similar notation to that of the previous section, u, uy
and uj define the optimal LSA over I, I; and I,
respectively if the same set of approximating
functions ¥(t) (i=l,...,r) is considered. In the same
manner, we define as N, Njand Nj, the number of
data within each interval. Naturally, the relation
N=N;+Nj holds. Vector x of size N is simply obtained
by concatenating vectors x; of size Nj and xj of size
N,, relative to each interval I; and I,. The
corresponding approximated vectors will be
represented by Xgq, X3, and X3, when the LSA is
estimated on I, Iy and I,. Similarly to section II, we
define with respect to each interval matrices Z of
size Nxr, Zj of size Njxr, and Zj of size Npxr; rxr
square matrices S, Sy, and S, as well as vectors h,
hy and h,.
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The following equations hold:

(ZTZ)u =ZTx=h 6)
(ZyTZy)ug = Z4Tx = hy @)
(Z2TZ3).uz = ZyTx; = hy (8)

Solving (6) corresponds to minimize the square
error E2 expressed by (3) within the interval I:
E2 = [x-xo]T[x-x,] =

[x - Zu]T(x - Zu) )

This error can also be estimated separately for
each interval:

E2 =[xy - Z1u]T[x1 - Zyu] + [x; - Zau]T[x; - Zyu]
(10)

Note that in this case the optimal solution for
the contribution of the approximation on each
interval is represented by u. If we differentiate (10)
with respect to u, the optimal solution is obtained
by setting this derivative to 0 which gives the linear
equation:

-2 ZIT[XI - Zlu] -2 ZzT[xZ - Zzu] =

(Z1TZy + Z3TZp)u= Z1Tx; + Z,Tx (11)

Every term of this equation is already known as
it can be seen by refering to equations (7) and (8).
The optimal LSA over I can be simply written as:

u = (Sy + 8S2)L. (Squy + Syuy) (12)

This equation holds for any number of intervals
that define a partition of I, as all the previous
equations remain valid if more disjoint intervals are
considered to make a partition of I. The property
can be applied independently of the functions W¥;(t)
used as long as these do not vary with respect to u;.

It can also be generalized to m-dimensional
signals. These are then approximated using a set of r
m-dimensional functions. Every sample is put into a
vector and intervals become domains of an m-
dimensional space.

It can be seen from equation (12), that storing
matrices Sj3 and S; that are relevant of the
respective position and geometry of both intervals,
as well as the parameters of the approximation uj
and uj; allows to get the desired LSA. The
computation is then reduced to solve a linear system
of r equations involving just O(r3) operations.




Using the same formalism as above, it can be
hown that the least square error over I can be
xpressed using the least square errors over I; and

> that will be denoted by E;2 and E52, respectively.
Ve have:

E2 = E;2 + Ep2 +u;TSquy + u3TS;u; - uTSu
(13)

The property that has just been pointed out
nay find useful applications. It can serve to
:stimate how the LSA evolve when one is
-onsidering an increasing number of data. Another
pplication will be presented in the next section.

V) Adaptive LSA of Signal

It is often difficult to approximate a large
1umber of data with a small set of approximating
functions, especially if these data correspond to non-
stationary signals. By changing the parameter
values, the approximation may fit harmoniously
nart of the data.

The idea is to use an adaptive strategy to find
parts of the signal that can be well represented by a
least square approximation using a set of functions:
¥ ;. The approximated signal corresponds to a
conjunction of intervals over which the original data
are approximated in the least square sense.

One starts to decompose the original N samples
of the signal into a set of sequences of samples. Each
sequence is defined over a certain domain D. The
concatenation of all sequences gives the original
signal. On each domain D, the LSA is then estimated.
{f the parameters of the LSA are similar for two
different domains, these are merged into one and
the optimal LSA over this new domain is evaluated
using (12). The process will go on as long as there
2xist similar domains or when a certain number of
domains is reached.

The way of decomposing initially the original
ignal ‘sets the name of the adaptive algorithm. If
he signal is subdivided initially into equal length
.equences, the process is called region growing; if it
s cut into pieces with respect to some homogeneity
riterion before starting the adaptive merge process,
he overall approximation strategy will be called
plit-and-merge. In the next section, this approach
vill be used to adaptively segment images.

The proposed method is similar to the split-
and-merge algorithm suggested by Horowitz and
Pavlidis [3]. It is made more powerfull by combining
it with a LSA approximation by means of 2-D
polynomial functions.

In the split process, the original image is
divided iteratively into a set of squares of different
sizes. A square is divided into four identical
subsquares whenever some suitable error measure
between the approximated image in the least square
sense within the square and the original image
exceeds a certain threshold.

In the merge process, the various squares are
associated on the basis of some similarity measure.
During the whole segmentation, distorsions are
measured with respect to the original image. Before
merging any two neighbouring regions, the analysis
is performed on all possible couple of two
contiguous regions. Those being the most similar will
be merged. The process will stop whenever a certain
number of regions is reached or as soon as a further
merging will cause an unacceptable distorsion to the
original image.

Figure 1 shows an image representing a couple.
Figure 2 gives the relative approximated image with
70 regions represented by 37 order 2-D polynomial
functions (10 coefficients). The corresponding
segmentation is illustrated by figure 3.

Figure 1: Original couble picture.
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Figure 2: Approximated picture by 31 order

polynomial functions with 70 regions.
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Figure 3: Segmentation shape.

A\'A ion;

] The present paper has shown that LSA over
,'certain domain can be obtained from the LSA ove
any set of domains that define a partition of th
previous one.

Using this property, it was possible to derive a)
adaptive algorithm for approximating signals. A
application of it to image segmentation wa-
presented in section V.

It is our concern to seek new areas in which the
above mentioned property would find valuabl
applications
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