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Abstract This work addresses the problem of curve de-
tection in images using a novel transform that takes ad-
vantage of the connectivity of curves and the spatial in-
tegration ability of the human visual system. This new
transform differs from the traditional Hough transform as
it introduces a connectivity measure to strengthen those
points that are connected to each other in the image space.
Besides, for each point in the image, the response is inte-
grated over a small neighborhood along the curve. Sim-
ulation results for the case of straight line detection are
presented to show that this transform is extremely robust
in the presence of noise and can outperform significantly
the conventional Hough transform. In addition to the
performance issues of the Connectivity Hough transform,
this work discusses as well the computational complexity
issues.

INTRODUCTION

Since its introduction in 1962 [1], the Hough transform
(HT) has found considerable support in image process-
ing and computer vision applications. A recent survey [2]
provides more than 130 references to work related to the
HT. In principle, the HT is used to facilitate the recog-
nition of complex patterns of points in multidimensional
spaces. Given a parametric representation of the pattern
of interest (e.g., an ellipse), the pattern analysis task is
performed in the parameter space in which occurrences
of the pattern result in dense clusters, making the recog-
nition task simpler. The HT is effective even when the
signal in the original space (e.g., image space) is affected
by noise or when the occurrence of the pattern presents
gaps (e.g., occlusions of objects). However, when com-
paring the performances of the HT to the human visual
system for applications such as line detection, the lat-
ter remains superior, suggesting that additional process-
ing is performed in the visual system. In designing the
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Connectivity Hough transform (CHT), we have tried to
incorporate some of these processings. First, a connec-
tivity measure along the direction of the curve has been
introduced in the CHT to strengthen the effect of those
connected segments that match a certain curve parame
terization. Second, the information is integrated for each
point in the original space within a certain neighborhood.
This reduces noise sensitivity and takes advantage of the
focus of attention present in foveal vision. The CHT out-
performs the conventional HT significantly by eliminating
the “background noise” inherent in the HT. Lower signal-
to-noise ratios could still give good recognition results, at
the expense of some extra computational effort.

Section 2 gives a survey of the HT and presents a pos-
sible mathematical formalism. In Section 3, the CHT is
introduced in general terms, then compared to the stan-
dard HT for line detection in images. In Section 4, com-
putational issues are addressed: pyramidal partitioning
of the parameter space and multi-resolution analysis of
the original and parameter space are considered. Finally
Section 5 gives insight into further research effort, and the
use of the CHT for more complex pattern matching tasks.

For simplicity, we shall call the original space, in which
the pattern or curve of interest is searched, the image
space denoted by D. The parameter space often called
the Hough space will be denoted by .

HOUGH TRANSFORM

As mentioned earlier, the Hough transform converts a dif-
ficult pattern recognition or parameter estimation task i
the image space D into the simple search of clusters of
points in the parameter space Q. For clarity, let us con-
sider the following example (see Figure 1). Consider
straight line equation given by

f(z,y,a,b)=a:z+by—l=o (l)
or using a vector notation '
Jxw)=xTw=-1=0 ()

where xT = (z y) and w7 = (a b). For each point x in'the
image space D, the mapped set of points in the paramete
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Q) defines a straight line which is the solution to

7). In other words, there is a one-to-one correspondence
tween lines in © and points in D. Any twopoints x; and
g of D will generate two corresponding lines in © which
intersect at a certain parameter point w{ = (ao bo). This
int represents the characteristic parameter value of the
fne connecting %1 and xa. More colinear points in D to
g and X2 will generate lines in  that will all join at
. Moreover, nearly colinear points in D will transform
ito dense clusters of intersecting lines in the parameter
gpace. The line detection problem is reduced into finding
these points of concentration of crossing lines.  Instead

.of studying the line intersection resulting from any two

ir of points in D, it is easier to initially quantize the
Hough space. The usual approach starts by partitioning
the Hough space Q into contiguous cells [3,4]. The size of
each cell is chosen according to the coarseness with which
s line is to be located in the image space. These cells
define an accumulator array. For each point in the image
space D, the related line in @ will increment each element
of the accumulator array that it crosses. After all image
points have been treated, the array is inspected to find
cells with highest counts. The corresponding cells locate
sets of nearly colinear points in D.

For generality, the Hough transform problem can be
stated as follows. Consider an image [ (x), which can be
either a binary line-drawing image or a gray level gradient
image, and a pattern T described by a functional over the
coordinate vector variable x and the parameter vector

variable w as
3 r: f(x,w)=0 - (3)
Note that the image space and parameter space dimen-

sions may be arbitrary with the implicit practical con-
straint that dim(§2) remainssmall. The continuous Hough

transform associated with I(x) is given by

e

(4)

L H(w) =3 I(x) §(f(x,w)) -
e x o
where §(z) is the Dirac impulse defined as |
1 ifz=0
§(z) = { 0 otherwise (5)

When using (4), however, this means that any point in D
that does not fall exactly on the pattern T' associated to a

" quantized parameter value wq has no contribution to the

corresponding continuous Hough response H ¢(wo)-

" In a discrete implementation of the Hough transform
using an accumulator array, it is convenient for computa-
{ional reasons to force the contribution of each x to one
discrete parameter value only, i.e., the one producing the
Dearest neighbor pattern. In this case, the Hough trans-
form is expressed by :
PR

w4+ A .
voaw= [T ey ©
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where Aw represents the width of each cell in the quan-
tized parameter space.

If a soft contribution to each quantized parameter
value is expected, an approximation of the Dirac impulse
in (4) can be used. Its argument should match the dis-
tance d(x,T’) between the actual point x in D space and
the pattern I'. In other words, the Hough transform can
be rewritten as

H(w) = Zx: I(x) §(d(x,T)) )
A weighted average of the continuous expression de-
scribed by (4) can be obtained with the use of a normal

distribution .
8(z) = ezp(—7" [20%) (8)

In this case, the standard deviation o must be set accord-
ing to the quantization of the { space. The computational
cost is increased with respect to (6) as there is for each
point x in the image space, a region of activity around
the surface represented by the solution of (3) in the pa-
rameter space. The extent of this region is a function of
o. Implementations according to both (6) and (7) have
been performed, but only simulations based on (6) will be
presented here.

A considerable effort has been placed in modeling an-
alytically the statistical and quantization noise affecting
the HT [5), from a signal detection point of view. Due to
the discrete nature of both image and Hough spaces, the
HT images are often blurred and no sharp peaks can be
det.ected. Ceimt el T

Brown [6] has explained the deficiencies of the HT by
the presence of a background noise that results from “side-
lobe” effects. As an example, any combination of 2 points
creates a background Hough response of 1 in the Hough
image of a line detection problem, even if the points are
very far apart. When increasing the noise level in the im-
age space D or the dimension of the parameter space €,
the search for peaks in the parameter space becomes very
cumbersome. To illustrate this phenomenon, we present
in Figure 3 the Hough images obtained from the cross pat-
tern of Figure2. Even though only horizontal and vertical
lines are present in the cross pattern, fairly strong peaks
appears also in the Hough image at those positions corre-
sponding to the 45° and 135°. When the cross pattern is
perturbated by noise as shown in Figure 6, the true peaks
of the “Hough image” at the 0° and 90° are submerged
in the background noise, and are actually lower than the
false peaks at 45° and the 135°, see Figure 7. Brown
(6] suggested the use of complementary (negative) votes
to cancel off-peak positive votes in parameter space, ie,
background noise. When applying the HT in the context
of curve detection problems, it must be kept in mind that
additional constraints can be inserted in the computation
of the image to parameter transform. These are not sup-
posed to reduce the “noise” present when working in a
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parameter space. They instead should take advantage of
relevant assumptions that aze related to curve properties
that the human eye uses in its detection process.

CONNECTIVITY HOUGH TRANSFORM

Using the mathematical formalism introduced in the pre-
vious section, this part of the paper describes two features
that have been added to the usual HT in constructing
the CHT. Only the continuous expression of the CHT,
CHT(w), corresponding to the continuous HT, HT .(w),
shown in (4) is introduced. In a discretized 2 space, the
results can be extended using the same approach of the
previous section for expressions such as (6) and (7), but
they shall be omitted here for lack of space.

When performing visual pattern recognition tasks, the
human eye uses in its processing edge elements or con-

nected segments of contours instead of separate points. .

Therefore, it seems reasonable that any pattern match-
ing algorithm should include a connectivity measure to
strengthen edge points that define continuous segments.
To include this parameter in the Hough transform expres-
sion, equation (4) should become

H(w) = Zx: I(x) C(x, w) §(f(x, w)) ©

Where C(x,w) is a connectivity measure at the point x
along the contour defined by w. The connectivity mea-
sure is a function of w since it should be associated to the
pattern shape I'. In other words, in a line detection prob-
lem, the connectivity is used along linear paths whereas
for a circle recognition task, the connectivity is searched
along a circular path.. The circle or line orientation is
specified by the particular parameter value of interest.
Two points are considered connected if they are adjacent
in image space (e.g., 8-connected [7]) and their intensity
values satisfy certain similarity criterion, say their differ-
ence is less than a certain threshold. Let C(x) represent
the connectivity of a given point.x in D defined by the
number of points that are connected to x. C(x,w) is de-
fined as the projection of C(x) onto the tangent of the
contour at x. Specifically, let us call Tr(x), the tangent
to the pattern I' at x for a specific parameter value w,
and Tx the tangent at x to the set of connected points at
that location. we define the connectivity along the con-
tour C(x,w) as the connectivity C(x) weighted by the
cosine of the angle between these two tangents, provided
they are not separated by more than 45°,

Clx,w) = { C(x) cos(L(Tx, Tr)) if LTx, Tr) < 45°
otherwise
(10)
In particular, in the case of line detection with the
parameterization of the line described as

zcosf +ysinfd=p (11)
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the connectivity along the line (p, §) is determined as
C(z,y,p,0) =| dz sin8 — dycos b | (12)

Where dz and dy are the projections of the connected
segment associated with the point (z y) along the z and
y directions, respectively.

A second feature that is used to improve the perfor-
mance of the Hough transform involves the focus of atten-
tion present in the foveal vision. When trying to recognize
curves or shapes, the human eye will match its model of
the pattern to the actual portion of the picture on which

. it can focus its attention, an area of about 2° to 5° of an-

gle, that will correspond to the portion of the image that
is formed on the fovea. This second type of processing
suggests to increase the contribution to the Hough image
of points inside the neighborhood of the point of focus
(pomt that is at the center of the focus of attention). It
is reasonable to provide it by integrating the information
of interest within the neighborbood along the contour di-
rection, somehow to match the integration ability of the
human eye. From (9), the Connectivity Hough Transform
is then expressed as

CHT(w) =
T I(X)8(F (%, ) [EreNpeuwy IX)C(K, w)S(E(X, w())l)
1
where N(x, w) represents the neighborhood around every
point x along the curve I’

With the above two new features added to the tradi-
tional HT, not only the sensitivity to noise in the image
space D are reduced, the effect of “background noise”, in-
herent to the initial formulation of the Hough transform
is also minimized.

Figure 4 shows the “Hough image” associated to the
cross image of Figure 2 using the CHT. The false peaks
at the 45° and 135° due to the “crosstalk” are completel,
eliminated. Figure 8 shows the “Hough image” assock-
ated to the noisy cross image of Figure 6. The true peaks
appear much sharper than in Figure 7 and can easily be
detected by the use of a single threshold. To evaluate the
effect of neighborhood integration, Figures 5 and 9 sho¥
the “Hough images” obtained without neighborhood io*
tegration, i.e., through the use of the formula (9). Obvi-

ously, the nelghborhood integration increases the ability )

of eliminating the “sidelobe” effect.

'COMPUTATIONAL ISSUES

In the discrete implementation of a Hough type tran%
form, the computational complexity grows exponentlﬂny
with the dimensionality N of Q. Let the desired number
of parameters in each direction of the parameter space

L;, and the number of samples in each direction of the
M-dimensional image space be K;, one should compute

e QS




¥, K; x T¥, L; distances d(x,I’). This becomes un-
tractable when N is large or K is large. As the architec-
ture of the HT is perfectly parallel, several authors have
suggested to reduce the computational load with paral-
lel pipeline projection engines [8]. An even more efficient
way of implementation was suggested by Li, et. al. with
the so called Fast Hough Transform (FHT) [9]. which it-
eratively divides the parameter space into hypercubes of
various sizes. At each step, the Hough transform is fur-
ther computed on those hypercubes for which the Hough
measure computed over the parent hypercubes exceeded
a certain threshold. This pyramidal approach leads to a
significant reduction of both the computation and storage.

The maximal precision achievable in the parameter
space depends on the sampling resolution of the image
space, and vice versa. In order to further reduce the com-
putational complexity, we suggest a combined image and
parameter space multi-resolution approach. The idea is
to limit the resolution in both spaces in a first step and
get a coarse estimation of the peak locations in the re-
duced size Hough image. In a second step, the full res-
olution are used to refine the initial estimate. Suppose
that in the first step, the initial image is down-sampled
by a certain factor r after adequate low-pass filtering to
avoid aliasing artifacts, the maximal precision in parame-
ter space is also reduced by r, which allows the partition
of the Q space with an r times larger quantization step,
Once P most significant peaks are detected in the reduced
size Hough image, P x (r)¥ higher resolution parameter
values are computed but using the original image data
‘I(x). The method can be iterated several times to build

s multi-layer pyramid. Assuming that we start with only.

Ko samples in each dimension of the image space and L,
samples in each dimension of the parameter space. We
increase the number of samples by a factor of r in each
dimension in each higher level of the pyramid and stop
until the number of samples in the image space reaches
the original sampling rate, say, K in each dimension, and
the number of samples in the parameter space reaches
the desired parameter sampling rate, say, L in each di-
mension. The computation required would be reduced to
from LNK™ to O(KMLY + PKMrN), independent of L.
£ _ .
“In this work, we have tried to incorporate certain process-

ing steps of the human visual system in the traditional
. Hough Transform by defining the so called Connectivity

CONCLUSION

“Hough Transform. These include a connectivity measure

,and the integration of the image signal along the direc-
+tlon of the curve or pattern to be detected. The first
one may be related to the particular detection ability of
¢tonnected segments of contours that is performed by the
complex cells in the visual cortex. The second one takes
Wdvantage of the integration ability of the retina present
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in foveal vision. The efficiency of the recognition capacity
of this new transform seems very promising for line detec-
tion problems and will probably extend to more complex
curve shapes such as circles and ellipses. By becoming
more robust with respect to the “background noise” in-
herent in the Hough transform approach, it should be
even more efficient for the detection of curves that have
large dimension parameter spaces associated with them.
It can certainly achieve better performances than the HT
in any problem that involves visual pattern recognition,
such as three dimensional object detection, motion esti-
mation, etc. We are currently investigating the power of
the CHT in this direction and continuing our efforts to
make its implementation simpler,
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Figure 1: One-to-one mapping between image space D and Hough space Qfor a straight line detection

Fxgum 2 Figure 3. Figure 4. Figure 5.

Figure 2: Original cross image; Figure 3-5: "Hough image" obtained by HT (3), CHT(4), and CHT without neighborhood
integration (5); The horizontal direction represents distance, while the vertical direction represents onentahon
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Figure 6.

Figure 7. Figure 8. Figure 9.

Figure 6: Impulse noise corrupted cross image; Figure 7-9: "Hough image” obtained by HT (7), CHT(8), and CHT without
neighborhood integration (9). :
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