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Abstract
Over the past few years, the use of non-invasive neuromonitoring in non-brain injured patients has increased, as a result of 
the recognition that many of these patients are at risk of brain injury in a wide number of clinical scenarios and therefore may 
benefit from its application which allows interventions to prevent injury and improve outcome. Among these, are post cardiac 
arrest syndrome, sepsis, liver failure, acute respiratory failure, and the perioperative settings where in the absence of a primary 
brain injury, certain groups of patients have high risk of neurological complications. While there are many neuromonitoring 
modalities utilized in brain injured patients, the majority of those are either invasive such as intracranial pressure monitoring, 
require special skill such as transcranial Doppler ultrasonography, or intermittent such as pupillometry and therefore unable 
to provide continuous monitoring. Cerebral oximetry using Near infrared Spectroscopy, is a simple non invasive continuous 
measure of cerebral oxygenation that has been shown to be useful in preventing cerebral hypoxemia both within the intensive 
care unit and the perioperative settings. At present, current recommendations for standard monitoring during anesthesia or 
in the general intensive care concentrate mainly on hemodynamic and respiratory monitoring without specific indications 
regarding the brain, and in particular, brain oximetry. The aim of this manuscript is to provide an up-to-date overview of the 
pathophysiology and applications of cerebral oxygenation in non brain injured patients as part of non-invasive multimodal 
neuromonitoring in the early identification and treatment of neurological complications in this population.
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1 Introduction

The application of non-invasive neuromonitoring tools in 
non primarily brain injured patients has increased over the 
last years [1, 2]. A number of clinical indications have been 
suggested for the use of different non invasive neuromoni-
toring tools. Among these, severe respiratory failure with 

or without extracorporeal membrane oxygenation (ECMO) 
[3, 4], trauma, cardiac arrest, liver failure, intra-arterial 
thrombolysis during endovascular treatment [5, 6], and sep-
sis are among the conditions where despite the absence of 
a primary cerebral damage, neurological complications are 
common and can affect patients’ outcome [1]. The benefits 
of non invasive methods include safety, availability, and the 
provision of repeatable continuous data at the bedside, there-
fore helping clinicians detecting deterioration in neurologic 
function and earlier intervention [7].

Among the different neuromonitoring methods [8–10], 
the use of cerebral oxygenation has been recently suggested 
[11]. Of course the use of cerebral oximetry is not new as 
it has been a mainstay of managing patient with traumatic 
brain injury for years, and there are three methods currently 
available: jugular bulb saturation, which allows an estima-
tion of global oxygenation and require an invasive catheter to 
be positioned in the jugular bulb; brain tissue oxygenation, 
which is now considered the gold standard and measures 
focal oxygenation through a Clark electrode; Near-infrared 
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spectroscopy (NIRS), which measures tissue oximetry non 
invasively providing an estimate of the balance between oxy-
gen delivery and metabolic needs of the brain. NIRS, being 
the only non invasive method of estimating brain oxygena-
tion today, it seems to be the most appropriate modality for 
use in patients who are undergoing surgery or sedation in 
the intensive care where the primary pathology is not brain 
injury. The aim of this review is to provide an up-to-date 
view on the main technical and pathophysiological char-
acteristics of NIRS, as well as the most frequent clinical 
conditions which have the potential of benefiting from the 
application of this technology for the detection of neurologi-
cal complications in non-brain injured patients, as well as 
to describe current limitations in its applicability and future 
directions.

1.1  Cerebral oxygenation

Brain health depends on close matching of metabolic 
demands to appropriate delivery of oxygen and nutrients, 
and removal of cellular waste. The oxygen level in cerebral 
tissue is a crucial element that impacts nerve and glial cell 
functions. The weight of the brain is only 2% of the human 
body, but cerebral tissue uses approximately 25% of the glu-
cose and 20% of the oxygen delivered to the entire body to 
function normally [12]. Cerebral oxygen delivery is deter-
mined by blood oxygen content (haemoglobin, saturation 
and small amount of dissolved oxygen) and cerebral blood 
flow, which is dependant in large parts on cardiac output 
(stroke volume x heart rate), and well as other factors such 
as carbon dioxide tension. In physiological conditions, total 
blood flow in the brain is constant because of cerebral pres-
sure autoregulation which regulates vascular resistance in 
the large arteries, of vascular resistance, as well as paren-
chymal arterioles basal tone.

Oxygen consumption is 3.5 mL of oxygen/100 g tis-
sue/1 min, of which 75–80% of the energy consumed by 
neurons to restore the neuronal membrane potentials is lost 
during depolarization. Diffusion of oxygen to the cerebral 
tissue is determined by the geometry of capillaries and the 
metabolism of tissue [12]. Extraction of oxygen is inversely 
proportional to blood flow at constant metabolism and 
directly proportional to metabolism at constant flow. A 
reduction in oxygen delivery increases oxygen extraction. 
When CBF is reduced by 50–60%, the consequent elevation 
of oxygen extraction is insufficient to maintain a constant 
cerebral metabolic rate of oxygen (CMRO2).

The oxygen cascade is a multistep physiologic pathway, 
where oxygen is transported from the atmosphere to mito-
chondria. This process requires the integration of different 
patterns and respiratory, cardiovascular, microcirculatory, 
and mitochondrial processes [12–14]. The brain, which 
possesses a high metabolic demand and commensurate 

vulnerability to interruptions in its oxygen supply, is reliant 
upon consistent perfusion and delivery of oxygen to main-
tain homeostasis. The regulation of cerebral blood flow 
(CBF) is crucial to be steady according to the current needs. 
Adequate CBF is delivered by four main mechanisms: cer-
ebral vasculature response to changes in cerebral perfusion 
pressure (autoregulation), vascular reactivity to vasoactive 
stimuli, a response to local changes in neural activity on 
the cognitive stimuli [neurovascular coupling (NVC)] and 
endothelium-dependent responses. CBF is essential to sup-
port activity of neurons and other brain cells and any disrup-
tions in CBF regulation at baseline, temporal, or regional 
level, can progress into neurodegenerative diseases.

1.2  NIRS: what it is and what it is not

NIRS measures tissue oxygenation by capturing reflected 
near-infrared light passing through the cranial bone to the 
underlying cerebral tissue utilizing the transparency of 
the scalp and skull to infrared light and the differences in 
absorption spectra between oxyhemoglobin and deoxyhemo-
globin to quantify the local oxygen saturation of hemoglobin 
in the brain. This method assumes that the sampled tissue 
comprises approximately 75% of venous 25% of arterial 
blood [15] (Fig. 1). NIRS uses a wavelength range between 
600 and 1000 nm, and its mechanism is based on two main 
factors: scattering—which is the dominant effect in bio-
logical tissue and is related to microscopic refractive index 
changes inside the tissue; and absorption, --which is related 
to the loss of a photon caused by the presence of a particular 
chromophores inside the tissue that convert light intensity 
into other types of energy. Therefore, because each chromo-
phore has a specific spectral shape, each one of them will 
contribute differently to the overall absorption. The multi-
wavelength light source used in NIRS utilizes in fact spe-
cific wavelengths able to separate the contribution of each 
chromophore and therefore to quantify its concentration 
[16–18].

The basic functioning of NIRS machines relies on a 
single point data acquisition [19], which consists in the 
use of a continuous light which is emitted into the tissue, 
and then the transmitted attenuated light is collected few 
centimetres away. In this way, only the changes in light 
attenuation, defined as the variation and reduction of the 
transmitted/reflected light intensity from the emitted light 
are collected, and these changes can calculate, according 
to the modified Beer–Lambert law the modifications in 
oxygenated  [HbO2] and deoxygenated Hemoglobin [HHb] 
concentrations [20]. The tissue saturation reflects the ratio 
between the concentration of  [HbO2] and the concentra-
tion of total haemoglobin ([HbT] =  [HbO2] + [HHb]) [21] 
(Fig. 1). This has been widely exploited by commercial 
brain oximeters [22]. Recently, some extensions of this 
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technique have been suggested, with the use of the spa-
tially resolved spectroscopy (SRS) technique, based on 
the measurement of the light attenuation at several source/
detector separations, and the ability to obtain absolute tis-
sue oxygen saturation values (referred as tissue oxygena-
tion index (TOI) or tissue saturation  (StO2) in the litera-
ture) [23].

As for the pathophysiological factors above mentioned, 
NIRS is also a promising tool for portable, continuous, 
long-term and noninvasive monitoring of regional CBF at 
bedside. The difference between the tissue concentrations 
of oxy-hemoglobin and deoxy-hemoglobin ([Hb]), is a sur-
rogate of CBF, and has been observed to be highly corre-
lated with CBF [24]. However, this is not only sensitive to 
CBF changes, but also to cerebral metabolic rate of oxygen 
 (CMRO2) and cerebral blood volume (CBV). A number of 
indices have been developed over recent years in an attempt 
to derive a noninvasive NIRS-based parameter for autoregu-
lation measurement, especially Cox, which represents the 
correlation coefficient between arterial blood pressure and 
regional saturation,  rSO2, assuming that changes in tissue 
oxygen saturation are directly correlated with flow assum-
ing a constant metabolic demand [21, 25]. Positive values 
of Cox suggest impaired autoregulation, whereas negative 
correlation indicate preservation of vasomotor response and 
preserved autoregulation [26].

Despite potentially useful, NIRS has a number of practi-
cal and methodological limitations [21], including the con-
sistency of the assumed path length of the light as it passes 
through different tissues, and changes over time in hemo-
globin concentration,  SpO2, blood volume, and especially 
the risk of extracranial contamination. In general, despite 
the application of NIRS in non brain injured patients seems 
promising, these limitations have to be taken in account, and 

currently preclude the widespread and systematic applica-
tion of this technique in practice [27, 28].

1.3  Clinical applications

1.3.1  Neuromonitoring of cerebral oxygenation 
in the operating room

Intra and post-operative neurological complications are 
common even in non neurosurgical patients. The most com-
mon complications in these patients include delirium, post-
operative cognitive decline, stroke, spinal cord ischemia, and 
can potentially increase mortality and morbidity [2, 29–31].

In particular, in some types of surgery such as vascular 
and cardiac surgery, the risk of major neurological compli-
cations is very high, with reported rate of stroke of 7% after 
carotid stenting and of 3.2% after endarterectomy [29–31].

Similarly, neurocognitive dysfunction, including postop-
erative delirium, occur in nearly 50% of cases after cardiac 
surgery, and stroke in up to 2%, while postoperative dys-
function occurs in up to 42% [30]. However, neurological 
complications can also occur following non-high-risk sur-
geries, such as shoulder surgery, mainly caused by beach 
chair positioning and hypotension [32].

NIRS has been recently proposed in the settings of car-
diac surgery both in the preoperative and intraoperative peri-
ods, with the aim to detect patients at risk of neurological 
complications and allowing the identification and treatment 
of episodes of acute cerebral hypoperfusion [33–35]. In fact, 
NIRS can provide information on the changes of cerebral 
oxygenation before and during the perioperative period, 
raising the suspect of intraoperative cerebral events. During 
carotid surgery, a regional cerebral oxygenation of less than 
50% seems to be an indicator of hypoperfusion; similarly, 
during aortic surgery, lumbar values of  rSO2 of < 75% for 

Fig. 1  Near infrared Spectros-
copy technology. SaO2 systemic 
oxygen saturation, rSO2 cerebral 
oxygen saturation, ∆O2HBi 
oxygenated component of 
hemoglobin, ∆HHBi deoxygen-
ated component of Hemoglobin, 
∆cHBi sum of oxygenated and 
deoxygenated hemoglobin
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15 min can predict the occurrence of spinal cord injury [36]. 
Recently, a large systematic review and meta-analysis which 
assessed preoperative  rSO2 values in cardiac surgery found 
mean baseline value of 66% and median reference range of 
 rSO2 values between 51 and 82% [36].

According to available evidence, intraoperative interven-
tion is required in case of a reduction of > 10% of the  rSO2 
value compared to baseline, or if it falls below the absolute 
value of 50%, as the sensitivity of NIRS in detecting cer-
ebral ischemia ranges from 60 to 100%, with good specific-
ity (94–98%).

In a study including 90 elderly patients undergoing ortho-
pedic surgery, it was found that patients with cognitive 
dysfunction at 3 months after surgery had more frequently 
episodes of intraoperative episodes of cerebral desaturation 
and at least a 10% decrease from preoperative  rSO2, suggest-
ing a significant relationship between cerebral blood oxygen 
saturation detection and neurological complications in this 
population [37].

Importantly, studies are consistent in observing that not 
only the absolute single value, but the time spent below 50% 
of  rSO2 is significantly associated with the occurrence of 
postoperative complications, such as delirium [36].

Therefore, NIRS should be used in the context of a mul-
timodal neuromonitoring approach, and its values should be 
cautiously interpreted, considering the baseline values and 
its trend, as well as pre-operative patient’s status.

1.3.2  Emergency department and intensive care unit

Non invasive neuromonitoring in the Emergency Depart-
ment (ED) and ICU may be a valuable complement to 
clinical diagnosis and radiological images in non-primarily 
brain-injured patients [38, 39].

Neurological complications are common in patients 
admitted to the ED and ICU especially those who are admit-
ted for sepsis, metabolic, renal or hepatic insufficiency, 
intoxication and cardiac arrest [39, 40].

NIRS has been evaluated to assess cerebral perfusion 
and autoregulation after cardiac arrest and detect episodes 
of cerebral desaturation showing a correlation between its 
values and severity of illness and with variable association 
between  rSO2 value and outcome [41, 42]. Similarly, NIRS 
has shown to be useful to assess episodes of cerebral desatu-
ration in patients with acute distress respiratory syndrome 
and COVID-19 during respiratory manipulations and the 

use of respiratory rescue therapies [7, 43–46], as well as in 
septic patients where cerebral desaturations were found to 
be predictors of neurological sequelae [47, 48].

Sepsis-associated brain dysfunction (SABD) is consid-
ered as cerebral dysfunction following sepsis, in absence 
of direct or primarily structural central nervous system 
infection, it affects up to 70% of patients with sepsis 
admitted to the ICU and is associated with worse out-
comes. Systemic inflammation leads to altered cerebral 
blood flow, disruption of brain blood barrier and altered 
autoregulation [49]. Recent evidence suggest that cerebral 
autoregulation is altered in half of the patients with sepsis 
and is associated with the development of SABD [49].

Similarly, pregnant women who develop pre-eclampsia 
have frequently impaired cerebral autoregulation [50]. In 
this context, NIRS has demonstrated to be able to detect 
cerebral oxygenation impairment in severe preeclamp-
tic parturients, thus suggesting that disorders in cerebral 
microcirculation and/or changes in cerebral oxygenation 
may occur in this population [51].

Despite the diagnostic and prognostic potentiality of 
non-invasive multimodal neuromonitoring in the ED, the 
use of these techniques is still limited in these settings 
and are currently more frequently adopted in the post-
emergency settings after ICU admission.

2  Conclusions

Increased evidence suggests that non invasive cerebral 
oximetry is a key monitoring strategy in the management 
of patients undergoing anaesthesia or sedation in the 
intensive care whose primary injury does not involved the 
brain. This seems to be relevant not only in the periopera-
tive settings, but also in the emergency department and 
the ICU. NIRS has the advantage of being a non-invasive, 
low-cost, safe and a bedside available tool, with a great 
potential for diagnosis and treatment of patients at risk 
of neurological complications. In Fig. 2, we propose a 
decisional algorithm for the management of patients who 
develop episodes of cerebral desaturation. Further stud-
ies and guidelines are warranted in order to confirm the 
findings in present literature, and training and teaching 
programs are urgently needed to implement the use of this 
neuromonitoring tool in daily clinical practice.
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