RESEARCH ARTICLE

On the equivalence of certain quasi-Hermitian varieties

Angela Aguglia¹ 💿 🕴 Luca Giuzzi² 💿

 ¹Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
 ²DICATAM, University of Brescia, Brescia, Italy

Correspondence

Angela Aguglia, Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy. Email: angela.aguglia@poliba.it

Abstract

By Aguglia et al., new quasi-Hermitian varieties $\mathcal{M}_{\alpha,\beta}$ in PG (r, q^2) depending on a pair of parameters α, β from the underlying field GF (q^2) have been constructed. In the present paper we study the structure of the lines contained in $\mathcal{M}_{\alpha,\beta}$ and consequently determine the projective equivalence classes of such varieties for q odd and r = 3. As a byproduct, we also prove that the collinearity graph of $\mathcal{M}_{\alpha,\beta}$ is connected with diameter 3 for $q \equiv 1 \pmod{4}$.

KEYWORDS

collineation, Hermitian variety, quasi-Hermitian variety

1 | INTRODUCTION

It is a well-known problem in finite geometry to characterize the absolute points of a polarity in terms of their combinatorial properties. In this line of investigation, one of the most celebrated results is Segre's Theorem stating that in a Desarguesian projective plane PG(2, q) of odd order q a set Ω which has the same number of points, namely, q + 1, and the same intersections with lines as a conic (i.e., 0, 1, or 2) is indeed a conic; see [15].

As the dimension grows, the combinatorics of the intersection with subspaces turns out not to be enough as to characterize the absolute points of a polarity neither in the orthogonal case nor in the unitary one.

The set of the absolute points of a Hermitian polarity of $PG(r, q^2)$ is a *nonsingular Hermitian* variety.

Quasi-Hermitian varieties of $PG(r, q^2)$ are a generalization of nonsingular Hermitian varieties defined as follows. Let q be any prime power and assume $r \ge 2$; a *quasi-Hermitian variety* of $PG(r, q^2)$ is a set of points having the same size and the same intersection numbers with hyperplanes as a nonsingular Hermitian variety $\mathcal{H}(r, q^2)$. In particular, the intersection numbers with hyperplanes of $\mathcal{H}(r, q^2)$ only take two values thus, quasi-Hermitian varieties are two-character sets; see [8, 9] for an overview of their applications. The Hermitian variety

 $\mathcal{H}(r, q^2)$ can be viewed trivially as a quasi-Hermitian variety; as such it is called the *classical quasi-Hermitian variety of* PG (r, q^2) .

For r = 2, a quasi-Hermitian variety of PG(2, q^2) is called a *unital* or *Hermitian arc*. Nonclassical unitals have been extensively studied and characterized [6] and many constructions are known; see, for instance, [4]. As far as we know, the only known nonclassical quasi-Hermitian varieties of PG(r, q^2), $r \ge 3$ were constructed in [2, 3, 10, 14] and they are not isomorphic among themselves; see [14].

In [3], quasi-Hermitian varieties $\mathcal{M}_{\alpha,\beta}$ of PG (r, q^2) with $r \ge 2$, depending on a pair of parameters α, β from the underlying field GF (q^2) , were constructed. For r = 2 these varieties are Buekenhout–Metz (BM) unitals, see [5, 6, 11, 12]. As such, for $r \ge 3$ we shall call $\mathcal{M}_{\alpha,\beta}$ the *BM quasi-Hermitian varieties* of parameters α and β of PG (r, q^2) .

The number of projectively inequivalent BM unitals in $PG(2, q^2)$ has been computed in [5] for q odd and in [11] for q even. In the present paper we shall enumerate the BM quasi-Hermitian varieties in $PG(3, q^2)$ with q odd and show that they behave under this respect in a similar way as BM unitals in $PG(2, q^2)$. Our long-term aim is to try to find a characterization of the BM quasi-Hermitian varieties among all possible quasi-Hermitian varieties in spaces of the same dimension and order.

Apart from the Introduction, this paper is organized into four sections. In Section 2 we describe the construction of the BM quasi-Hermitian varieties in PG(3, q^2) whereas in Section 3 we determine the number of lines of PG(3, q^2), q odd, through a point of $\mathcal{M}_{\alpha,\beta}$ which are entirely contained in $\mathcal{M}_{\alpha,\beta}$. By using this result in Section 4, we prove that the collinearity graph of $\mathcal{M}_{\alpha,\beta}$ is connected for $q \equiv 1 \pmod{4}$ (which is the only interesting case, as for $q \equiv 3 \pmod{4}$ the only lines contained in $\mathcal{M}_{\alpha,\beta}$ are those of a pencil of (q + 1)-lines, all contained in a plane). Finally, in Section 5, we prove our main result:

Theorem 1.1. Let $q = p^n$ with p an odd prime. Then the number N of projectively inequivalent quasi-Hermitian varieties $\mathcal{M}_{\alpha,\beta}$ of PG(3, q^2) is

$$N = \frac{1}{n} \left(\sum_{k \mid n} \Phi\left(\frac{n}{k}\right) p^k \right) - 2,$$

where Φ is the Euler Φ -function.

As a byproduct of our arguments, we also obtain a simple way to determine when two quasi-Hermitian varieties are equivalent, see Lemmas 5.5 and 5.6 for the details.

2 | PRELIMINARIES

In this section we recall the construction of the BM quasi-Hermitian varieties $\mathcal{M}_{\alpha,\beta}$ of PG(3, q^2) described in [3].

Fix a projective frame in PG(3, q^2) with homogeneous coordinates (J, X, Y, Z), and consider the affine space AG(3, q^2) with infinite hyperplane Σ_{∞} of equation J = 0. Then, the affine coordinates for points of AG(3, q^2) are denoted by (x, y, z), where x = X/J, y = Y/J, and z = Z/J. Set

$$\mathcal{F} = \{ (0, X, Y, Z) : X^{q+1} + Y^{q+1} = 0 \};$$

this can be viewed as a Hermitian cone of $\Sigma_{\infty} \cong PG(2, q^2)$ projecting a Hermitian variety of $PG(1, q^2)$. Now take $\alpha \in GF(q^2)^*$ and $\beta \in GF(q^2) \setminus GF(q)$ and consider the algebraic variety $\mathcal{B}_{\alpha,\beta}$ of projective equation

$$\mathcal{B}_{\alpha,\beta}: \ Z^{q}J^{q} - ZJ^{2q-1} + \alpha^{q}(X^{2q} + Y^{2q}) - \alpha(X^{2} + Y^{2})J^{2q-2} = (\beta^{q} - \beta)(X^{q+1} + Y^{q+1})J^{q-1}.$$
(1)

We observe that

- $\mathcal{B}_{\infty} \coloneqq \mathcal{B}_{\alpha,\beta} \cap \Sigma_{\infty}$ is the union of two lines $\ell_1 : X \nu Y = 0 = J$ and $\ell_2 : X + \nu Y = 0 = J$, with $\nu \in GF(q^2)$ such that $\nu^2 + 1 = 0$ if q is odd.
- Let $P_{\infty} := (0, 0, 0, 1)$. Then, $\ell_1 \cap \ell_2 = P_{\infty}$.
- $\mathcal{B}_{\infty} \subseteq \mathcal{F}$ if $q \equiv 1 \pmod{4}$ or q is even.

It is shown in [3] that the point set

$$\mathcal{M}_{\alpha,\beta} \coloneqq (\mathcal{B}_{\alpha,\beta} \setminus \Sigma_{\infty}) \cup \mathcal{F}, \tag{2}$$

that is, the union of the affine points of $\mathcal{B}_{\alpha,\beta}$ and \mathcal{F} , is a quasi-Hermitian variety of PG(3, q^2) for any q > 2 even or for q odd and $4\alpha^{q+1} + (\beta^q - \beta)^2 \neq 0$. This is the variety we shall consider in the present paper limited to the case in which q is odd.

We stress that (1) is not the equation of $\mathcal{M}_{\alpha,\beta}$. However, any set of points in a finite projective space can be endowed of the structure of an algebraic variety, so we shall speak of the *variety* $\mathcal{M}_{\alpha,\beta}$ even if we do not provide an equation for it.

3 | COMBINATORIAL PROPERTIES OF $\mathcal{M}_{\alpha,\beta}$

We first determine the number of lines passing through each point of $\mathcal{M}_{\alpha,\beta}$ of PG(3, q^2), for q odd. We recall the following (see [13, Corollary 1.24]).

Lemma 3.1. Let q be an odd prime power. The equation

$$X^q + aX + b = 0$$

admits exactly one solution in $GF(q^2)$ if and only if $a^{q+1} \neq 1$. When $a^{q+1} = 1$, the aforementioned equation has either q solutions when $b^q = a^q b$ or no solution when $b^q \neq a^q b$.

Lemma 3.2. Let $\mathcal{B}_{\alpha,\beta}$ be the projective variety of Equation (1) and \mathcal{B}_{∞} be the intersection of the variety $\mathcal{B}_{\alpha,\beta}$ with the hyperplane at infinity $\Sigma_{\infty} : J = 0$ of PG(3, q^2).

• If $q \equiv 1 \pmod{4}$, then, for any affine point L of $\mathcal{B}_{\alpha,\beta}$ there are exactly two lines contained in $\mathcal{B}_{\alpha,\beta}$ through L; for any point $L_{\infty} \in \mathcal{B}_{\infty}$ with $L_{\infty} \neq P_{\infty}$, there are q + 1 lines of a pencil through L_{∞} contained in $\mathcal{B}_{\alpha,\beta}$. If $q \equiv 3 \pmod{4}$ then no line of $\mathcal{B}_{\alpha,\beta}$ passes through any affine point of $\mathcal{B}_{\alpha,\beta}$ whereas through a point at infinity of \mathcal{B}_{∞} different from P_{∞} there pass only one line contained in $\mathcal{B}_{\alpha,\beta}$.

WILFY

- ▲ WILEY-----
 - There are exactly two lines of $\mathcal{B}_{\alpha,\beta}$ through P_{∞} for all odd q.

Proof. Let ℓ be a line of PG(3, q^2) passing through an affine point of $\mathcal{B}_{\alpha,\beta}$. The affine points P(x, y, z) of $\mathcal{B}_{\alpha,\beta}$ satisfy the equation:

$$\mathcal{B}_{\alpha,\beta}: \ z^q - z + \alpha^q (x^{2q} + y^{2q}) - \alpha (x^2 + y^2) = (\beta^q - \beta)(x^{q+1} + y^{q+1}).$$

From [3, Section 4], it can be directly seen that the collineation group of $\mathcal{B}_{\alpha,\beta}$ acts transitively on its affine points. Thus, we can assume that ℓ passes through the origin O = (1, 0, 0, 0) of the fixed frame and hence it has affine parametric equations:

$$\begin{cases} x = m_1 t, \\ y = m_2 t, \\ z = m_3 t \end{cases}$$

with *t* ranging over $GF(q^2)$. We study the following system:

$$\begin{cases} z^{q} - z + \alpha^{q} (x^{2q} + y^{2q}) - \alpha (x^{2} + y^{2}) = (\beta^{q} - \beta)(x^{q+1} + y^{q+1}), \\ x = m_{1}t, \\ y = m_{2}t, \\ z = m_{3}t. \end{cases}$$
(3)

As proved in [1, Theorem 4.3] ℓ can be contained in $\mathcal{B}_{\alpha,\beta}$ only if $m_3 = 0$. Thus assume $m_3 = 0$ and replace the parametric values of (x, y, z) in the first equation of (3). We obtain that

$$\left(t^{2}\alpha\left(m_{1}^{2}+m_{2}^{2}\right)\right)^{q}-t^{2}\alpha\left(m_{1}^{2}+m_{2}^{2}\right)=t^{q+1}(\beta^{q}-\beta)\left(m_{1}^{q+1}+m_{2}^{q+1}\right)$$
(4)

must hold for all $t \in GF(q^2)$. Considering separately the cases $t \in GF(q)$ and $t = \lambda$ with $\lambda \in GF(q^2) \setminus GF(q)$ we obtain the following system, $\forall \lambda \in GF(q^2) \setminus GF(q)$:

$$\begin{cases} \left(\alpha^{q}\left(m_{1}^{2}+m_{2}^{2}\right)^{q}-\alpha\left(m_{1}^{2}+m_{2}^{2}\right)\right)=(\beta^{q}-\beta)\left(m_{1}^{q+1}+m_{2}^{q+1}\right),\\ \lambda^{2q}\alpha^{q}\left(m_{1}^{2}+m_{2}^{2}\right)^{q}-\lambda^{2}\alpha\left(m_{1}^{2}+m_{2}^{2}\right)=\lambda^{q+1}(\beta^{q}-\beta)\left(m_{1}^{q+1}+m_{2}^{q+1}\right).\end{cases}$$

Replacing the first equation in the second, we get

$$\forall \lambda \in \mathrm{GF}(q^2) \backslash \mathrm{GF}(q) : \lambda^{2q} \alpha^q \left(m_1^2 + m_2^2 \right)^q (1 - \lambda^{1-q}) = \lambda^2 \alpha \left(m_1^2 + m_2^2 \right) (1 - \lambda^{q-1}).$$

Observe that $(1 - \lambda^{1-q}) = \frac{\lambda^{q-1} - 1}{\lambda^{q-1}}$. Suppose $m_1^2 + m_2^2 \neq 0$. Then,

$$\lambda^{2q-2}\alpha^{q-1}\left(m_1^2+m_2^2\right)^{q-1}=-\lambda^{q-1},$$

whence $\left(\lambda\alpha\left(m_1^2+m_2^2\right)\right)^{q-1} = -1$ for all $\lambda \in \mathrm{GF}(q^2) \setminus \mathrm{GF}(q)$. This is clearly not possible, as the equation $X^{q-1} = -1$ cannot have more than q-1 solutions. So $m_1^2 + m_2^2 = 0$, which yields $m_2 = \pm \nu m_1$ where $\nu^2 = -1$. On the other hand, if $m_2 = \pm \nu m_1$ and $q \equiv 1 \pmod{4}$, then $m_1^{q+1} + m_2^{q+1} = m_1^{q+1}(1 + \nu^{q+1}) = 0$, so (4) is satisfied and the lines $\ell : y - \nu x = z = 0$ and $\ell : y + \nu x = z = 0$ are contained in $\mathcal{B}_{\alpha,\beta}$. On the other hand, if $q \equiv 3 \pmod{4}$, then $m_1^{q+1} + m_2^{q+1} = 2m_1^{q+1} \neq 0$; so (4) is not satisfied and there is no line contained in $\mathcal{B}_{\alpha,\beta}$.

Now, take $L_{\infty} = (0, a, b, c) \in \mathcal{B}_{\infty} \setminus \{P_{\infty}\}$; hence $a^2 + b^2 = 0$ and $a, b \neq 0$. Let r be a line through L_{∞} . We may assume that r has (affine) parametric equations

$$\begin{cases} x = l + at, \\ y = m + bt, \\ z = n + ct, \end{cases}$$

where t ranges over $GF(q^2)$. Assume also that (l, m, n) are the affine coordinates of a point in $\mathcal{B}_{\alpha,\beta}$, that is,

$$n^{q} - n + \alpha^{q} (m^{2q} + l^{2q}) - \alpha (m^{2} + l^{2}) = (\beta^{q} - \beta)(l^{q+1} + m^{q+1}).$$
(5)

Now, *r* is contained in $\mathcal{B}_{\alpha,\beta}$ if and only if $q \equiv 1 \pmod{4}$ and the following condition holds:

$$c + 2\alpha(al + bm) + (\beta - \beta^q)(al^q + bm^q) = 0.$$
 (6)

Since $b = \nu a$ where $\nu^2 = -1$ and $\nu \in GF(q)$, setting $k = l + \nu m$ Equation (6) becomes

$$c + 2a\alpha k + a(\beta - \beta^q)k^q = 0.$$
⁽⁷⁾

From Lemma 3.1, the above equation has exactly one solution if and only if

$$(2\alpha)^{q+1} \neq (\beta - \beta^q)^{q+1}.$$
(8)

Considering that $2 \in GF(q)$ and $(\beta - \beta^q)^q = (\beta^q - \beta)$, we obtain that (8) is equivalent to

$$4\alpha^{q+1} + (\beta^q - \beta)^2 \neq 0,$$

which holds true.

Let \bar{k} be the unique solution of (7). Since $\bar{k} = l + \nu m$, we find q^2 pairs (l, m) satisfying (6). For any fixed pair (l, m), because of (5), there are q possible values of n. Thus we obtain that the number of affine lines through the point P and contained in $\mathcal{B}_{\alpha,\beta}$ is $q^2q/q^2 = q$.

Furthermore, the q + 1 lines through L_{∞} lie on the plane of (affine) equation: $x + \nu y = \bar{k}$. The theorem follows.

Lemma 3.3. If $q \equiv 1 \pmod{4}$ then, for any point $P \in \mathcal{B}_{\alpha,\beta} \setminus \mathcal{B}_{\infty}$ there are two lines $r_1(P)$ and $r_2(P)$ through P contained in $\mathcal{B}_{\alpha,\beta}$ such that $r_i(P) \cap (\ell_i \setminus \{P_{\infty}\}) \neq \emptyset$.

Proof. As we already know, \mathcal{B}_{∞} is the union of two lines ℓ_1 and ℓ_2 , through the point P_{∞} . By considering (4), we see that the point at infinity of the two lines through the origin $O \in \mathcal{B}_{\alpha,\beta}$ are one on ℓ_1 and one on ℓ_2 . The semilinear automorphism group G of $\mathcal{B}_{\alpha,\beta}$ is transitive on its affine points, see [3] and maps lines into lines. Also, by Lemma 3.2 follows directly that G must fix the hyperplane at infinity. If $q \equiv 3 \pmod{4}$, the point P_{∞} is the only point of $\mathcal{B}_{\alpha,\beta}$ incident with two lines therein contained. So P_{∞} must be stabilized by G. If $q \equiv 1 \pmod{4}$, we see that P_{∞} is the only point at infinity incident with just two lines of the variety, while the remaining points at infinity are incident with q + 1 lines. So, again P_{∞} , which is the only point of $\mathcal{B}_{\alpha,\beta}$, is fixed by G. It follows that for each affine point P we have that one of the lines intersects with ℓ_1 and the other with ℓ_2 .

Theorem 3.4. Let $\mathcal{M}_{\alpha,\beta}$ be the BM quasi-Hermitian variety described in (2).

- If *q* ≡ 1 (mod 4) then through each affine point of *M*_{α,β} there pass two lines of *M*_{α,β} whereas through a point at infinity of *M*_{α,β} on the union of the two lines *ℓ*₁ ∪ *ℓ*₂ there pass *q* + 1 lines of a pencil contained in *M*_{α,β}; finally through a point at infinity of *M*_{α,β} which is not on *ℓ*₁ ∪ *ℓ*₂ there passes only one line of *M*_{α,β}.
- If *q* ≡ 3 (mod 4) then no line of *M*_{α,β} passes through any affine point of *M*_{α,β} whereas through a point at infinity of (*M*_{α,β} ∩ Σ_∞) *P*_∞ there passes only one line contained in *M*_{α,β}.
- Through the point P_{∞} there are always q + 1 lines contained in $\mathcal{M}_{\alpha,\beta}$.

Proof. We observe that the affine points of $\mathcal{M}_{\alpha,\beta}$ are the same as those of $\mathcal{B}_{\alpha,\beta}$, whereas the set \mathcal{F} of points at infinity of $\mathcal{M}_{\alpha,\beta}$ consists of the points P = (0, x, y, z) such that $x^{q+1} + y^{q+1} = 0$. Furthermore, $\mathcal{B}_{\infty} = \ell_1 \cup \ell_2$ is contained in \mathcal{F} if $q \equiv 1 \pmod{4}$. Hence, from Lemma 3.2 we get the result.

4 | CONNECTED GRAPHS FROM $\mathcal{M}_{\alpha,\beta}$ IN PG(3, q^2), $q \equiv 1 \pmod{4}$

Let \mathcal{V} be an algebraic variety in $PG(n-1, q^2)$ or, more in general, just a set of points and suppose that \mathcal{V} contains some projective lines. Then we can define the *collinearity graph* of \mathcal{V} , say $\Gamma(\mathcal{V}) = (\mathcal{P}, \mathcal{E})$ as the graph whose vertices \mathcal{P} are the points of \mathcal{V} and such that two points P and Q are collinear in $\Gamma(\mathcal{V})$ if and only if the line $[\langle P, Q \rangle]$ is contained in \mathcal{V} .

When \mathcal{V} is a (nondegenerate) quadric or Hermitian variety, the graph $\Gamma(\mathcal{V})$ has a very rich structure for it is strongly regular and admits a large automorphism group; this has been widely investigated; see [7, Chapter 2, 16].

More in general, the properties of the graph $\Gamma(\mathcal{V})$ provide insight on the geometry of \mathcal{V} since any automorphism of \mathcal{V} is also naturally an automorphism of $\Gamma(\mathcal{V})$, even if the converse is not true in general. **Lemma 4.1.** Let \mathcal{V} be an algebraic variety containing some lines and let $\mathcal{V}_{\infty} = \mathcal{V} \cap \Sigma_{\infty}$ where Σ_{∞} is a hyperplane of PG $(n - 1, q^2)$. If the graph $\Gamma(\mathcal{V}_{\infty})$ is connected and through each point of \mathcal{V} there passes at least one line of \mathcal{V} then the collinearity graph $\Gamma(\mathcal{V})$ is connected and its diameter $d(\Gamma(\mathcal{V}))$ is at most $d(\Gamma(\mathcal{V}_{\infty})) + 2$.

Proof. Each line of \mathcal{V} has at least a point at infinity hence, given two points P and Q there exists a path from P to a point at infinity P' and from Q to another point at infinity Q' and finally a path consisting of points in \mathcal{V}_{∞} from P' to Q'.

Let $\mathcal{M}_{\alpha,\beta}$ be as in (2).

Theorem 4.2. If $q \equiv 1 \pmod{4}$, then the graph $\Gamma(\mathcal{M}_{\alpha,\beta})$ is connected and its diameter is 3.

Proof. We recall that $\mathcal{B}_{\alpha,\beta} \subseteq \mathcal{M}_{\alpha,\beta}, \mathcal{B}_{\alpha,\beta} \setminus \mathcal{B}_{\infty} = \mathcal{M}_{\alpha,\beta} \setminus \Sigma_{\infty}$ and that \mathcal{B}_{∞} splits in the union of the two distinct lines ℓ_1, ℓ_2 through P_{∞} . In particular, $\Gamma(\mathcal{B}_{\infty})$ is a connected graph of diameter 2. Take now two points $P, Q \in \mathcal{B}_{\alpha,\beta}$. If $P, Q \in \mathcal{B}_{\infty}$, then we have $d(P, Q) \leq 2$ and there is nothing to prove. Suppose now $P \in \mathcal{B}_{\alpha,\beta} \setminus \mathcal{B}_{\infty}$ and $Q \in \mathcal{B}_{\infty}$. Suppose $Q \in \ell_i$. Then, from Lemma 3.3 we can consider a point $P' = r_i(P) \cap \ell_i$ where $r_i(P)$ is one of the two lines through P which is contained in $\mathcal{B}_{\alpha,\beta}$. If P' = Q, then d(P, Q) = 1; otherwise d(P, Q) = 2.

Take now $P, Q \in \mathcal{B}_{\alpha,\beta} \setminus \mathcal{B}_{\infty}$. Then, again from Lemma 3.3, the lines $r_1(P)$ and $r_1(Q)$ meet ℓ_1 . Put $P' = r_1(P) \cap \ell_1$ and $Q' = r_1(Q) \cap \ell_1$. If P' = Q', then $d(P, Q) \leq 2$; otherwise $d(P, Q) \leq 3$. We now show that there are pairs of points in $\mathcal{M}_{\alpha,\beta}$ which are at distance 3. Take $P \in \mathcal{B}_{\alpha,\beta} \setminus \mathcal{B}_{\infty}$ and $Q \in \mathcal{M}_{\alpha,\beta} \setminus \mathcal{B}_{\alpha,\beta}$. Then, Q is not collinear with any affine point by construction; also Q is not collinear with $P_i := \ell_i \cap r_i(P)$, i = 1, 2. So, the shortest paths from P to Q are of the form $PP_iP_{\infty}Q$. It follows that d(P, Q) = 3 and thus the diameter of the graph is 3.

5 | MAIN RESULT

In this section we show that the arguments of [5] for classifying BM unitals in $PG(2, q^2)$ can be extended to BM quasi-Hermitian varieties in $PG(3, q^2)$, q odd. We keep all previous notations.

Two BM quasi-Hermitian varieties $\mathcal{M}_{\alpha,\beta}$ and $\mathcal{M}_{\alpha',\beta'}$ of PG(3, q^2) are projectively equivalent if there exists a semilinear collineation $\psi \in P\Gamma(4, q^2)$ such that $\psi(\mathcal{M}_{\alpha,\beta}) = \mathcal{M}_{\alpha',\beta'}$.

Lemma 5.1. Let ψ be a semilinear collineation of PG(3, q^2), q odd, such that $\psi(\mathcal{M}_{\alpha,\beta}) = \mathcal{M}_{\alpha',\beta'}$ where $\mathcal{M}_{\alpha,\beta}$ and $\mathcal{M}_{\alpha',\beta'}$ are two BM quasi-Hermitian varieties. Then ψ fixes P_{∞} and stabilizes Σ_{∞} . Also, if $q \equiv 1 \pmod{4}$ then $\psi(\mathcal{B}_{\alpha,\beta}) = \mathcal{B}_{\alpha',\beta'}$.

Proof. First, we show that ψ fixes P_{∞} for $q \equiv 3 \pmod{4}$. From Theorem 3.4 we have that P_{∞} is the only point of the two varieties contained in q + 1 lines and hence $\psi(P_{\infty}) = P_{\infty}$. Furthermore, we observe that Σ_{∞} is the plane through P_{∞} meeting both $\mathcal{M}_{\alpha,\beta}$ and $\mathcal{M}_{\alpha',\beta'}$ in $q^3 + q^2 + 1$ points which are on the q + 1 lines through P_{∞} . All of the $q^3 - q^2$ points of $\mathcal{M}_{\alpha,\beta}$ and $\mathcal{M}_{\alpha',\beta'}$ lying on exactly one line contained in the respective variety are in this plane, and these points also span Σ_{∞} . So also Σ_{∞} is left invariant by ψ .

7

Now assume $q \equiv 1 \pmod{4}$; from Theorem 3.4, for each point in $\ell_1 \cup \ell_2$ there pass q + 1 lines of the quasi-Hermitian varieties however P_{∞} is the only point on $\ell_1 \cup \ell_2$ such that the other q - 1 lines through it are not incident with other lines of the two varieties, hence we again obtain $\psi(P_{\infty}) = P_{\infty}$. In this case $\mathcal{B}_{\alpha,\beta} \subseteq \mathcal{M}_{\alpha,\beta}$. Since $\psi(\Sigma_{\infty}) = \Sigma_{\infty}$, we have

$$\psi(\mathcal{B}_{\alpha,\beta} \setminus \Sigma_{\infty}) = \psi(\mathcal{M}_{\alpha,\beta} \setminus \Sigma_{\infty}) = \mathcal{M}_{\alpha',\beta'} \setminus \Sigma_{\infty} = \mathcal{B}_{\alpha',\beta'} \setminus \Sigma_{\infty},$$

that is, ψ stabilizes the affine part of $\mathcal{B}_{\alpha,\beta}$.

Furthermore $\mathcal{B}_{\infty} = \mathcal{B}_{\alpha,\beta} \cap \Sigma_{\infty}$ consists of the union of the two lines, ℓ_1 and ℓ_2 . Observe also that the lines through the affine points of $\mathcal{M}_{\alpha,\beta}$ are also lines of $\mathcal{B}_{\alpha,\beta}$ (see Theorem 3.4) and, in particular they are incident either ℓ_1 or ℓ_2 . This is equivalent to say that the points of $\ell_1 \cup \ell_2$ different from P_{∞} are exactly the points of Σ_{∞} through which there pass some affine lines of $\mathcal{M}_{\alpha,\beta}$. This implies that $\psi(\ell_1 \cup \ell_2) = \ell_1 \cup \ell_2$ and, consequently

$$\psi(\mathcal{B}_{\alpha,\beta}) = \psi(\mathcal{B}_{\alpha,\beta} \setminus \Sigma_{\infty}) \cup \psi(\ell_1 \cup \ell_2) = (\mathcal{M}_{\alpha',\beta'} \setminus \Sigma_{\infty}) \cup (\ell_1 \cup \ell_2) = \mathcal{B}_{\alpha',\beta'}.$$

Theorem 5.2. Suppose $q \equiv 1 \pmod{4}$. Let \mathcal{G} be the group of collineations $\mathcal{G} = \operatorname{Aut}(\mathcal{M}_{\alpha,\beta}) \subseteq \operatorname{P\GammaL}(4,q^2)$ and \mathfrak{G} the group of graph automorphisms $\mathfrak{G} = \operatorname{Aut}(\Gamma(\mathcal{M}_{\alpha,\beta}))$. Then the sets

- $\Omega_0 := \{P_\infty\};$
- Ω_1 consisting of the points at infinity of $\mathcal{B}_{\alpha,\beta}$ different from P_{∞} ;
- $\Omega_2 \coloneqq \mathcal{M}_{\alpha,\beta} \setminus \Sigma_{\infty}$

are all stabilized by both \mathcal{G} and \mathfrak{G} . Furthermore, $\Omega_3 = \mathcal{M}_{\alpha,\beta} \setminus \mathcal{B}_{\alpha,\beta}$ is an orbit for \mathfrak{G} .

Proof. By [3, Section 4], we know that there is a subgroup of \mathcal{G} which is transitive on the affine points of $\mathcal{M}_{\alpha,\beta}$, that is, on Ω_2 . By Lemma 5.1, any collineation in \mathcal{G} must stabilize the plane Σ_{∞} ; so any element of \mathcal{G} maps points of Ω_2 into points of Ω_2 and Ω_2 is an orbit of \mathcal{G} . Also by Lemma 5.1, $\Omega_0 := \{P_{\infty}\}$ is fixed by any $\gamma \in \mathcal{G}$. So we have that the points at infinity of $\mathcal{B}_{\alpha,\beta} \setminus \{P_{\infty}\}$, as well as the points of $\mathcal{M}_{\alpha,\beta} \setminus \mathcal{B}_{\alpha,\beta}$, are the union of orbits. Let ℓ_1, ℓ_2 be the two lines of $\mathcal{B}_{\alpha,\beta}$ at infinity. Using Lemma 3.3, we see that \mathcal{G} is transitive on $\Omega_1 = (\ell_1 \cup \ell_2) \setminus \{P_{\infty}\}$. Indeed, for any two points $P, Q \in \ell_1 \setminus \{P_{\infty}\}$, by Lemma 3.2, there are points $P_0, Q_0 \in \Omega_2$ such that $r_1(P_0) \cap \Sigma_{\infty} = \{P\}$ and $r_1(Q_0) \cap \Sigma_{\infty} = \{Q\}$.

Since \mathcal{G} is transitive on Ω_2 , there is $\gamma \in \mathcal{G}$ such that $\gamma(P_0) = Q_0$. It follows that $\gamma((r_2(P_0) \cap \Sigma_{\infty}) \cup \{P\}) = (r_2(Q_0) \cap \Sigma_{\infty}) \cup \{Q\}$. If $\gamma(P) = Q$, then we are done. Otherwise, consider the element $\theta : (J, X, Y, Z) \to (J, X, -Y, Z)$ of \mathcal{G} . Observe that $\theta(r_2(Q_0)) \cap \Sigma_{\infty} = r_1(Q_0) \cap \Sigma_{\infty}$. Hence, $\theta\gamma(P) = Q$. Also, $\theta(\ell_1) = \ell_2$; so it follows that $\Omega_1 := (\ell_1 \cup \ell_2) \setminus \{P_{\infty}\}$ is an orbit of \mathcal{G} .

Since \mathfrak{G} contains \mathcal{G} , the orbits of \mathfrak{G} are possibly unions of orbits of \mathcal{G} . However, observe that the points of Ω_3 are the only points of $\mathcal{M}_{\alpha,\beta}$ which are on exactly one line of $\mathcal{M}_{\alpha,\beta}$ through the point P_{∞} . So these points must be permuted among each other also by \mathfrak{G} .

The same argument shows that Ω_0 is also an orbit for \mathfrak{G} . Now, consider the points of Ω_2 . They are the points of $\mathcal{B}_{\alpha,\beta} \setminus \Omega_0$ incident with exactly two lines, while the points of Ω_1

8

are incident with more than two lines. So \mathfrak{G} cannot map a vertex in Ω_2 into a vertex in Ω_1 and these orbits are distinct.

Put $\Gamma := \Gamma(\mathcal{M}_{\alpha,\beta})$. Observe that the graph $\Gamma \setminus \{P_{\infty}\}$ is the disjoint union of $\Gamma(\Omega_3)$ and $\Gamma(\Omega_1 \cup \Omega_2)$. In turn, $\Gamma(\Omega_3)$ consists of the disjoint union $K_1 \cup K_2 \cup \cdots \cup K_{q-1}$ of q-1 copies of the complete graph on q^2 elements. Write $\{v_i^j\}_{j=1, \dots, q^2}$ for the list of vertices of K_i with $i = 1, \dots, q-1$.

Also, each vertex of $\Gamma(\Omega_3 \cup \{P_\infty\})$ is collinear with P_∞ . Let S_{q^2} be the symmetric group on q^2 elements, and consider its action on Γ given by

$$\forall \ \xi \in S_{q^2} : \check{\xi} \left(v_1^j \right) \coloneqq v_1^{\xi(j)}$$

if $v_1^j \in K_1$ and fixing all remaining vertices. Obviously $\check{S}_{q^2} < \mathfrak{G}$ and \check{S}_{q^2} is transitive on K_1 . Let S_{q-1} be the symmetric group on $\{1, ..., q-1\}$ and consider its action on Γ given by

$$\forall \sigma \in S_{q-1} : \hat{\sigma} \left(v_i^j \right) \coloneqq v_{\sigma(i)}^j, j = 1, ..., q^2$$

and all the remaining vertices of Γ are fixed. We also have $\hat{S}_{q-1} < \mathfrak{G}$ and \hat{S}_{q-1} permutes the sets K_i for i = 1, ..., q - 1. By construction, we see that the wreath product $\check{S}_q \wr \hat{S}_{q-1}$ is a subgroup of \mathfrak{G} , it acts naturally on Γ , fixes all vertices not in Ω_3 and acts transitively on Ω_3 . It follows that \mathfrak{G} is transitive on Ω_3 .

Remark 5.3. It can be easily seen that the automorphism group of $\Gamma := \Gamma(\mathcal{M}_{\alpha,\beta})$ is in general much larger than the subgroup of collineations stabilizing $\mathcal{M}_{\alpha,\beta}$. In particular the elements of $\check{S}_q \wr \hat{S}_{q-1}$ are not, in general, collineations. For instance, in the case q = 5 with $\alpha = \beta = \varepsilon$ where ε is a primitive element of GF(25), root of $x^2 - x + 2$ in GF(5), the group \mathcal{G} has order 2⁶⁵⁵, while \mathfrak{G} has order 2⁹⁹3⁴²5³⁰7¹²11⁸13⁴17⁴19⁴23⁴. In this case also \mathcal{G} is transitive on Ω_3 .

Lemma 5.4. If $\mathcal{M}_{\alpha,\beta}$ and $\mathcal{M}_{\alpha',\beta'}$ are two projectively equivalent BM quasi-Hermitian varieties then there is a semilinear collineation $\phi : \mathcal{M}_{\alpha,\beta} \to \mathcal{M}_{\alpha',\beta'}$ of the following type:

$$\phi(j, x, y, z) = (j^{\sigma}, x^{\sigma}, y^{\sigma}, z^{\sigma})M, \text{ where}$$
$$M = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & c & 0 \\ 0 & c & -b & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ or } M = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & c & 0 \\ 0 & -c & b & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\sigma \in \operatorname{Aut}(\operatorname{GF}(q^2)), a \in \operatorname{GF}(q) \setminus \{0\}, b, c \in \operatorname{GF}(q^2), b^2 + c^2 \neq 0 \text{ and if } b \neq 0 \neq c \text{ then } c = \lambda b \text{ with } \lambda \in \operatorname{GF}(q) \setminus \{0\} \text{ such that } \lambda^2 + 1 \neq 0.$

Proof. By Lemma 5.1, ϕ fixes the point P_{∞} and stabilizes Σ_{∞} . As the automorphism group of $\mathcal{M}_{\alpha,\beta}$ is transitive on its affine points, we can also assume that $\phi(1, 0, 0, 0) = (1, 0, 0, 0)$.

More in detail, let G' be the collineation group of $\mathcal{M}_{\alpha',\beta'}$ fixing P_{∞} , leaving $\mathcal{F} \setminus P_{\infty}$ invariant and transitive on the affine points of $\mathcal{M}_{\alpha',\beta'}$. If $\phi(1, 0, 0, 0) \neq (1, 0, 0, 0)$ we can consider the collineation $\phi' \in G'$ mapping $\phi(1, 0, 0, 0)$ to (1, 0, 0, 0) and then we replace ϕ by $\phi\phi'$. This implies that ϕ has the following form up to scalar multiple:

$$\phi(j, x, y, z) = (j^{\sigma}, x^{\sigma}, y^{\sigma}, z^{\sigma}) \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & c & d \\ 0 & e & f & g \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where $\sigma \in \text{Aut}(\text{GF}(q^2))$, $a, b, c, d, e, f, g \in \text{GF}(q^2)$ and $a \neq 0 \neq bf - ce$.

Since (1, 0, 0, c), belongs to $\mathcal{M}_{\alpha,\beta}$ if and only if $c \in GF(q)$, it follows that $\phi(1, 0, 0, c) = (a, 0, 0, c) \in \mathcal{M}_{\alpha',\beta'}$ implies $ca^{-1} \in GF(q)$, and thus $a \in GF(q)^*$. Now we observe that the affine plane Y = 0 has in common with $\mathcal{M}_{\alpha,\beta}$ the points (1, x, 0, z) for which $-\alpha x^2 + \beta x^{q+1} - z \in GF(q)$; so, $a^{-1}(-\alpha^{\sigma} x^{2\sigma} + \beta^{\sigma} x^{\sigma(q+1)} - z^{\sigma}) \in GF(q)$. Thus, suppose that $(1, x, 0, z) \in \mathcal{M}_{\alpha,\beta}$; we have $\phi(1, x, 0, z) \in \mathcal{M}_{\alpha',\beta'}$ and therefore

$$(\alpha^{\sigma} - \alpha'(b^2 + c^2)/a)x^{2\sigma} - (\beta^{\sigma} - \beta'(b^{q+1} + c^{q+1})/a)x^{\sigma(q+1)} - dx^{\sigma} \in GF(q),$$
(9)

as σ stabilizes GF(q). Let $\eta \in GF(q^2) \setminus GF(q)$ such that η^2 is a primitive element of GF(q). Considering $x^{\sigma} = 1, -1, \eta, -\eta, 1 + \eta$ in (9), we get

$$d = 0,$$

 $\alpha^{\sigma} - \alpha'(b^{2} + c^{2})/a = 0,$ (10)
 $\beta^{\sigma} - \beta'(b^{q+1} + c^{q+1})/a \in GF(q).$

Similarly if we consider the affine points in common between the plane X = 0 and $\mathcal{M}_{\alpha,\beta}$, arguing as before, we obtain

$$g = 0,$$

 $\alpha^{\sigma} - \alpha'(e^2 + f^2)/a = 0,$
 $\beta^{\sigma} - \beta'(e^{q+1} + f^{q+1})/a \in GF(q).$ (11)

In particular,

$$b^2 + c^2 = e^2 + f^2 \neq 0.$$
 (12)

Also, since $\beta' \notin GF(q)$,

$$b^{q+1} + c^{q+1} = e^{q+1} + f^{q+1} \neq 0.$$
(13)

Now we recall that a generic point $(1, x, y, z) \in \mathcal{M}_{\alpha,\beta}$ if and only if $\phi(1, x, y, z) \in \mathcal{M}_{\alpha',\beta'}$. On the other hand,

$$(1, x, y, z) \in \mathcal{M}_{\alpha, \beta} \Leftrightarrow -\alpha (x^2 + y^2) + \beta (x^{q+1} + y^{q+1}) - z \in \mathrm{GF}(q).$$

Since $a \in GF(q) \setminus \{0\}$ and σ stabilizes GF(q), the former equation is equivalent to

$$a^{-1}\{-\alpha^{\sigma}(x^{2\sigma}+y^{2\sigma})+\beta^{\sigma}[x^{\sigma(q+1)}+y^{\sigma(q+1)}]-z^{\sigma}\}\in \mathrm{GF}(q).$$
(14)

Next, we observe that $\phi(1, x, y, z) = (1, \frac{bx^{\sigma} + ey^{\sigma}}{a}, \frac{cx^{\sigma} + fy^{\sigma}}{a}, \frac{z^{\sigma}}{a})$ and this point belongs to $\mathcal{M}_{\alpha',\beta'}$ if and only if

$$a^{-1}\left\{-\alpha'\left[\frac{(bx^{\sigma}+ey^{\sigma})^{2}}{a}+\frac{(cx^{\sigma}+fy^{\sigma})^{2}}{a}\right] +\beta'\left[\frac{(bx^{\sigma}+ey^{\sigma})^{(q+1)}}{a}+\frac{(cx^{\sigma}+fy^{\sigma})^{(q+1)}}{a}\right]-z^{\sigma}\right\}\in\mathrm{GF}(q).$$
(15)

From (14) and (15), we get that for all $(1, x, y, z) \in \mathcal{M}_{\alpha,\beta}$ the following holds:

$$\begin{split} &\alpha^{\sigma}(x^{2\sigma} + y^{2\sigma}) - \alpha' \left[\frac{(bx^{\sigma} + ey^{\sigma})^2}{a} + \frac{(cx^{\sigma} + fy^{\sigma})^2}{a} \right] \\ &+ \beta' \left[\frac{(bx^{\sigma} + ey^{\sigma})^{(q+1)}}{a} + \frac{(cx^{\sigma} + fy^{\sigma})^{(q+1)}}{a} \right] - \beta^{\sigma} [x^{\sigma(q+1)} + y^{\sigma(q+1)}] \\ &\in \mathrm{GF}(q), \end{split}$$

that is, using (12) and (13),

$$-\alpha'[2x^{\sigma}y^{\sigma}(be+cf)] + \beta'[(b^{q}e+c^{q}f)x^{\sigma q}y^{\sigma} + (be^{q}+cf^{q})x^{\sigma}y^{\sigma q}] \in \mathrm{GF}(q).$$
(16)

We are going to prove that $b^q e + c^q f = 0$. Thus, let $\nu \in GF(q^2)$ be any solution of $X^{q+1} = -1$. The semilinear collineation ϕ has to leave invariant the Hermitian cone \mathcal{F} , that is, $\phi(0, x, \nu x, z) \in \mathcal{F}$, and because of the first equation in (13) this means

$$(b^q e + c^q f)\nu^{\sigma} + (be^q + cf^q)\nu^{\sigma q} = 0$$

for any of the q + 1 different solutions of $X^{q+1} = -1$. If $(b^q e + c^q f) \neq 0$ then the equation $(b^q e + c^q f)X + (b^q e + c^q f)^q X^q = 0$ would have more than q solutions which are impossible. Thus,

$$b^q e + c^q f = 0 \tag{17}$$

and since $\alpha' \notin GF(q)$ (16) gives

$$be + cf = 0. \tag{18}$$

Since det(M) $\neq 0$, it cannot be ce = 0 = bf, so either $c \neq 0 \neq e$ or $b \neq 0 \neq f$. Thus, from (12) and (18) we also get (e, f) = (c, -b) or (e, f) = (-c, b). Thus from (17) we also obtain

$$b^q c - b c^q = 0. (19)$$

Hence if $b \neq 0 \neq c$ then $c = \lambda b$ where $\lambda \in GF(q)$ and $\lambda^2 + 1 \neq 0$. So the lemma follows.

From the previous lemma, taking into account conditions from (10) to (11), we get that if $\mathcal{M}_{\alpha,\beta}$ and $\mathcal{M}_{\alpha',\beta'}$ are projectively equivalent, then

$$(\alpha',\beta') = (a\alpha^{\sigma}/(b^2 + c^2), a\beta^{\sigma}/(b^{q+1} + c^{q+1}) + u)$$
(20)

for some $\sigma \in \text{Aut}(\text{GF}(q^2))$, $a \in \text{GF}(q)^*$, $u \in \text{GF}(q)$, $b, c \in \text{GF}(q^2) : b^2 + c^2 \neq 0$ and if $b \neq 0 \neq c$ then $c = \lambda b$ with $\lambda \in \text{GF}(q) \setminus \{0\}$. Conversely, if condition (20) holds, there is a semilinear collineation $\mathcal{M}_{\alpha,\beta} \to \mathcal{M}_{\alpha',\beta'}$; so $\mathcal{M}_{\alpha,\beta}$ and $\mathcal{M}_{\alpha',\beta'}$ are projectively equivalent.

In this case we write $(\alpha, \beta) \sim (\alpha', \beta')$ where \sim is in particular an equivalence relation on the ordered pairs $(\alpha, \beta) \in GF(q^2)^2$ such that $4\alpha^{q+1} + (\beta^q - \beta)^2 \neq 0$.

Lemma 5.5. Let $\mathcal{M}_{\alpha,\beta}$ be a BM quasi-Hermitian variety of $PG(3, q^2)$, q odd and ε be a primitive element of $GF(q^2)$. Then, there exists $\alpha' \in GF(q^2) \setminus \{0\}$ such that $\mathcal{M}_{\alpha,\beta}$ is projectively equivalent to $\mathcal{M}_{\alpha',\varepsilon}$.

Proof. Write $\beta = \beta_0 + \varepsilon \beta_1$, with $\beta_0, \beta_1 \in GF(q)$ and $\beta_1 \neq 0$. Then, there exists $b \in GF(q^2) \setminus \{0\}$, such that $\beta_1/b^{q+1} = 1$. Therefore $(\alpha, \beta) \sim (\alpha/b^2, \beta/b^{q+1} - \beta_0/b^{q+1}) = (\alpha/b^2, \varepsilon)$.

In light of the previous lemma, to determine the equivalence classes of BM quasi-Hermitian varieties it is enough to determine when two varieties $\mathcal{M}_{\alpha,\varepsilon}$ and $\mathcal{M}_{\alpha',\varepsilon}$ are equivalent. This is done in the following.

Lemma 5.6. Let $q = p^n$ be an odd prime, ε be a primitive element of $GF(q^2)$, $\mathcal{M}_{\alpha,\varepsilon}$, and $\mathcal{M}_{\alpha',\varepsilon}$ be two BM quasi-Hermitian varieties of $PG(3, q^2)$. Put

$$\delta(\alpha) \coloneqq \frac{(\varepsilon^q - \varepsilon)^2}{4\alpha^{q+1}}.$$

Then, $\mathcal{M}_{\alpha,\varepsilon}$ is projectively equivalent to $\mathcal{M}_{\alpha',\varepsilon}$ if and only if there exist $\sigma \in \operatorname{Aut}(\operatorname{GF}(q^2))$ such that

$$\delta(\alpha') = \delta(\alpha)^{\sigma}.$$

Proof. First we observe that for all $\alpha \in GF(q^2) \setminus \{0\}$ such that $4\alpha^{q+1} + (\varepsilon^q - \varepsilon)^2 \neq 0$ $\delta(\alpha) \coloneqq \frac{(\varepsilon^q - \varepsilon)^2}{4\alpha^{q+1}}$

belongs to $GF(q) \setminus \{0, -1\}$. Conversely, given any $\delta \in GF(q) \setminus \{0, -1\}$ we can generate some BM quasi-Hermitian varieties $\mathcal{M}_{\alpha,\varepsilon}$, by choosing α to be any solution of $4\delta x^{q+1} = (\varepsilon^q - \varepsilon)^2$. In fact, it turns out that $(\varepsilon^q - \varepsilon)^2 + 4\alpha^{q+1} \neq 0$. Furthermore, let α_1 and α_2 be any two such solutions. Then there exists k such that $\alpha_2 = \varepsilon^{k(q-1)}\alpha_1$. On the other hand, $(\alpha_1, \varepsilon) \sim (\alpha_1 \varepsilon^{-2} \varepsilon^{q+1}, \varepsilon \varepsilon^{-(q+1)} \varepsilon^{q+1}) = (\alpha_1 \varepsilon^{q-1}, \varepsilon)$. By repeating this process k times, we see

$$(\alpha_1, \varepsilon) \sim (\alpha_1 \varepsilon^{k(q-1)}, \varepsilon) = (\alpha_2, \varepsilon).$$

Thus $\delta(\alpha_1) = \delta(\alpha_2)$ implies that $\mathcal{M}_{\alpha_1,\varepsilon}$ is projectively equivalent to $\mathcal{M}_{\alpha_2,\varepsilon}$. Hence, to determine the number *N* of projectively inequivalent BM quasi-Hermitian varieties we need to count the number of "inequivalent" $\delta \in GF(q) \setminus \{0, -1\}$.

Now, given two BM quasi-Hermitian varieties $\mathcal{M}_{\alpha,\epsilon}$ and $\mathcal{M}_{\alpha',\epsilon}$ and setting

$$\delta = \delta(\alpha) = \frac{(\varepsilon^q - \varepsilon)^2}{4\alpha^{q+1}}, \quad \delta' = \delta(\alpha') = \frac{(\varepsilon^q - \varepsilon)^2}{4\alpha'^{q+1}},$$

we have to show that $\mathcal{M}_{\alpha,\varepsilon} \sim \mathcal{M}_{\alpha',\varepsilon}$ if and only if $\delta' = \delta^{\sigma}$ for some $\sigma \in \operatorname{Aut}(\operatorname{GF}(q^2))$.

First, suppose that $\mathcal{M}_{\alpha,\varepsilon}$ and $\mathcal{M}_{\alpha',\varepsilon}$ are equivalent, that is, $(\alpha', \varepsilon) \sim (\alpha, \varepsilon)$. This is true if and only if

$$\alpha' = \frac{\alpha^{\sigma}a}{b^2 + c^2}, \quad \varepsilon = \frac{a\varepsilon^{\sigma}}{b^{q+1} + c^{q+1}} + u,$$

for some $\sigma \in Aut(GF(q^2))$, $a \in GF(q) \setminus \{0\}$, $u \in GF(q)$, $b, c \in GF(q^2)$ such that the conditions in the thesis of Lemma 5.4 hold.

Then

$$\delta' = (b^2 + c^2)^{q+1} \frac{(\varepsilon^q - \varepsilon)^2}{4a^2(\alpha^{\sigma})^{q+1}}, \quad \delta^{\sigma} = (b^{q+1} + c^{q+1})^2 \frac{(\varepsilon^q - \varepsilon)^2}{4a^2(\alpha^{\sigma})^{q+1}}.$$

We observe that

$$(b^2 + c^2)^{q+1} = (b^{q+1} + c^{q+1})^2.$$
(21)

In fact, if either b = 0 or c = 0, then (21) is trivially satisfied and there is nothing further to prove. Otherwise, a direct manipulation yields that (21) is equivalent to

$$\frac{b^{q-1}}{c^{q-1}} + \frac{c^{q-1}}{b^{q-1}} = 2.$$

This gives $\frac{b^{q-1}}{c^{q-1}} = 1$, which is always true, since (19) holds. Because of (21) then $\delta' = \delta^{\sigma}$.

Conversely, suppose that $\delta' = \delta^{\sigma}$ for some σ . Then we observe that $(\alpha, \varepsilon) \sim (\alpha^{\sigma}, \varepsilon^{\sigma})$. Furthermore $(\alpha^{\sigma}, \varepsilon^{\sigma}) \sim (\alpha^{\sigma}/b^2, \varepsilon)$ where $\varepsilon^{\sigma} = b_1 \varepsilon + b_0$ with $b_1/b^{q+1} = 1$ for a suitable $b \in GF(q^2) \setminus \{0\}$, as seen in the proof of Lemma 5.5.

Thus we have that

$$\begin{split} \delta(\alpha^{\sigma}/b^2) &= (\varepsilon^q - \varepsilon)^2 (b^2)^{q+1}/4(\alpha^{\sigma})^{q+1} \\ &= (b^2)^{q+1} \{ [(\varepsilon^{\sigma})^q - b_0] - (\varepsilon^{\sigma} - b_0) \}^2 / (4(\alpha^{\sigma})^{q+1}(b^{q+1})^2) \\ &= [(\varepsilon^q - \varepsilon)^2]^{\sigma}/4(\alpha)^{(q+1)\sigma} = \delta^{\sigma} = \delta'. \end{split}$$

Hence,

WILEY-

$$(\alpha', \varepsilon) \sim (\alpha^{\sigma}/b^2, \varepsilon) \sim (\alpha^{\sigma}, \varepsilon^{\sigma}) \sim (\alpha, \varepsilon)$$

Conjecture 5.7. We conjecture that Lemma 5.6 holds for all odd $r \ge 3$, as the conditions on the coefficients α , β are the same and the block structure of the matrices representing the classes should be analogous to that of Lemma 5.4. For r even the algebraic conditions on α and β to construct quasi-Hermitian varieties are different, see [3].

Theorem 5.8. Let $q = p^n$ with p an odd prime. Then the number N of projectively inequivalent BM quasi-Hermitian varieties $\mathcal{M}_{\alpha,\beta}$ of PG(3, q^2) is

$$N = \frac{1}{n} \left(\sum_{k \mid n} \Phi\left(\frac{n}{k}\right) p^k \right) - 2,$$

where Φ is the Euler Φ -function.

Proof. For all $\delta, \delta' \in GF(q) \setminus \{0, -1\}$ write $\delta \sim \delta'$ if and only if $\delta' = \delta^{\sigma}$ for some $\sigma \in Aut(GF(q^2))$. By Lemma 5.6, *N* is the number of inequivalent classes $[\delta]$ under \sim . Let $N_e = |\{\delta \in GF(p^e) \setminus \{0, -1\} : \delta \text{ is not contained in any smaller subfield of GF}(q)\}|$. We have

$$N=\sum_{e\mid n}\frac{N_e}{e}.$$

Observing that

$$\sum_{e'\mid e} N_{e'} = p^e - 2,$$

denote by $\mu(x)$ the Möbius function [12]. Then, Möbius inversion gives

$$N_{e} = \sum_{e'|e} \mu(e') p^{e/e'} - 2 \sum_{e'|e} \mu(e').$$

It follows that

$$N = \left(\sum_{e\mid n} \frac{1}{e} \sum_{e'\mid e} \mu(e') p^{e/e'}\right) - 2.$$

Let m = e/e' be a divisor of *n*, then the coefficient of p^m is

$$\frac{1}{n} \sum_{(e/m) \mid (n/m)} \mu\left(\frac{e}{m}\right) \frac{n/m}{e/m} = \frac{1}{n} \Phi\left(\frac{n}{m}\right)$$

14

and finally

$$N = \frac{1}{n} \left(\sum_{k/n} \Phi\left(\frac{n}{k}\right) p^k \right) - 2.$$

ORCID

Angela Aguglia b http://orcid.org/0000-0001-6854-8679 Luca Giuzzi b http://orcid.org/0000-0003-3975-7281

REFERENCES

- 1. A. Aguglia, M. Ceria, and L. Giuzzi, Some hypersurfaces over finite fields, minimal codes and secret sharing schemes, Des. Codes. Crypto. 90 (2022), no. 6, 1503–1519.
- 2. A. Aguglia, Quasi-Hermitian varieties in $PG(r, q^2)$, q even, Contrib. Discrete Math. 8 (2013), no. 1, 31–37.
- 3. A. Aguglia, A. Cossidente, and G. Korchmáros, *On quasi-Hermitian varieties*, J. Combin. Des. **20** (2012), 433–447.
- A. Aguglia, L. Giuzzi, and G. Korchmáros, Construction of unitals in Desarguesian planes, Disc. Math. 310 (2010), 3162–3167.
- R. D. Baker and G. L. Ebert, On Buekenhout–Metz unitals of odd order, J. Combin. Theory Ser. A. 60 (1992), 67–84.
- 6. S. Barwick and G. L. Ebert, Unitals in projective planes, Springer-Verlag, Novum Eboracum, 2000.
- 7. A. E. Brouwer and H. Van Maldeghem, *Strongly regular graphs*, Cambridge University Press, Cambridge, 2022.
- 8. R. Calderbank and W. M. Kantor, *The geometry of two-weight codes*, Bull. Lond. Math. Soc. **18** (1986), no. 2, 97–122.
- 9. Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. 3 (1972), 47-64.
- S. De Winter and J. Schillewaert, A note on quasi-Hermitian varieties and singular quasi-quadrics, Bull. Belg. Math. Soc. Simon Stevin. 17 (2010), no. 5, 911–918.
- 11. G. L. Ebert, On Buekenhout-Metz unitals of even order, European J. Combin. 13 (1992), no. 2, 109-117.
- 12. G. L. Ebert, Hermitian arcs, Rend. Circ. Mat. Palermo (2) Suppl. 51 (1998), 87-105.
- 13. J. W. P. Hirschfeld, *Projective geometries over finite fields*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
- 14. F. Pavese, Geometric constructions of two-character sets, Discrete Math. 338 (2015), no. 3, 202-208.
- 15. B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414-416.
- 16. E. E. Shult, Points and lines, Springer-Verlag, Berlin, 2011.

How to cite this article: A. Aguglia and L. Giuzzi, *On the equivalence of certain quasi-Hermitian varieties*, J. Combin. Des. (2022), 1–15. https://doi.org/10.1002/jcd.21870

15

WILFY