On the equivalence of certain quasi-Hermitian varieties

Angela Aguglia ${ }^{1}$ © ${ }^{(}$Luca Giuzzi ${ }^{2}$ ©

${ }^{1}$ Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
${ }^{2}$ DICATAM, University of Brescia, Brescia, Italy

Correspondence

Angela Aguglia, Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy.
Email: angela.aguglia@poliba.it

Abstract

By Aguglia et al., new quasi-Hermitian varieties $\mathcal{M}_{\alpha, \beta}$ in $\operatorname{PG}\left(r, q^{2}\right)$ depending on a pair of parameters α, β from the underlying field $\mathrm{GF}\left(q^{2}\right)$ have been constructed. In the present paper we study the structure of the lines contained in $\mathcal{M}_{\alpha, \beta}$ and consequently determine the projective equivalence classes of such varieties for q odd and $r=3$. As a byproduct, we also prove that the collinearity graph of $\mathcal{M}_{\alpha, \beta}$ is connected with diameter 3 for $q \equiv 1(\bmod 4)$.

KEYWORDS

collineation, Hermitian variety, quasi-Hermitian variety

1 | INTRODUCTION

It is a well-known problem in finite geometry to characterize the absolute points of a polarity in terms of their combinatorial properties. In this line of investigation, one of the most celebrated results is Segre's Theorem stating that in a Desarguesian projective plane PG $(2, q)$ of odd order q a set Ω which has the same number of points, namely, $q+1$, and the same intersections with lines as a conic (i.e., 0,1 , or 2) is indeed a conic; see [15].

As the dimension grows, the combinatorics of the intersection with subspaces turns out not to be enough as to characterize the absolute points of a polarity neither in the orthogonal case nor in the unitary one.

The set of the absolute points of a Hermitian polarity of $\operatorname{PG}\left(r, q^{2}\right)$ is a nonsingular Hermitian variety.

Quasi-Hermitian varieties of $\operatorname{PG}\left(r, q^{2}\right)$ are a generalization of nonsingular Hermitian varieties defined as follows. Let q be any prime power and assume $r \geq 2$; a quasi-Hermitian variety of $\operatorname{PG}\left(r, q^{2}\right)$ is a set of points having the same size and the same intersection numbers with hyperplanes as a nonsingular Hermitian variety $\mathcal{H}\left(r, q^{2}\right)$. In particular, the intersection numbers with hyperplanes of $\mathcal{H}\left(r, q^{2}\right)$ only take two values thus, quasi-Hermitian varieties are two-character sets; see [8, 9] for an overview of their applications. The Hermitian variety
$\mathcal{H}\left(r, q^{2}\right)$ can be viewed trivially as a quasi-Hermitian variety; as such it is called the classical quasi-Hermitian variety of $\operatorname{PG}\left(r, q^{2}\right)$.

For $r=2$, a quasi-Hermitian variety of $\operatorname{PG}\left(2, q^{2}\right)$ is called a unital or Hermitian arc. Nonclassical unitals have been extensively studied and characterized [6] and many constructions are known; see, for instance, [4]. As far as we know, the only known nonclassical quasi-Hermitian varieties of $\operatorname{PG}\left(r, q^{2}\right), r \geq 3$ were constructed in $[2,3,10,14]$ and they are not isomorphic among themselves; see [14].

In [3], quasi-Hermitian varieties $\mathcal{M}_{\alpha, \beta}$ of $\operatorname{PG}\left(r, q^{2}\right)$ with $r \geq 2$, depending on a pair of parameters α, β from the underlying field $\operatorname{GF}\left(q^{2}\right)$, were constructed. For $r=2$ these varieties are Buekenhout-Metz (BM) unitals, see [5, 6, 11, 12]. As such, for $r \geq 3$ we shall call $\mathcal{M}_{\alpha, \beta}$ the BM quasi-Hermitian varieties of parameters α and β of $\operatorname{PG}\left(r, q^{2}\right)$.

The number of projectively inequivalent BM unitals in $\operatorname{PG}\left(2, q^{2}\right)$ has been computed in [5] for q odd and in [11] for q even. In the present paper we shall enumerate the BM quasiHermitian varieties in $\operatorname{PG}\left(3, q^{2}\right)$ with q odd and show that they behave under this respect in a similar way as BM unitals in PG($2, q^{2}$). Our long-term aim is to try to find a characterization of the BM quasi-Hermitian varieties among all possible quasi-Hermitian varieties in spaces of the same dimension and order.

Apart from the Introduction, this paper is organized into four sections. In Section 2 we describe the construction of the BM quasi-Hermitian varieties in $\operatorname{PG}\left(3, q^{2}\right)$ whereas in Section 3 we determine the number of lines of $\operatorname{PG}\left(3, q^{2}\right), q$ odd, through a point of $\mathcal{M}_{\alpha, \beta}$ which are entirely contained in $\mathcal{M}_{\alpha, \beta}$. By using this result in Section 4, we prove that the collinearity graph of $\mathcal{M}_{\alpha, \beta}$ is connected for $q \equiv 1(\bmod 4)$ (which is the only interesting case, as for $q \equiv 3(\bmod 4)$ the only lines contained in $\mathcal{M}_{\alpha, \beta}$ are those of a pencil of $(q+1)$-lines, all contained in a plane). Finally, in Section 5, we prove our main result:

Theorem 1.1. Let $q=p^{n}$ with p an odd prime. Then the number N of projectively inequivalent quasi-Hermitian varieties $\mathcal{M}_{\alpha, \beta}$ of $\operatorname{PG}\left(3, q^{2}\right)$ is

$$
N=\frac{1}{n}\left(\sum_{k \mid n} \Phi\left(\frac{n}{k}\right) p^{k}\right)-2
$$

where Φ is the Euler Φ-function.
As a byproduct of our arguments, we also obtain a simple way to determine when two quasi-Hermitian varieties are equivalent, see Lemmas 5.5 and 5.6 for the details.

2 | PRELIMINARIES

In this section we recall the construction of the BM quasi-Hermitian varieties $\mathcal{M}_{\alpha, \beta}$ of $\mathrm{PG}\left(3, q^{2}\right)$ described in [3].

Fix a projective frame in $\operatorname{PG}\left(3, q^{2}\right)$ with homogeneous coordinates (J, X, Y, Z), and consider the affine space $\operatorname{AG}\left(3, q^{2}\right)$ with infinite hyperplane Σ_{∞} of equation $J=0$. Then, the affine coordinates for points of $\operatorname{AG}\left(3, q^{2}\right)$ are denoted by (x, y, z), where $x=X / J, y=Y / J$, and $z=Z / J$. Set

$$
\mathcal{F}=\left\{(0, X, Y, Z): X^{q+1}+Y^{q+1}=0\right\}
$$

this can be viewed as a Hermitian cone of $\Sigma_{\infty} \cong \operatorname{PG}\left(2, q^{2}\right)$ projecting a Hermitian variety of $\operatorname{PG}\left(1, q^{2}\right)$. Now take $\alpha \in \mathrm{GF}\left(q^{2}\right)^{*}$ and $\beta \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$ and consider the algebraic variety $\mathcal{B}_{\alpha, \beta}$ of projective equation

$$
\begin{align*}
\mathcal{B}_{\alpha, \beta}: & Z^{q} J^{q}-Z J^{2 q-1}+\alpha^{q}\left(X^{2 q}+Y^{2 q}\right)-\alpha\left(X^{2}+Y^{2}\right) J^{2 q-2} \tag{1}\\
& =\left(\beta^{q}-\beta\right)\left(X^{q+1}+Y^{q+1}\right) J^{q-1} .
\end{align*}
$$

We observe that

- $\mathcal{B}_{\infty}:=\mathcal{B}_{\alpha, \beta} \cap \Sigma_{\infty}$ is the union of two lines $\ell_{1}: X-\nu Y=0=J$ and $\ell_{2}: X+\nu Y=0=J$, with $\nu \in \operatorname{GF}\left(q^{2}\right)$ such that $v^{2}+1=0$ if q is odd.
- Let $P_{\infty}:=(0,0,0,1)$. Then, $\ell_{1} \cap \ell_{2}=P_{\infty}$.
- $\mathcal{B}_{\infty} \subseteq \mathcal{F}$ if $q \equiv 1(\bmod 4)$ or q is even.

It is shown in [3] that the point set

$$
\begin{equation*}
\mathcal{M}_{\alpha, \beta}:=\left(\mathcal{B}_{\alpha, \beta} \backslash \Sigma_{\infty}\right) \cup \mathcal{F}, \tag{2}
\end{equation*}
$$

that is, the union of the affine points of $\mathcal{B}_{\alpha, \beta}$ and \mathcal{F}, is a quasi-Hermitian variety of $\operatorname{PG}\left(3, q^{2}\right)$ for any $q>2$ even or for q odd and $4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2} \neq 0$. This is the variety we shall consider in the present paper limited to the case in which q is odd.

We stress that (1) is not the equation of $\mathcal{M}_{\alpha, \beta}$. However, any set of points in a finite projective space can be endowed of the structure of an algebraic variety, so we shall speak of the variety $\mathcal{M}_{\alpha, \beta}$ even if we do not provide an equation for it.

3 | COMBINATORIAL PROPERTIES OF $\mathcal{M}_{\alpha, \beta}$

We first determine the number of lines passing through each point of $\mathcal{M}_{\alpha, \beta}$ of $\operatorname{PG}\left(3, q^{2}\right)$, for q odd. We recall the following (see [13, Corollary 1.24]).

Lemma 3.1. Let q be an odd prime power. The equation

$$
X^{q}+a X+b=0
$$

admits exactly one solution in $\operatorname{GF}\left(q^{2}\right)$ if and only if $a^{q+1} \neq 1$. When $a^{q+1}=1$, the aforementioned equation has either q solutions when $b^{q}=a^{q} b$ or no solution when $b^{q} \neq a^{q} b$.

Lemma 3.2. Let $\mathcal{B}_{\alpha, \beta}$ be the projective variety of Equation (1) and \mathcal{B}_{∞} be the intersection of the variety $\mathcal{B}_{\alpha, \beta}$ with the hyperplane at infinity $\Sigma_{\infty}: J=0$ of $\mathrm{PG}\left(3, q^{2}\right)$.

- If $q \equiv 1(\bmod 4)$, then, for any affine point L of $\mathcal{B}_{\alpha, \beta}$ there are exactly two lines contained in $\mathcal{B}_{\alpha, \beta}$ through L; for any point $L_{\infty} \in \mathcal{B}_{\infty}$ with $L_{\infty} \neq P_{\infty}$, there are $q+1$ lines of a pencil through L_{∞} contained in $\mathcal{B}_{\alpha, \beta}$. If $q \equiv 3(\bmod 4)$ then no line of $\mathcal{B}_{\alpha, \beta}$ passes through any affine point of $\mathcal{B}_{\alpha, \beta}$ whereas through a point at infinity of \mathcal{B}_{∞} different from P_{∞} there pass only one line contained in $\mathcal{B}_{\alpha, \beta}$.
- There are exactly two lines of $\mathcal{B}_{\alpha, \beta}$ through P_{∞} for all odd q.

Proof. Let ℓ be a line of $\operatorname{PG}\left(3, q^{2}\right)$ passing through an affine point of $\mathcal{B}_{\alpha, \beta}$. The affine points $P(x, y, z)$ of $\mathcal{B}_{\alpha, \beta}$ satisfy the equation:

$$
\mathcal{B}_{\alpha, \beta}: z^{q}-z+\alpha^{q}\left(x^{2 q}+y^{2 q}\right)-\alpha\left(x^{2}+y^{2}\right)=\left(\beta^{q}-\beta\right)\left(x^{q+1}+y^{q+1}\right) .
$$

From [3, Section 4], it can be directly seen that the collineation group of $\mathcal{B}_{\alpha, \beta}$ acts transitively on its affine points. Thus, we can assume that ℓ passes through the origin $O=(1,0,0,0)$ of the fixed frame and hence it has affine parametric equations:

$$
\left\{\begin{array}{l}
x=m_{1} t \\
y=m_{2} t, \\
z=m_{3} t
\end{array}\right.
$$

with t ranging over $\operatorname{GF}\left(q^{2}\right)$. We study the following system:

$$
\left\{\begin{array}{l}
z^{q}-z+\alpha^{q}\left(x^{2 q}+y^{2 q}\right)-\alpha\left(x^{2}+y^{2}\right)=\left(\beta^{q}-\beta\right)\left(x^{q+1}+y^{q+1}\right) \tag{3}\\
x=m_{1} t \\
y=m_{2} t \\
z=m_{3} t
\end{array}\right.
$$

As proved in [1, Theorem 4.3] ℓ can be contained in $\mathcal{B}_{\alpha, \beta}$ only if $m_{3}=0$. Thus assume $m_{3}=0$ and replace the parametric values of (x, y, z) in the first equation of (3). We obtain that

$$
\begin{equation*}
\left(t^{2} \alpha\left(m_{1}^{2}+m_{2}^{2}\right)\right)^{q}-t^{2} \alpha\left(m_{1}^{2}+m_{2}^{2}\right)=t^{q+1}\left(\beta^{q}-\beta\right)\left(m_{1}^{q+1}+m_{2}^{q+1}\right) \tag{4}
\end{equation*}
$$

must hold for all $t \in \operatorname{GF}\left(q^{2}\right)$. Considering separately the cases $t \in \mathrm{GF}(q)$ and $t=\lambda$ with $\lambda \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$ we obtain the following system, $\forall \lambda \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$:

$$
\left\{\begin{array}{l}
\left(\alpha^{q}\left(m_{1}^{2}+m_{2}^{2}\right)^{q}-\alpha\left(m_{1}^{2}+m_{2}^{2}\right)\right)=\left(\beta^{q}-\beta\right)\left(m_{1}^{q+1}+m_{2}^{q+1}\right) \\
\lambda^{2 q} \alpha^{q}\left(m_{1}^{2}+m_{2}^{2}\right)^{q}-\lambda^{2} \alpha\left(m_{1}^{2}+m_{2}^{2}\right)=\lambda^{q+1}\left(\beta^{q}-\beta\right)\left(m_{1}^{q+1}+m_{2}^{q+1}\right)
\end{array}\right.
$$

Replacing the first equation in the second, we get

$$
\forall \lambda \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q): \lambda^{2 q} \alpha^{q}\left(m_{1}^{2}+m_{2}^{2}\right)^{q}\left(1-\lambda^{1-q}\right)=\lambda^{2} \alpha\left(m_{1}^{2}+m_{2}^{2}\right)\left(1-\lambda^{q-1}\right)
$$

Observe that $\left(1-\lambda^{1-q}\right)=\frac{\lambda^{q-1}-1}{\lambda^{q-1}}$. Suppose $m_{1}^{2}+m_{2}^{2} \neq 0$. Then,

$$
\lambda^{2 q-2} \alpha^{q-1}\left(m_{1}^{2}+m_{2}^{2}\right)^{q-1}=-\lambda^{q-1}
$$

whence $\left(\lambda \alpha\left(m_{1}^{2}+m_{2}^{2}\right)\right)^{q-1}=-1$ for all $\lambda \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$. This is clearly not possible, as the equation $X^{q-1}=-1$ cannot have more than $q-1$ solutions. So $m_{1}^{2}+m_{2}^{2}=0$, which yields $m_{2}= \pm \nu m_{1}$ where $\nu^{2}=-1$. On the other hand, if $m_{2}= \pm \nu m_{1}$ and $q \equiv 1(\bmod 4)$, then $m_{1}^{q+1}+m_{2}^{q+1}=m_{1}^{q+1}\left(1+\nu^{q+1}\right)=0$, so (4) is satisfied and the lines $\ell: y-v x=z=0$ and $\ell: y+v x=z=0$ are contained in $\mathcal{B}_{\alpha, \beta}$. On the other hand, if $q \equiv 3(\bmod 4)$, then $m_{1}^{q+1}+m_{2}^{q+1}=2 m_{1}^{q+1} \neq 0$; so (4) is not satisfied and there is no line contained in $\mathcal{B}_{\alpha, \beta}$.

Now, take $L_{\infty}=(0, a, b, c) \in \mathcal{B}_{\infty} \backslash\left\{P_{\infty}\right\}$; hence $a^{2}+b^{2}=0$ and $a, b \neq 0$. Let r be a line through L_{∞}. We may assume that r has (affine) parametric equations

$$
\left\{\begin{array}{l}
x=l+a t \\
y=m+b t \\
z=n+c t
\end{array}\right.
$$

where t ranges over $\operatorname{GF}\left(q^{2}\right)$. Assume also that (l, m, n) are the affine coordinates of a point in $\mathcal{B}_{\alpha, \beta}$, that is,

$$
\begin{equation*}
n^{q}-n+\alpha^{q}\left(m^{2 q}+l^{2 q}\right)-\alpha\left(m^{2}+l^{2}\right)=\left(\beta^{q}-\beta\right)\left(l^{q+1}+m^{q+1}\right) \tag{5}
\end{equation*}
$$

Now, r is contained in $\mathcal{B}_{\alpha, \beta}$ if and only if $q \equiv 1(\bmod 4)$ and the following condition holds:

$$
\begin{equation*}
c+2 \alpha(a l+b m)+\left(\beta-\beta^{q}\right)\left(a l^{q}+b m^{q}\right)=0 \tag{6}
\end{equation*}
$$

Since $b=\nu a$ where $\nu^{2}=-1$ and $\nu \in \mathrm{GF}(q)$, setting $k=l+\nu m$ Equation (6) becomes

$$
\begin{equation*}
c+2 a \alpha k+a\left(\beta-\beta^{q}\right) k^{q}=0 \tag{7}
\end{equation*}
$$

From Lemma 3.1, the above equation has exactly one solution if and only if

$$
\begin{equation*}
(2 \alpha)^{q+1} \neq\left(\beta-\beta^{q}\right)^{q+1} \tag{8}
\end{equation*}
$$

Considering that $2 \in \mathrm{GF}(q)$ and $\left(\beta-\beta^{q}\right)^{q}=\left(\beta^{q}-\beta\right)$, we obtain that (8) is equivalent to

$$
4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2} \neq 0
$$

which holds true.
Let \bar{k} be the unique solution of (7). Since $\bar{k}=l+\nu m$, we find q^{2} pairs (l, m) satisfying (6). For any fixed pair (l, m), because of (5), there are q possible values of n. Thus we obtain that the number of affine lines through the point P and contained in $\mathcal{B}_{\alpha, \beta}$ is $q^{2} q / q^{2}=q$.

Furthermore, the $q+1$ lines through L_{∞} lie on the plane of (affine) equation: $x+\nu y=\bar{k}$. The theorem follows.

Lemma 3.3. If $q \equiv 1(\bmod 4)$ then, for any point $P \in \mathcal{B}_{\alpha, \beta} \backslash \mathcal{B}_{\infty}$ there are two lines $r_{1}(P)$ and $r_{2}(P)$ through P contained in $\mathcal{B}_{\alpha, \beta}$ such that $r_{i}(P) \cap\left(\ell_{i} \backslash\left\{P_{\infty}\right\}\right) \neq \varnothing$.

Proof. As we already know, \mathcal{B}_{∞} is the union of two lines ℓ_{1} and ℓ_{2}, through the point P_{∞}. By considering (4), we see that the point at infinity of the two lines through the origin $O \in \mathcal{B}_{\alpha, \beta}$ are one on ℓ_{1} and one on ℓ_{2}. The semilinear automorphism group G of $\mathcal{B}_{\alpha, \beta}$ is transitive on its affine points, see [3] and maps lines into lines. Also, by Lemma 3.2 follows directly that G must fix the hyperplane at infinity. If $q \equiv 3(\bmod 4)$, the point P_{∞} is the only point of $\mathcal{B}_{\alpha, \beta}$ incident with two lines therein contained. So P_{∞} must be stabilized by G. If $q \equiv 1(\bmod 4)$, we see that P_{∞} is the only point at infinity incident with just two lines of the variety, while the remaining points at infinity are incident with $q+1$ lines. So, again P_{∞}, which is the only point of \mathcal{B}_{∞} which is on no affine line of $\mathcal{B}_{\alpha, \beta}$, is fixed by G. It follows that for each affine point P we have that one of the lines intersects with ℓ_{1} and the other with ℓ_{2}.

Theorem 3.4. Let $\mathcal{M}_{\alpha, \beta}$ be the BM quasi-Hermitian variety described in (2).

- If $q \equiv 1(\bmod 4)$ then through each affine point of $\mathcal{M}_{\alpha, \beta}$ there pass two lines of $\mathcal{M}_{\alpha, \beta}$ whereas through a point at infinity of $\mathcal{M}_{\alpha, \beta}$ on the union of the two lines $\ell_{1} \cup \ell_{2}$ there pass $q+1$ lines of a pencil contained in $\mathcal{M}_{\alpha, \beta}$; finally through a point at infinity of $\mathcal{M}_{\alpha, \beta}$ which is not on $\ell_{1} \cup \ell_{2}$ there passes only one line of $\mathcal{M}_{\alpha, \beta}$.
- If $q \equiv 3(\bmod 4)$ then no line of $\mathcal{M}_{\alpha, \beta}$ passes through any affine point of $\mathcal{M}_{\alpha, \beta}$ whereas through a point at infinity of $\left(\mathcal{M}_{\alpha, \beta} \cap \Sigma_{\infty}\right) \backslash P_{\infty}$ there passes only one line contained in $\mathcal{M}_{\alpha, \beta}$.
- Through the point P_{∞} there are always $q+1$ lines contained in $\mathcal{M}_{\alpha, \beta}$.

Proof. We observe that the affine points of $\mathcal{M}_{\alpha, \beta}$ are the same as those of $\mathcal{B}_{\alpha, \beta}$, whereas the set \mathcal{F} of points at infinity of $\mathcal{M}_{\alpha, \beta}$ consists of the points $P=(0, x, y, z)$ such that $x^{q+1}+y^{q+1}=0$. Furthermore, $\mathcal{B}_{\infty}=\ell_{1} \cup \ell_{2}$ is contained in \mathcal{F} if $q \equiv 1(\bmod 4)$. Hence, from Lemma 3.2 we get the result.

4 I CONNECTED GRAPHS FROM $\mathcal{M}_{\alpha, \beta}$ IN PG(3, $\left.q^{2}\right), q \equiv 1(\bmod 4)$

Let \mathcal{V} be an algebraic variety in $\operatorname{PG}\left(n-1, q^{2}\right)$ or, more in general, just a set of points and suppose that \mathcal{V} contains some projective lines. Then we can define the collinearity graph of \mathcal{V}, say $\Gamma(\mathcal{V})=(\mathcal{P}, \mathcal{E})$ as the graph whose vertices \mathcal{P} are the points of \mathcal{V} and such that two points P and Q are collinear in $\Gamma(\mathcal{V})$ if and only if the line $[\langle P, Q\rangle]$ is contained in \mathcal{V}.

When \mathcal{V} is a (nondegenerate) quadric or Hermitian variety, the graph $\Gamma(\mathcal{V})$ has a very rich structure for it is strongly regular and admits a large automorphism group; this has been widely investigated; see [7, Chapter 2, 16].

More in general, the properties of the graph $\Gamma(\mathcal{V})$ provide insight on the geometry of \mathcal{V} since any automorphism of \mathcal{V} is also naturally an automorphism of $\Gamma(\mathcal{V})$, even if the converse is not true in general.

Lemma 4.1. Let \mathcal{V} be an algebraic variety containing some lines and let $\mathcal{V}_{\infty}=\mathcal{V} \cap \Sigma_{\infty}$ where Σ_{∞} is a hyperplane of $\operatorname{PG}\left(n-1, q^{2}\right)$. If the graph $\Gamma\left(\mathcal{V}_{\infty}\right)$ is connected and through each point of \mathcal{V} there passes at least one line of \mathcal{V} then the collinearity graph $\Gamma(\mathcal{V})$ is connected and its diameter $d(\Gamma(\mathcal{V}))$ is at most $d\left(\Gamma\left(\mathcal{V}_{\infty}\right)\right)+2$.

Proof. Each line of \mathcal{V} has at least a point at infinity hence, given two points P and Q there exists a path from P to a point at infinity P^{\prime} and from Q to another point at infinity Q^{\prime} and finally a path consisting of points in \mathcal{V}_{∞} from P^{\prime} to Q^{\prime}.

Let $\mathcal{M}_{\alpha, \beta}$ be as in (2).
Theorem 4.2. If $q \equiv 1(\bmod 4)$, then the graph $\Gamma\left(\mathcal{M}_{\alpha, \beta}\right)$ is connected and its diameter is 3 .
Proof. We recall that $\mathcal{B}_{\alpha, \beta} \subseteq \mathcal{M}_{\alpha, \beta}, \mathcal{B}_{\alpha, \beta} \backslash \mathcal{B}_{\infty}=\mathcal{M}_{\alpha, \beta} \backslash \Sigma_{\infty}$ and that \mathcal{B}_{∞} splits in the union of the two distinct lines ℓ_{1}, ℓ_{2} through P_{∞}. In particular, $\Gamma\left(\mathcal{B}_{\infty}\right)$ is a connected graph of diameter 2. Take now two points $P, Q \in \mathcal{B}_{\alpha, \beta}$. If $P, Q \in \mathcal{B}_{\infty}$, then we have $d(P, Q) \leq 2$ and there is nothing to prove. Suppose now $P \in \mathcal{B}_{\alpha, \beta} \backslash \mathcal{B}_{\infty}$ and $Q \in \mathcal{B}_{\infty}$. Suppose $Q \in \ell_{i}$. Then, from Lemma 3.3 we can consider a point $P^{\prime}=r_{i}(P) \cap \ell_{i}$ where $r_{i}(P)$ is one of the two lines through P which is contained in $\mathcal{B}_{\alpha, \beta}$. If $P^{\prime}=Q$, then $d(P, Q)=1$; otherwise $d(P, Q)=2$.

Take now $P, Q \in \mathcal{B}_{\alpha, \beta} \backslash \mathcal{B}_{\infty}$. Then, again from Lemma 3.3, the lines $r_{1}(P)$ and $r_{1}(Q)$ meet ℓ_{1}. Put $P^{\prime}=r_{1}(P) \cap \ell_{1}$ and $Q^{\prime}=r_{1}(Q) \cap \ell_{1}$. If $P^{\prime}=Q^{\prime}$, then $d(P, Q) \leq 2$; otherwise $d(P, Q) \leq 3$. We now show that there are pairs of points in $\mathcal{M}_{\alpha, \beta}$ which are at distance 3. Take $P \in \mathcal{B}_{\alpha, \beta} \backslash \mathcal{B}_{\infty}$ and $Q \in \mathcal{M}_{\alpha, \beta} \backslash \mathcal{B}_{\alpha, \beta}$. Then, Q is not collinear with any affine point by construction; also Q is not collinear with $P_{i}:=\ell_{i} \cap r_{i}(P), i=1,2$. So, the shortest paths from P to Q are of the form $P P_{i} P_{\infty} Q$. It follows that $d(P, Q)=3$ and thus the diameter of the graph is 3 .

5 | MAIN RESULT

In this section we show that the arguments of [5] for classifying BM unitals in $\operatorname{PG}\left(2, q^{2}\right)$ can be extended to BM quasi-Hermitian varieties in $\operatorname{PG}\left(3, q^{2}\right), q$ odd. We keep all previous notations.

Two BM quasi-Hermitian varieties $\mathcal{M}_{\alpha, \beta}$ and $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ of $\operatorname{PG}\left(3, q^{2}\right)$ are projectively equivalent if there exists a semilinear collineation $\psi \in Р Г\left(4, q^{2}\right)$ such that $\psi\left(\mathcal{M}_{\alpha, \beta}\right)=\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$.

Lemma 5.1. Let ψ be a semilinear collineation of $\operatorname{PG}\left(3, q^{2}\right), q$ odd, such that $\psi\left(\mathcal{M}_{\alpha, \beta}\right)=\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ where $\mathcal{M}_{\alpha, \beta}$ and $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ are two BM quasi-Hermitian varieties. Then ψ fixes P_{∞} and stabilizes Σ_{∞}. Also, if $q \equiv 1(\bmod 4)$ then $\psi\left(\mathcal{B}_{\alpha, \beta}\right)=\mathcal{B}_{\alpha^{\prime}, \beta^{\prime}}$.

Proof. First, we show that ψ fixes P_{∞} for $q \equiv 3(\bmod 4)$. From Theorem 3.4 we have that P_{∞} is the only point of the two varieties contained in $q+1$ lines and hence $\psi\left(P_{\infty}\right)=P_{\infty}$. Furthermore, we observe that Σ_{∞} is the plane through P_{∞} meeting both $\mathcal{M}_{\alpha, \beta}$ and $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ in $q^{3}+q^{2}+1$ points which are on the $q+1$ lines through P_{∞}. All of the $q^{3}-q^{2}$ points of $\mathcal{M}_{\alpha, \beta}$ and $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ lying on exactly one line contained in the respective variety are in this plane, and these points also span Σ_{∞}. So also Σ_{∞} is left invariant by ψ.

Now assume $q \equiv 1(\bmod 4)$; from Theorem 3.4, for each point in $\ell_{1} \cup \ell_{2}$ there pass $q+1$ lines of the quasi-Hermitian varieties however P_{∞} is the only point on $\ell_{1} \cup \ell_{2}$ such that the other $q-1$ lines through it are not incident with other lines of the two varieties, hence we again obtain $\psi\left(P_{\infty}\right)=P_{\infty}$. In this case $\mathcal{B}_{\alpha, \beta} \subseteq \mathcal{M}_{\alpha, \beta}$. Since $\psi\left(\Sigma_{\infty}\right)=\Sigma_{\infty}$, we have

$$
\psi\left(\mathcal{B}_{\alpha, \beta} \backslash \Sigma_{\infty}\right)=\psi\left(\mathcal{M}_{\alpha, \beta} \backslash \Sigma_{\infty}\right)=\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}} \backslash \Sigma_{\infty}=\mathcal{B}_{\alpha^{\prime}, \beta^{\prime}} \backslash \Sigma_{\infty}
$$

that is, ψ stabilizes the affine part of $\mathcal{B}_{\alpha, \beta}$.
Furthermore $\mathcal{B}_{\infty}=\mathcal{B}_{\alpha, \beta} \cap \Sigma_{\infty}$ consists of the union of the two lines, ℓ_{1} and ℓ_{2}. Observe also that the lines through the affine points of $\mathcal{M}_{\alpha, \beta}$ are also lines of $\mathcal{B}_{\alpha, \beta}$ (see Theorem 3.4) and, in particular they are incident either ℓ_{1} or ℓ_{2}. This is equivalent to say that the points of $\ell_{1} \cup \ell_{2}$ different from P_{∞} are exactly the points of Σ_{∞} through which there pass some affine lines of $\mathcal{M}_{\alpha, \beta}$. This implies that $\psi\left(\ell_{1} \cup \ell_{2}\right)=\ell_{1} \cup \ell_{2}$ and, consequently

$$
\psi\left(\mathcal{B}_{\alpha, \beta}\right)=\psi\left(\mathcal{B}_{\alpha, \beta} \backslash \Sigma_{\infty}\right) \cup \psi\left(\ell_{1} \cup \ell_{2}\right)=\left(\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}} \backslash \Sigma_{\infty}\right) \cup\left(\ell_{1} \cup \ell_{2}\right)=\mathcal{B}_{\alpha^{\prime}, \beta^{\prime}}
$$

Theorem 5.2. Suppose $q \equiv 1(\bmod 4)$. Let \mathcal{G} be the group of collineations $\mathcal{G}=\operatorname{Aut}\left(\mathcal{M}_{\alpha, \beta}\right) \subseteq \operatorname{P\Gamma L}\left(4, q^{2}\right)$ and \mathfrak{G} the group of graph automorphisms $\mathfrak{G}=\operatorname{Aut}\left(\Gamma\left(\mathcal{M}_{\alpha, \beta}\right)\right)$. Then the sets

- $\Omega_{0}:=\left\{P_{\infty}\right\}$;
- Ω_{1} consisting of the points at infinity of $\mathcal{B}_{\alpha, \beta}$ different from P_{∞};
- $\Omega_{2}:=\mathcal{M}_{\alpha, \beta} \backslash \Sigma_{\infty}$
are all stabilized by both \mathcal{G} and \mathfrak{G}. Furthermore, $\Omega_{3}=\mathcal{M}_{\alpha, \beta} \backslash \mathcal{B}_{\alpha, \beta}$ is an orbit for \mathfrak{G}.
Proof. By [3, Section 4], we know that there is a subgroup of \mathcal{G} which is transitive on the affine points of $\mathcal{M}_{\alpha, \beta}$, that is, on Ω_{2}. By Lemma 5.1, any collineation in \mathcal{G} must stabilize the plane Σ_{∞}; so any element of \mathcal{G} maps points of Ω_{2} into points of Ω_{2} and Ω_{2} is an orbit of \mathcal{G}. Also by Lemma 5.1, $\Omega_{0}:=\left\{P_{\infty}\right\}$ is fixed by any $\gamma \in \mathcal{G}$. So we have that the points at infinity of $\mathcal{B}_{\alpha, \beta} \backslash\left\{P_{\infty}\right\}$, as well as the points of $\mathcal{M}_{\alpha, \beta} \backslash \mathcal{B}_{\alpha, \beta}$, are the union of orbits. Let ℓ_{1}, ℓ_{2} be the two lines of $\mathcal{B}_{\alpha, \beta}$ at infinity. Using Lemma 3.3, we see that \mathcal{G} is transitive on $\Omega_{1}=\left(\ell_{1} \cup \ell_{2}\right) \backslash\left\{P_{\infty}\right\}$. Indeed, for any two points $P, Q \in \ell_{1} \backslash\left\{P_{\infty}\right\}$, by Lemma 3.2, there are points $P_{0}, Q_{0} \in \Omega_{2}$ such that $r_{1}\left(P_{0}\right) \cap \Sigma_{\infty}=\{P\}$ and $r_{1}\left(Q_{0}\right) \cap \Sigma_{\infty}=\{Q\}$.

Since \mathcal{G} is transitive on Ω_{2}, there is $\gamma \in \mathcal{G}$ such that $\gamma\left(P_{0}\right)=Q_{0}$. It follows that $\gamma\left(\left(r_{2}\left(P_{0}\right) \cap \Sigma_{\infty}\right) \cup\{P\}\right)=\left(r_{2}\left(Q_{0}\right) \cap \Sigma_{\infty}\right) \cup\{Q\}$. If $\gamma(P)=Q$, then we are done. Otherwise, consider the element $\theta:(J, X, Y, Z) \rightarrow(J, X,-Y, Z)$ of \mathcal{G}. Observe that $\theta\left(r_{2}\left(Q_{0}\right)\right) \cap \Sigma_{\infty}=r_{1}\left(Q_{0}\right) \cap \Sigma_{\infty}$. Hence, $\theta \gamma(P)=Q$. Also, $\theta\left(\ell_{1}\right)=\ell_{2}$; so it follows that $\Omega_{1}:=\left(\ell_{1} \cup \ell_{2}\right) \backslash\left\{P_{\infty}\right\}$ is an orbit of \mathcal{G}.

Since \mathfrak{G} contains \mathcal{G}, the orbits of \mathfrak{G} are possibly unions of orbits of \mathcal{G}. However, observe that the points of Ω_{3} are the only points of $\mathcal{M}_{\alpha, \beta}$ which are on exactly one line of $\mathcal{M}_{\alpha, \beta}$ through the point P_{∞}. So these points must be permuted among each other also by \mathfrak{G}.

The same argument shows that Ω_{0} is also an orbit for \mathfrak{G}. Now, consider the points of Ω_{2}. They are the points of $\mathcal{B}_{\alpha, \beta} \backslash \Omega_{0}$ incident with exactly two lines, while the points of Ω_{1}
are incident with more than two lines. So \mathfrak{G} cannot map a vertex in Ω_{2} into a vertex in Ω_{1} and these orbits are distinct.

Put $\Gamma:=\Gamma\left(\mathcal{M}_{\alpha, \beta}\right)$. Observe that the graph $\Gamma \backslash\left\{P_{\infty}\right\}$ is the disjoint union of $\Gamma\left(\Omega_{3}\right)$ and $\Gamma\left(\Omega_{1} \cup \Omega_{2}\right)$. In turn, $\Gamma\left(\Omega_{3}\right)$ consists of the disjoint union $K_{1} \cup K_{2} \cup \cdots \cup K_{q-1}$ of $q-1$ copies of the complete graph on q^{2} elements. Write $\left\{v_{i}^{j}\right\}_{j=1, \ldots, q^{2}}$ for the list of vertices of K_{i} with $i=1, \ldots, q-1$.

Also, each vertex of $\Gamma\left(\Omega_{3} \cup\left\{P_{\infty}\right\}\right)$ is collinear with P_{∞}. Let $S_{q^{2}}$ be the symmetric group on q^{2} elements, and consider its action on Γ given by

$$
\forall \xi \in S_{q^{2}}: \check{\xi}\left(v_{1}^{j}\right):=v_{1}^{\xi(j)}
$$

if $v_{1}^{j} \in K_{1}$ and fixing all remaining vertices. Obviously $\check{S}_{q^{2}}<\mathfrak{G}$ and $\check{S}_{q^{2}}$ is transitive on K_{1}. Let S_{q-1} be the symmetric group on $\{1, \ldots, q-1\}$ and consider its action on Γ given by

$$
\forall \sigma \in S_{q-1}: \hat{\sigma}\left(v_{i}^{j}\right):=v_{\sigma(i)}^{j}, j=1, \ldots, q^{2}
$$

and all the remaining vertices of Γ are fixed. We also have $\hat{S}_{q-1}<\mathfrak{G}$ and \hat{S}_{q-1} permutes the sets K_{i} for $i=1, \ldots, q-1$. By construction, we see that the wreath product $\check{S}_{q} 2 \hat{S}_{q-1}$ is a subgroup of \mathfrak{G}, it acts naturally on Γ, fixes all vertices not in Ω_{3} and acts transitively on Ω_{3}. It follows that \mathfrak{G} is transitive on Ω_{3}.

Remark 5.3. It can be easily seen that the automorphism group of $\Gamma:=\Gamma\left(\mathcal{M}_{\alpha, \beta}\right)$ is in general much larger than the subgroup of collineations stabilizing $\mathcal{M}_{\alpha, \beta}$. In particular the elements of $\check{S}_{q} 2 \hat{S}_{q-1}$ are not, in general, collineations. For instance, in the case $q=5$ with $\alpha=\beta=\varepsilon$ where ε is a primitive element of $\mathrm{GF}(25)$, root of $x^{2}-x+2$ in $\mathrm{GF}(5)$, the group \mathcal{G} has order $2^{6} 5^{5}$, while \mathfrak{G} has order $2^{99} 3^{42} 5^{30} 7^{12} 11^{8} 13^{4} 17^{4} 19^{4} 23^{4}$. In this case also \mathcal{G} is transitive on Ω_{3}.

Lemma 5.4. If $\mathcal{M}_{\alpha, \beta}$ and $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ are two projectively equivalent BM quasi-Hermitian varieties then there is a semilinear collineation $\phi: \mathcal{M}_{\alpha, \beta} \rightarrow \mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ of the following type:

$$
\begin{aligned}
\phi(j, x, y, z) & =\left(j^{\sigma}, x^{\sigma}, y^{\sigma}, z^{\sigma}\right) M, \quad \text { where } \\
M & =\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & c & -b & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { or } \quad M=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & -c & b & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

$\sigma \in \operatorname{Aut}\left(\operatorname{GF}\left(q^{2}\right)\right), a \in \operatorname{GF}(q) \backslash\{0\}, b, c \in \operatorname{GF}\left(q^{2}\right), b^{2}+c^{2} \neq 0 \quad$ and if $b \neq 0 \neq c$ then $c=\lambda b$ with $\lambda \in \mathrm{GF}(q) \backslash\{0\}$ such that $\lambda^{2}+1 \neq 0$.

Proof. By Lemma 5.1, ϕ fixes the point P_{∞} and stabilizes Σ_{∞}. As the automorphism group of $\mathcal{M}_{\alpha, \beta}$ is transitive on its affine points, we can also assume that $\phi(1,0,0,0)=(1,0,0,0)$.

More in detail, let G^{\prime} be the collineation group of $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ fixing P_{∞}, leaving $\mathcal{F} \backslash P_{\infty}$ invariant and transitive on the affine points of $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$. If $\phi(1,0,0,0) \neq(1,0,0,0)$ we can consider the collineation $\phi^{\prime} \in G^{\prime}$ mapping $\phi(1,0,0,0)$ to $(1,0,0,0)$ and then we replace ϕ by $\phi \phi^{\prime}$. This implies that ϕ has the following form up to scalar multiple:

$$
\phi(j, x, y, z)=\left(j^{\sigma}, x^{\sigma}, y^{\sigma}, z^{\sigma}\right)\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & c & d \\
0 & e & f & g \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\sigma \in \operatorname{Aut}\left(\operatorname{GF}\left(q^{2}\right)\right), a, b, c, d, e, f, g \in \mathrm{GF}\left(q^{2}\right)$ and $a \neq 0 \neq b f-c e$.
Since ($1,0,0, c$), belongs to $\mathcal{M}_{\alpha, \beta}$ if and only if $c \in \operatorname{GF}(q)$, it follows that $\phi(1,0,0, c)=(a, 0,0, c) \in \mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ implies $c a^{-1} \in \mathrm{GF}(q)$, and thus $a \in \mathrm{GF}(q)^{*}$. Now we observe that the affine plane $Y=0$ has in common with $\mathcal{M}_{\alpha, \beta}$ the points $(1, x, 0, z)$ for which $-\alpha x^{2}+\beta x^{q+1}-z \in \mathrm{GF}(q)$; so, $a^{-1}\left(-\alpha^{\sigma} x^{2 \sigma}+\beta^{\sigma} x^{\sigma(q+1)}-z^{\sigma}\right) \in \operatorname{GF}(q)$. Thus, suppose that $(1, x, 0, z) \in \mathcal{M}_{\alpha, \beta}$; we have $\phi(1, x, 0, z) \in \mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ and therefore

$$
\begin{equation*}
\left(\alpha^{\sigma}-\alpha^{\prime}\left(b^{2}+c^{2}\right) / a\right) x^{2 \sigma}-\left(\beta^{\sigma}-\beta^{\prime}\left(b^{q+1}+c^{q+1}\right) / a\right) x^{\sigma(q+1)}-d x^{\sigma} \in \mathrm{GF}(q), \tag{9}
\end{equation*}
$$

as σ stabilizes $\operatorname{GF}(q)$. Let $\eta \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$ such that η^{2} is a primitive element of $\mathrm{GF}(q)$. Considering $x^{\sigma}=1,-1, \eta,-\eta, 1+\eta$ in (9), we get

$$
\begin{gather*}
d=0, \\
\alpha^{\sigma}-\alpha^{\prime}\left(b^{2}+c^{2}\right) / a=0, \tag{10}\\
\beta^{\sigma}-\beta^{\prime}\left(b^{q+1}+c^{q+1}\right) / a \in \mathrm{GF}(q)
\end{gather*}
$$

Similarly if we consider the affine points in common between the plane $X=0$ and $\mathcal{M}_{\alpha, \beta}$, arguing as before, we obtain

$$
\begin{gather*}
g=0, \\
\alpha^{\sigma}-\alpha^{\prime}\left(e^{2}+f^{2}\right) / a=0, \\
\beta^{\sigma}-\beta^{\prime}\left(e^{q+1}+f^{q+1}\right) / a \in \mathrm{GF}(q) \tag{11}
\end{gather*}
$$

In particular,

$$
\begin{equation*}
b^{2}+c^{2}=e^{2}+f^{2} \neq 0 \tag{12}
\end{equation*}
$$

Also, since $\beta^{\prime} \notin \mathrm{GF}(q)$,

$$
\begin{equation*}
b^{q+1}+c^{q+1}=e^{q+1}+f^{q+1} \neq 0 . \tag{13}
\end{equation*}
$$

Now we recall that a generic point $(1, x, y, z) \in \mathcal{M}_{\alpha, \beta}$ if and only if $\phi(1, x, y, z) \in \mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$. On the other hand,

$$
(1, x, y, z) \in \mathcal{M}_{\alpha, \beta} \Leftrightarrow-\alpha\left(x^{2}+y^{2}\right)+\beta\left(x^{q+1}+y^{q+1}\right)-z \in \mathrm{GF}(q)
$$

Since $a \in \mathrm{GF}(q) \backslash\{0\}$ and σ stabilizes $\mathrm{GF}(q)$, the former equation is equivalent to

$$
\begin{equation*}
a^{-1}\left\{-\alpha^{\sigma}\left(x^{2 \sigma}+y^{2 \sigma}\right)+\beta^{\sigma}\left[x^{\sigma(q+1)}+y^{\sigma(q+1)}\right]-z^{\sigma}\right\} \in \mathrm{GF}(q) . \tag{14}
\end{equation*}
$$

Next, we observe that $\phi(1, x, y, z)=\left(1, \frac{b x^{\sigma}+e y^{\sigma}}{a}, \frac{c x^{\sigma}+f y^{\sigma}}{a}, \frac{z^{\sigma}}{a}\right)$ and this point belongs to $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ if and only if

$$
\begin{align*}
& a^{-1}\left\{-\alpha^{\prime}\left[\frac{\left(b x^{\sigma}+e y^{\sigma}\right)^{2}}{a}+\frac{\left(c x^{\sigma}+f y^{\sigma}\right)^{2}}{a}\right]\right. \\
& \left.\quad+\beta^{\prime}\left[\frac{\left(b x^{\sigma}+e y^{\sigma}\right)^{(q+1)}}{a}+\frac{\left(c x^{\sigma}+f y^{\sigma}\right)^{(q+1)}}{a}\right]-z^{\sigma}\right\} \in \operatorname{GF}(q) . \tag{15}
\end{align*}
$$

From (14) and (15), we get that for all $(1, x, y, z) \in \mathcal{M}_{\alpha, \beta}$ the following holds:

$$
\begin{aligned}
& \alpha^{\sigma}\left(x^{2 \sigma}+y^{2 \sigma}\right)-\alpha^{\prime}\left[\frac{\left(b x^{\sigma}+e y^{\sigma}\right)^{2}}{a}+\frac{\left(c x^{\sigma}+f y^{\sigma}\right)^{2}}{a}\right] \\
& +\beta^{\prime}\left[\frac{\left(b x^{\sigma}+e y^{\sigma}\right)^{(q+1)}}{a}+\frac{\left(c x^{\sigma}+f y^{\sigma}\right)^{(q+1)}}{a}\right]-\beta^{\sigma}\left[x^{\sigma(q+1)}+y^{\sigma(q+1)}\right] \\
& \quad \in \operatorname{GF}(q),
\end{aligned}
$$

that is, using (12) and (13),

$$
\begin{equation*}
-\alpha^{\prime}\left[2 x^{\sigma} y^{\sigma}(b e+c f)\right]+\beta^{\prime}\left[\left(b^{q} e+c^{q} f\right) x^{\sigma q} y^{\sigma}+\left(b e^{q}+c f^{q}\right) x^{\sigma} y^{\sigma q}\right] \in \mathrm{GF}(q) \tag{16}
\end{equation*}
$$

We are going to prove that $b^{q} e+c^{q} f=0$. Thus, let $\nu \in \operatorname{GF}\left(q^{2}\right)$ be any solution of $X^{q+1}=-1$. The semilinear collineation ϕ has to leave invariant the Hermitian cone \mathcal{F}, that is, $\phi(0, x, v x, z) \in \mathcal{F}$, and because of the first equation in (13) this means

$$
\left(b^{q} e+c^{q} f\right) \nu^{\sigma}+\left(b e^{q}+c f^{q}\right) \nu^{\sigma q}=0
$$

for any of the $q+1$ different solutions of $X^{q+1}=-1$. If $\left(b^{q} e+c^{q} f\right) \neq 0$ then the equation $\left(b^{q} e+c^{q} f\right) X+\left(b^{q} e+c^{q} f\right)^{q} X^{q}=0$ would have more than q solutions which are impossible. Thus,

$$
\begin{equation*}
b^{q} e+c^{q} f=0 \tag{17}
\end{equation*}
$$

and since $\alpha^{\prime} \notin \mathrm{GF}(q)$ (16) gives

$$
\begin{equation*}
b e+c f=0 \tag{18}
\end{equation*}
$$

Since $\operatorname{det}(M) \neq 0$, it cannot be $c e=0=b f$, so either $c \neq 0 \neq e$ or $b \neq 0 \neq f$. Thus, from (12) and (18) we also get $(e, f)=(c,-b)$ or $(e, f)=(-c, b)$. Thus from (17) we also obtain

$$
\begin{equation*}
b^{q} c-b c^{q}=0 . \tag{19}
\end{equation*}
$$

Hence if $b \neq 0 \neq c$ then $c=\lambda b$ where $\lambda \in \operatorname{GF}(q)$ and $\lambda^{2}+1 \neq 0$. So the lemma follows.
From the previous lemma, taking into account conditions from (10) to (11), we get that if $\mathcal{M}_{\alpha, \beta}$ and $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ are projectively equivalent, then

$$
\begin{equation*}
\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(a \alpha^{\sigma} /\left(b^{2}+c^{2}\right), a \beta^{\sigma} /\left(b^{q+1}+c^{q+1}\right)+u\right) \tag{20}
\end{equation*}
$$

for some $\quad \sigma \in \operatorname{Aut}\left(\operatorname{GF}\left(q^{2}\right)\right), a \in \operatorname{GF}(q)^{*}, u \in \operatorname{GF}(q), b, c \in \operatorname{GF}\left(q^{2}\right): b^{2}+c^{2} \neq 0 \quad$ and if $b \neq 0 \neq c$ then $c=\lambda b$ with $\lambda \in \mathrm{GF}(q) \backslash\{0\}$. Conversely, if condition (20) holds, there is a semilinear collineation $\mathcal{M}_{\alpha, \beta} \rightarrow \mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$; so $\mathcal{M}_{\alpha, \beta}$ and $\mathcal{M}_{\alpha^{\prime}, \beta^{\prime}}$ are projectively equivalent.

In this case we write $(\alpha, \beta) \sim\left(\alpha^{\prime}, \beta^{\prime}\right)$ where \sim is in particular an equivalence relation on the ordered pairs $(\alpha, \beta) \in \operatorname{GF}\left(q^{2}\right)^{2}$ such that $4 \alpha^{q+1}+\left(\beta^{q}-\beta\right)^{2} \neq 0$.

Lemma 5.5. Let $\mathcal{M}_{\alpha, \beta}$ be a BM quasi-Hermitian variety of $\operatorname{PG}\left(3, q^{2}\right), q$ odd and ε be a primitive element of $\operatorname{GF}\left(q^{2}\right)$. Then, there exists $\alpha^{\prime} \in \operatorname{GF}\left(q^{2}\right) \backslash\{0\}$ such that $\mathcal{M}_{\alpha, \beta}$ is projectively equivalent to $\mathcal{M}_{\alpha^{\prime}, \varepsilon}$.

Proof. Write $\beta=\beta_{0}+\varepsilon \beta_{1}$, with $\beta_{0}, \beta_{1} \in \mathrm{GF}(q)$ and $\beta_{1} \neq 0$. Then, there exists $b \in \mathrm{GF}\left(q^{2}\right) \backslash\{0\}$, such that $\beta_{1} / b^{q+1}=1$. Therefore $(\alpha, \beta) \sim\left(\alpha / b^{2}, \beta / b^{q+1}-\beta_{0} / b^{q+1}\right)=\left(\alpha / b^{2}, \varepsilon\right)$.

In light of the previous lemma, to determine the equivalence classes of BM quasi-Hermitian varieties it is enough to determine when two varieties $\mathcal{M}_{\alpha, \varepsilon}$ and $\mathcal{M}_{\alpha^{\prime}, \varepsilon}$ are equivalent. This is done in the following.

Lemma 5.6. Let $q=p^{n}$ be an odd prime, ε be a primitive element of $\mathrm{GF}\left(q^{2}\right), \mathcal{M}_{\alpha, \varepsilon}$, and $\mathcal{M}_{\alpha^{\prime}, \varepsilon}$ be two BM quasi-Hermitian varieties of $\operatorname{PG}\left(3, q^{2}\right)$. Put

$$
\delta(\alpha):=\frac{\left(\varepsilon^{q}-\varepsilon\right)^{2}}{4 \alpha^{q+1}}
$$

Then, $\mathcal{M}_{\alpha, \varepsilon}$ is projectively equivalent to $\mathcal{M}_{\alpha^{\prime}, \varepsilon}$ if and only if there exist $\sigma \in \operatorname{Aut}\left(\operatorname{GF}\left(q^{2}\right)\right)$ such that

$$
\delta\left(\alpha^{\prime}\right)=\delta(\alpha)^{\sigma}
$$

Proof. First we observe that for all $\alpha \in \mathrm{GF}\left(q^{2}\right) \backslash\{0\}$ such that $4 \alpha^{q+1}+\left(\varepsilon^{q}-\varepsilon\right)^{2} \neq 0$

$$
\delta(\alpha):=\frac{\left(\varepsilon^{q}-\varepsilon\right)^{2}}{4 \alpha^{q+1}}
$$

belongs to $\operatorname{GF}(q) \backslash\{0,-1\}$. Conversely, given any $\delta \in \operatorname{GF}(q) \backslash\{0,-1\}$ we can generate some BM quasi-Hermitian varieties $\mathcal{M}_{\alpha, \varepsilon}$, by choosing α to be any solution of $4 \delta x^{q+1}=\left(\varepsilon^{q}-\varepsilon\right)^{2}$. In fact, it turns out that $\left(\varepsilon^{q}-\varepsilon\right)^{2}+4 \alpha^{q+1} \neq 0$. Furthermore, let α_{1} and α_{2} be any two such solutions. Then there exists k such that $\alpha_{2}=\varepsilon^{k(q-1)} \alpha_{1}$. On the other hand, $\left(\alpha_{1}, \varepsilon\right) \sim\left(\alpha_{1} \varepsilon^{-2} \varepsilon^{q+1}, \varepsilon \varepsilon^{-(q+1)} \varepsilon^{q+1}\right)=\left(\alpha_{1} \varepsilon^{q-1}, \varepsilon\right)$. By repeating this process k times, we see

$$
\left(\alpha_{1}, \varepsilon\right) \sim\left(\alpha_{1} \varepsilon^{k(q-1)}, \varepsilon\right)=\left(\alpha_{2}, \varepsilon\right)
$$

Thus $\delta\left(\alpha_{1}\right)=\delta\left(\alpha_{2}\right)$ implies that $\mathcal{M}_{\alpha_{1}, \varepsilon}$ is projectively equivalent to $\mathcal{M}_{\alpha_{2}, \varepsilon}$. Hence, to determine the number N of projectively inequivalent BM quasi-Hermitian varieties we need to count the number of "inequivalent" $\delta \in \operatorname{GF}(q) \backslash\{0,-1\}$.

Now, given two BM quasi-Hermitian varieties $\mathcal{M}_{\alpha, \varepsilon}$ and $\mathcal{M}_{\alpha^{\prime}, \varepsilon}$ and setting

$$
\delta=\delta(\alpha)=\frac{\left(\varepsilon^{q}-\varepsilon\right)^{2}}{4 \alpha^{q+1}}, \quad \delta^{\prime}=\delta\left(\alpha^{\prime}\right)=\frac{\left(\varepsilon^{q}-\varepsilon\right)^{2}}{4 \alpha^{q+1}}
$$

we have to show that $\mathcal{M}_{\alpha, \varepsilon} \sim \mathcal{M}_{\alpha^{\prime}, \varepsilon}$ if and only if $\delta^{\prime}=\delta^{\sigma}$ for some $\sigma \in \operatorname{Aut}\left(\operatorname{GF}\left(q^{2}\right)\right)$.
First, suppose that $\mathcal{M}_{\alpha, \varepsilon}$ and $\mathcal{M}_{\alpha^{\prime}, \varepsilon}$ are equivalent, that is, $\left(\alpha^{\prime}, \varepsilon\right) \sim(\alpha, \varepsilon)$. This is true if and only if

$$
\alpha^{\prime}=\frac{\alpha^{\sigma} a}{b^{2}+c^{2}}, \quad \varepsilon=\frac{a \varepsilon^{\sigma}}{b^{q+1}+c^{q+1}}+u
$$

for some $\sigma \in \operatorname{Aut}\left(\mathrm{GF}\left(q^{2}\right)\right), a \in \mathrm{GF}(q) \backslash\{0\}, u \in \mathrm{GF}(q), b, c \in \mathrm{GF}\left(q^{2}\right)$ such that the conditions in the thesis of Lemma 5.4 hold.

Then

$$
\delta^{\prime}=\left(b^{2}+c^{2}\right)^{q+1} \frac{\left(\varepsilon^{q}-\varepsilon\right)^{2}}{4 a^{2}\left(\alpha^{\sigma}\right)^{q+1}}, \quad \delta^{\sigma}=\left(b^{q+1}+c^{q+1}\right)^{2} \frac{\left(\varepsilon^{q}-\varepsilon\right)^{2}}{4 a^{2}\left(\alpha^{\sigma}\right)^{q+1}}
$$

We observe that

$$
\begin{equation*}
\left(b^{2}+c^{2}\right)^{q+1}=\left(b^{q+1}+c^{q+1}\right)^{2} \tag{21}
\end{equation*}
$$

In fact, if either $b=0$ or $c=0$, then (21) is trivially satisfied and there is nothing further to prove. Otherwise, a direct manipulation yields that (21) is equivalent to

$$
\frac{b^{q-1}}{c^{q-1}}+\frac{c^{q-1}}{b^{q-1}}=2
$$

This gives $\frac{b^{q-1}}{c^{q-1}}=1$, which is always true, since (19) holds. Because of (21) then $\delta^{\prime}=\delta^{\sigma}$.
Conversely, suppose that $\delta^{\prime}=\delta^{\sigma}$ for some σ. Then we observe that $(\alpha, \varepsilon) \sim\left(\alpha^{\sigma}, \varepsilon^{\sigma}\right)$. Furthermore $\left(\alpha^{\sigma}, \varepsilon^{\sigma}\right) \sim\left(\alpha^{\sigma} / b^{2}, \varepsilon\right)$ where $\varepsilon^{\sigma}=b_{1} \varepsilon+b_{0}$ with $b_{1} / b^{q+1}=1$ for a suitable $b \in \operatorname{GF}\left(q^{2}\right) \backslash\{0\}$, as seen in the proof of Lemma 5.5.

Thus we have that

$$
\begin{aligned}
\delta\left(\alpha^{\sigma} / b^{2}\right) & =\left(\varepsilon^{q}-\varepsilon\right)^{2}\left(b^{2}\right)^{q+1} / 4\left(\alpha^{\sigma}\right)^{q+1} \\
& =\left(b^{2}\right)^{q+1}\left\{\left[\left(\varepsilon^{\sigma}\right)^{q}-b_{0}\right]-\left(\varepsilon^{\sigma}-b_{0}\right)\right\}^{2} /\left(4\left(\alpha^{\sigma}\right)^{q+1}\left(b^{q+1}\right)^{2}\right) \\
& =\left[\left(\varepsilon^{q}-\varepsilon\right)^{2}\right]^{\sigma} / 4(\alpha)^{(q+1) \sigma}=\delta^{\sigma}=\delta^{\prime} .
\end{aligned}
$$

Hence,

$$
\left(\alpha^{\prime}, \varepsilon\right) \sim\left(\alpha^{\sigma} / b^{2}, \varepsilon\right) \sim\left(\alpha^{\sigma}, \varepsilon^{\sigma}\right) \sim(\alpha, \varepsilon)
$$

Conjecture 5.7. We conjecture that Lemma 5.6 holds for all odd $r \geq 3$, as the conditions on the coefficients α, β are the same and the block structure of the matrices representing the classes should be analogous to that of Lemma 5.4. For r even the algebraic conditions on α and β to construct quasi-Hermitian varieties are different, see [3].

Theorem 5.8. Let $q=p^{n}$ with p an odd prime. Then the number N of projectively inequivalent BM quasi-Hermitian varieties $\mathcal{M}_{\alpha, \beta}$ of $\mathrm{PG}\left(3, q^{2}\right)$ is

$$
N=\frac{1}{n}\left(\sum_{k \mid n} \Phi\left(\frac{n}{k}\right) p^{k}\right)-2,
$$

where Φ is the Euler Φ-function.
Proof. For all $\delta, \delta^{\prime} \in \operatorname{GF}(q) \backslash\{0,-1\}$ write $\delta \sim \delta^{\prime}$ if and only if $\delta^{\prime}=\delta^{\sigma}$ for some $\sigma \in \operatorname{Aut}\left(\mathrm{GF}\left(q^{2}\right)\right)$. By Lemma $5.6, N$ is the number of inequivalent classes [δ] under \sim. Let $N_{e}=\mid\left\{\delta \in \operatorname{GF}\left(p^{e}\right) \backslash\{0,-1\}: \delta\right.$ is not contained in any smaller subfield of $\left.\mathrm{GF}(q)\right\} \mid$. We have

$$
N=\sum_{e \mid n} \frac{N_{e}}{e} .
$$

Observing that

$$
\sum_{e^{\prime} \mid e} N_{e^{\prime}}=p^{e}-2
$$

denote by $\mu(x)$ the Möbius function [12]. Then, Möbius inversion gives

$$
N_{e}=\sum_{e^{\prime} \mid e} \mu\left(e^{\prime}\right) p^{e / e^{\prime}}-2 \sum_{e^{\prime} \mid e} \mu\left(e^{\prime}\right) .
$$

It follows that

$$
N=\left(\sum_{e l n} \frac{1}{e} \sum_{e^{\prime} l e} \mu\left(e^{\prime}\right) p^{e / e^{e^{\prime}}}\right)-2 .
$$

Let $m=e / e^{\prime}$ be a divisor of n, then the coefficient of p^{m} is

$$
\frac{1}{n} \sum_{(e / m) \mid(n / m)} \mu\left(\frac{e}{m}\right) \frac{n / m}{e / m}=\frac{1}{n} \Phi\left(\frac{n}{m}\right)
$$

and finally

$$
N=\frac{1}{n}\left(\sum_{k / n} \Phi\left(\frac{n}{k}\right) p^{k}\right)-2
$$

ORCID

Angela Aguglia (D) http://orcid.org/0000-0001-6854-8679
Luca Giuzzi (D) http://orcid.org/0000-0003-3975-7281

REFERENCES

1. A. Aguglia, M. Ceria, and L. Giuzzi, Some hypersurfaces over finite fields, minimal codes and secret sharing schemes, Des. Codes. Crypto. 90 (2022), no. 6, 1503-1519.
2. A. Aguglia, Quasi-Hermitian varieties in $\mathrm{PG}\left(r, q^{2}\right), q$ even, Contrib. Discrete Math. 8 (2013), no. 1, 31-37.
3. A. Aguglia, A. Cossidente, and G. Korchmáros, On quasi-Hermitian varieties, J. Combin. Des. 20 (2012), 433-447.
4. A. Aguglia, L. Giuzzi, and G. Korchmáros, Construction of unitals in Desarguesian planes, Disc. Math. 310 (2010), 3162-3167.
5. R. D. Baker and G. L. Ebert, On Buekenhout-Metz unitals of odd order, J. Combin. Theory Ser. A. 60 (1992), 67-84.
6. S. Barwick and G. L. Ebert, Unitals in projective planes, Springer-Verlag, Novum Eboracum, 2000.
7. A. E. Brouwer and H. Van Maldeghem, Strongly regular graphs, Cambridge University Press, Cambridge, 2022.
8. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. Lond. Math. Soc. 18 (1986), no. 2, 97-122.
9. Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. 3 (1972), 47-64.
10. S. De Winter and J. Schillewaert, A note on quasi-Hermitian varieties and singular quasi-quadrics, Bull. Belg. Math. Soc. Simon Stevin. 17 (2010), no. 5, 911-918.
11. G. L. Ebert, On Buekenhout-Metz unitals of even order, European J. Combin. 13 (1992), no. 2, 109-117.
12. G. L. Ebert, Hermitian arcs, Rend. Circ. Mat. Palermo (2) Suppl. 51 (1998), 87-105.
13. J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
14. F. Pavese, Geometric constructions of two-character sets, Discrete Math. 338 (2015), no. 3, 202-208.
15. B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414-416.
16. E. E. Shult, Points and lines, Springer-Verlag, Berlin, 2011.

How to cite this article: A. Aguglia and L. Giuzzi, On the equivalence of certain quasiHermitian varieties, J. Combin. Des. (2022), 1-15. https://doi.org/10.1002/jcd. 21870

