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Abstract: Yield estimation is a key point theme for precision agriculture, especially for small fruits

and in-field scenarios. This paper focuses on the metrological validation of a novel deep-learning

model that robustly estimates both the number and the radii of grape berries in vineyards using

color images, allowing the computation of the visible (and total) volume of grape clusters, which

is necessary to reach the ultimate goal of estimating yield production. The proposed algorithm is

validated by analyzing its performance on a custom dataset. The number of berries, their mean

radius, and the grape cluster volume are converted to millimeters and compared to reference values

obtained through manual measurements. The validation experiment also analyzes the uncertainties

of the parameters. Results show that the algorithm can reliably estimate the number (MPE = −5%,

σ = 6%) and the radius of the visible portion of the grape clusters (MPE = 0.8%, σ = 7%). Instead,

the volume estimated in px3 results in a MPE = 0.4% with σ = 21%, thus the corresponding volume

in mm3 is affected by high uncertainty. This analysis highlighted that half of the total uncertainty

on the volume is due to the camera–object distance d and parameter R used to take into account the

proportion of visible grapes with respect to the total grapes in the grape cluster. This issue is mostly

due to the absence of a reliable depth measure between the camera and the grapes, which could be

overcome by using depth sensors in combination with color images. Despite being preliminary, the

results prove that the model and the metrological analysis are a remarkable advancement toward a

reliable approach for directly estimating yield from 2D pictures in the field.

Keywords: measurement science; machine vision; viticulture; deep learning; fruit counting; fruit

size estimation

1. Introduction

Grapes represent one of the world’s most prized crops, commanding a significant
presence in a rising market encompassing diverse products such as fresh table fruit, raisins,
wine, distillates, and juice concentrate. These commodities emerge from various cultivar
species, predominantly categorized as white, red, and black varieties. The size and form of
these berries exhibit notable variation depending on the grape species [1].

The estimation of the yield volume, which is the main objective of the present work, is
a fundamental theme for farmers regardless of the specific cultivar they grow, allowing
for efficient crop field management [2,3]. In viticulture, winegrowers and agronomists rely
on manual measurements to gauge field yield, encompassing vine count, grape clusters
per vine, and berries per cluster. These factors converge to estimate total harvested fruit
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weight and overall field productivity [4,5]. In fruit production, a good way to automatize
this process requires obtaining an accurate estimation of the total number of fruits (yield
counting task). This is the primary reason why several works nowadays focus on fruit
counting. Finally, to obtain the final yield weight, the volume of the fruits (and ultimately
their density) should be estimated as well (volume estimation).

A potential solution to both tasks is to use vision systems. Recent developments in
computer vision (CV) and artificial intelligence (AI) research have paved the way for a
remarkable array of applications that were inconceivable just a decade ago. These applica-
tions harness a range of 2D vision systems, ranging from color cameras to sensors operating
beyond the visible spectrum, such as near-infrared (NIR), thermal, and hyperspectral cam-
eras. Three-dimensional vision systems offer an additional option, allowing for a scene
representation as a set of points in three dimensions. Nevertheless, when used in the field,
surface reflections due to water droplets and ambient light interfere significantly with the
quality of the acquired data. Field-based 3D reconstruction lacks the necessary accuracy
and spatial resolution to be a trustworthy resource for measuring tiny fruits like grape
berries. Moreover, the resolution of 3D cameras is typically lower than that of 2D cameras.
This is important in situations (like counting grape berries) where the measured object
has decreased dimensions [6]. As a result, despite being a promising technology given its
extensive adoption in controlled environments, it is still not feasible to use 3D cameras for
open-field acquisitions if the goal is the accuracy and robustness of the measurement of
small fruits.

Among the works available in the literature, the majority deal with the task of berry
counting while only a few deal with yield volume estimation. Since fruits can be approxi-
mated with regular geometrical shapes, it is sufficient to acquire a few key measurements
from which the complete 3D shape can be derived. As a result, the research community
has predominantly directed attention toward 2D image analysis. This choice was also
motivated by the rapid development and widespread adoption of Deep Learning (DL) [7]
techniques to analyze complex data and 2D images. Among the plethora of algorithms,
Neural Networks (NNs) are the choice preferred by many, and some works even tried
to adapt such models to agricultural tasks to automatically segment grape berries from
color images [8]. Other studies have further explored the capability of DL models by
experimenting with input parameters like the image color space (e.g., RGB, HSV, CieLAB,
YUV), model architecture, and the influence of diverse augmentation techniques [9,10].
These studies are crucial in the development and design of robust algorithms and NNs
capable of generalizing across grape varieties that differ not only in color (ranging from a
light green coloring to a dark red accordingly) but also in the berry shape and size (ranging
from almost spherical to an elongated ellipsoid). An encouraging method for counting
individual berries within clusters was showcased in [11], where Luo et al. introduced a
custom algorithm leveraging the berry’s edge contour, concave points, and curvature for
accurate counting. This idea of utilizing the berry’s edge to enhance berry segmentation
was further expanded in [12], in which Zabawa et al. delineate the berry’s edge as a new
segmentation category, alongside whole berries and the background.

Despite substantial progress in fruit counting methodologies, especially those utilizing
AI and CV, the literature indicates a considerable deficiency in strategies that can concur-
rently estimate geometric attributes like berry radius and volume directly from color images.
Although many models have proven effective at counting individual fruits, they typically
conclude with object detection and segmentation. Thus, the geometric characterization of
each berry (i.e., measure of radius and volume of berries) is not investigated.

In light of the above-mentioned challenges, the present study details the novel weakly
supervised neural network named STEWIE we proposed in our previous publication [13].
This model leverages a novel approach for simultaneously estimating both (i) the total
number of berries within an image and (ii) their average radius. This innovative technique
encompasses the use of a customized NN that generates density maps to predict the number
of berries in each cluster and their average radius in pixels. To the best of our knowledge,
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there are no works that attempt to output the estimation of a geometrical feature (e.g., the
radius) of a fruit directly from AI models. The only two works that tried to achieve this
goal adopted a traditional approach leveraging CV and image processing techniques after
the fruit segmentation phase performed by an AI model [11,12]. The novel contribution of
the present article is the metrological validation of STEWIE [13], carried out by defining an
experimental set-up and by evaluating STEWIE’s capabilities in predicting the volume of
grape bunches, which is the ultimate goal of yield prediction. A thorough investigation
of visible detected volume and the corresponding associated uncertainty is presented, a
topic typically underestimated by the research community but fundamental to assess the
performances of measurement systems.

2. Materials and Methods

2.1. Materials

This study aims to conduct a metrological validation of the STEWIE model presented
in [13], evaluating its accuracy and reliability in estimating grape yield parameters in real-
world situations, thus confirming its practical relevance in viticulture. STEWIE’s neural
network takes an input image with dimensions H ×W and produces two density maps, Dn

and Dr, both of size H ×W. These density maps are employed to predict both the estimated
number of berries (Ñ) and their estimated average radius (r̃mean), respectively (refer to
Figure 1). The reader is encouraged to read the corresponding literature for technical details
about the network structure, ground truth definition, and model training.

Figure 1. Scheme of the inference process. The image is elaborated by the custom neural network

and two probability density maps are returned as output. Pixel densities are summed to compute the

estimate of the number of berries Ñ and their average size r̃mean.

2.2. Used Datasets

In this work, we used two image datasets: (i) a validation dataset for the algorithm
training as in [13] and (ii) a test dataset for the metrological validation of the approach.

The validation dataset adopted was the Embrapa Wine Grape Instance Segmentation
Dataset (WGISD) [14], which includes 300 images of grape clusters from five different
grape varieties (Chardonnay, Cabernet Franc, Cabernet Sauvignon, Sauvignon Blanc, and
Syrah), with variations in pose, illumination, and focus, as well as genetic and phenological
differences. As reported in the corresponding dataset article [14], an EOS REBEL T3i DSLR
camera (Canon Inc., Tokyo, Japan) and a Z2 Play smartphone (Motorola Inc., Schaumburg,
IL, USA) were used to capture the images. The cameras were positioned between the vine
lines at 1 to 2 m, with the EOS REBEL T3i camera capturing 240 images, including all
Syrah pictures, and the Z2 Play smartphone taking 60 images of all other grape varieties.
The resulting images were scaled to 2048 × 1365 pixels for the EOS REBEL T3i DSLR and
2048 × 1536 pixels for the Z2 Play. Additional details about the image capture process
can be found in the Exif data of the original image files, which are included in the dataset.
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In all 300 images, Geng Deng et al. [15] provided dot annotations identifying a total of
187,374 berries. Image examples taken from the dataset are shown in Figure 2.

To evaluate the performance of STEWIE [13] and estimate measurement uncertainty,
a dedicated test dataset was specifically created in this work. The chosen grape variety
for this evaluation was the Flame variety characterized by red and round berries. This
variety was purposely chosen to assess the model’s generalization capacity because it was
not included in the original training dataset. The test dataset included B = 10 red grape
clusters, from which 3 images were captured per cluster, leading to a cumulative set of
K = 30 images. These images were acquired within a controlled environment using the
low-cost camera Arducam AR0234 (Arducam, Nanjing, China) while being exposed to
outdoor conditions to factor in natural lighting and real-world background irregularities.
To capture the set of 3 images for each grape bunch, we followed a process where we
individually suspended each bunch on a vine tree positioned outdoors, maintaining a fixed
distance of d = 500 mm from the camera. The initial image was taken in this configuration,
while the subsequent two images were captured after rotating the bunch by 120◦ and 240◦,
respectively, around its vertical central axis. This approach allows to account for orientation
variability in our analysis. This variability could either enhance or impede the performance
of the image analysis software, depending on factors such as the occlusion of certain berries
and the presence of illumination noise.

(a) Chardonnay (b) Cabernet Franc (c) Cabernet Sauvignon

(d) Sauvignon blanc (e) Syrah

Figure 2. Image examples taken from the Embrapa WGISD dataset [14].

2.3. Camera Calibration

Since the volume estimation should be provided in metric units to winegrowers, a
calibration procedure must be conducted on the involved 2D cameras to estimate the
intrinsic camera matrix needed to convert pixel data to millimeters [16,17]. The matrix
contains the coordinates of the optical center (cx, cy) and the focal length f of the camera.
The procedure was conducted using MATLAB computer vision toolbox (MathWorks Inc.,
Natick, MA, USA) [18,19]. Considering the set-up described in Section 2.2, we captured
30 images of a checkerboard pattern with squares of 20 mm each, glued on a rigid and
planar support. The images were taken at different distances and orientations to improve
the estimation result of the intrinsic matrix. To convert pixel values to the corresponding
ones in millimeters, Equation (1) was applied (the object-camera distance d was set to
500 mm in our experiments).

Cpx−mm =
d

f
(1)
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2.4. Model Validation

To assess the efficacy of the model, it is necessary to (i) quantify the real number
of berries within each grape bunch and (ii) obtain an estimated measurement of their
effective radii. The Flame variety used in the test dataset is known for its round berries;
hence, we assumed that the shape of the berries could be approximated as a sphere. To
verify this assumption, we manually measured the berries of the bunches in the dataset
using a caliber with a resolution of 0.01 mm. This ensured that the collected diameters
did not exhibit significant differences, confirming the validity of the spherical model.
Thus, manual annotation was performed on each image, enabling the acquisition of (i) the
count of observable berries that STEWIE aimed to identify and (ii) the corresponding radii
associated with these berries. Figure 3 visually presents examples of the labeled data. A
summarized representation of the manual measurement data associated with each bunch
is presented in Table 1. This table includes (i) the unique bunch ID number, (ii) the total
number of berries within the bunch (NT), (iii) the count of visible berries in each image
for the respective bunch (Ni, with i = 1, ..., 3, where i = 1 represents the image taken
in standard configuration, i = 2 the image taken after rotating the bunch of 120◦, and
i = 3 the image taken after rotating it of 240◦), (iv) the mean radius of berries (with their
standard deviation) within the entire bunch in millimeters (rmean,T ± σ), and (v) the average
radius of the berries in pixels, computed manually based on the visible berries within each
image (rmean,i).

(a) (b) (c)

Figure 3. (a–c) Image examples of the test dataset along with manual annotations overlaid.

Table 1. Summary of the validation data per bunch (ground truth), including (i) number of total

berries (NT), (ii) number of visible berries in each of the three images (0◦, 120◦, and 240◦ and N1,

N2 and N3, respectively), (iii) average radius of the bunch (rmean,T , expressed in millimeters), and

(iv) average radius of the visible berries in each image (rmean,1, rmean,2 and rmean,2, all expressed

in pixels).

Bunch ID NT N1 N2 N3 rmean,T ± σ rmean,1 rmean,2 rmean,3

Bunch_01 47 30 28 26 10.1 ± 0.35 mm 25 px 23 px 21 px
Bunch_02 52 37 32 41 9.3 ± 0.52 mm 21 px 21 px 19 px
Bunch_03 36 21 25 24 9.3 ± 0.44 mm 24 px 23 px 19 px
Bunch_04 39 23 23 21 9.2 ± 0.59 mm 25 px 22 px 19 px
Bunch_05 55 31 31 27 9.5 ± 0.57 mm 24 px 23 px 22 px
Bunch_06 51 32 35 29 10.1 ± 0.36 mm 23 px 22 px 25 px
Bunch_07 63 33 39 34 9.8 ± 0.42 mm 22 px 21 px 22 px
Bunch_08 52 30 34 29 10.1 ± 0.45 mm 22 px 21 px 21 px
Bunch_09 76 41 43 48 9.5 ± 0.40 mm 20 px 20 px 19 px
Bunch_10 40 29 24 24 9.5 ± 0.38 mm 22 px 21 px 20 px

2.4.1. Visible Berry Counting Validation

For the validation of the visible berry counting task, the model outputs obtained from
the K = 30 test images must be compared with the real measured information summarized
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in Table 1. To achieve this, metrics such as the mean error (ME) and the mean percentage
error (MPE) between the actual number of berries and the estimated number of berries
within the test images were used (Equation (2)).

ME =
1

K

K

∑
k=1

Ñk − Nk

MPE =
1

K

K

∑
k=1

Ñk − Nk

Nk

(2)

In Equation (2), Ñk and Nk represent the number of berries obtained from the algorithm
and the real number of berries, respectively.

As further validation information, the berry counting output obtained on the test
dataset should be compared with those acquired from the validation dataset (see Section 2.2).
However, images in the WGISD dataset were captured in a field setting, often containing
multiple clusters within a single image. As a result, the algorithm’s estimation was applied
to the image contents as a whole, rather than individual bunches. On the other hand, images
in the test dataset were taken in a controlled set-up, each depicting a single cluster of a
grape variety not present in the original training and validation datasets (see reference [13]
for details about model training).

As a result, it is necessary to extrapolate the outcomes from the single-cluster-per-
image scenario to the context of multiple clusters. To achieve this, we empirically verified
that the prediction error of STEWIE on test images portraying a single bunch conforms to a
normal distribution with a mean equal to ME and a standard deviation equal to σE. Thus,
we designated the probability density function of the error for these single-bunch images
as fE(x) = N (ME, σ

2
ME). If we analyzed an image with B > 1 bunches, the task would

have involved computing the probability density function fEB
(x) for errors in images

containing B bunches. As a result, fEB
(x) is the probability density function associated with

the summation of B normal variables. Hence, the expression is reported in Equation (3)
(the formula is valid under the fair assumption of independence between the errors for the
bunches within the same image).

fEB
(x) = N (B · ME, B · σ

2
E) (3)

Therefore, it is possible to estimate MEB, MAEB, and RMSEB (root mean squared error)
for an image containing B clusters by using Equation (4).

MEB =
∫ +∞

−∞
x fEB

(x) dx

MAEB =
∫ +∞

−∞
|x| fEB

(x) dx

RMSEB =

√

∫ +∞

−∞
x2 fEB

(x) dx

(4)

As the quantity of clusters within the validation images is not constant, we considered
the average number B = 14 (this value was obtained by manually analyzing the images
contained in the validation dataset).

2.4.2. Berry Radius Estimation Validation

To validate the model’s capacity for accurate berry size estimation, the radius esti-
mation results obtained on the test images are compared against the manually measured
radius values (ground truth) listed in Table 1. The difference between the ground truth
and the estimation constitutes the model’s estimation error, computed using Equation (2).
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For this computation, the annotated mean radius rmean,k and STEWIE’s estimation of the
average radius r̃mean,k are used in place of Nk and Ñk, respectively.

2.4.3. Volume Estimation Validation

As a final contribution, we derived the grape volume by using the estimated quantities
of the number of berries and their average radius in pixels. This volume estimation can
subsequently serve as a basis for farmers and wine producers to accurately calculate the
yield [3,4].

To validate the volume estimation, we need the effective volume of each bunch of
the test dataset. The validation was performed considering (i) the volume of the entire
bunch Vb,mm and (ii) the volume of the visible part of the bunch VI,px (because 2D images
depict only a portion of the overall berries in the bunch due to occlusions). The ground
truth values for the volumes of the bunches in mm3 were obtained by manually measuring
the diameter of each grape berry of each bunch with a caliber (as described in Section 2.4),
while the reference values for the computation of the volume of visible part of the bunch (in
px3) were obtained by manually annotating each grape berry on the images together with
their diameters. Both volumes were derived considering the hypothesis of spherical berries.

Thus, we first computed the volume ṼI,px of the visible part of the bunch and compared
it with the corresponding visible volume. From ṼI,px, we then derived the volume of the
entire bunch, Ṽb,mm.

To facilitate the subsequent discussion, we clarify the notation as follows:

• rmm is the radius in metric coordinates of a berry in the bunch that was manually
measured using a caliber;

• rpx is the radius in pixels of a berry present in an image that was manually measured
from the image;

• VI,px represents the volume of the bunch b in px3, considering only the berries visible

in the image. This is approximated as ∑
N
n=1

4
3 πr3

px,n;

• VI,mm represents the volume of the bunch b in mm3, considering only the berries visible

in the image. This is approximated as ∑
N
n=1

4
3 πr3

mm,n, where N < M represents the
number of berries in the image;

• Vb,mm defines the volume of the bunch b in mm3. It is approximated as ∑
M
m=1

4
3 πr3

mm,m.
Here, M represents the total number of berries in the bunch, and rmm,m is the radius of
the mth berry.

The estimated volume is computed using Equation (5), in which Ñk denotes the
estimated number of berries and r̃mean is the mean radius estimated by STEWIE.

ṼI,px = Ñk
4

3
πr̃3

mean (5)

To evaluate the accuracy of this estimation, we calculated ME and MPE (in pixels)
between nominal volume VI,px and volume estimated from images ṼI,px (see Equation (2)
for math computation). These metrics were derived by averaging the errors observed in
individual images within the test dataset.

In a practical agricultural context, farmers are interested in obtaining a rough estimate
of the total weight of their grape yield. To achieve this, the goal is to extend the estimated
visible volume ṼI,px to estimate the volume of the entire grape cluster. Therefore, we need
to determine Ṽb,mm, which represents the estimated volume of the entire grape cluster in
metric units. To accomplish this, two steps are necessary: (i) convert ṼI,px to metric units
ṼI,mm using the conversion factor Cpx−mm that converts pixel units to millimeters (estimated
by the camera calibration procedure as described in Section 2.3) and (ii) multiply the result
by factor R, which takes into account the proportion of visible grapes with respect to the
total grapes within cluster b in image k.

In this initial investigation, we proposed to calculate parameter R as the ratio between
the volume of the entire grape bunch Vb,mm and the volume of the visible grapes VI,mm,
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averaged across all the images in our test dataset, which consists of 30 images. This
parameter is crucial in our validation experiment because we measured the entire bunch
volume manually; however, only a portion can be seen in the images since some berries
were be obscured by the foreground ones, thus leading to an underestimation of the visible
volume in the images. Hence, parameter R was used as a correction factor. It is worth
noting that we introduced some bias into the calculation by utilizing the ground truth
information from the dataset. Ideally, we would select a small subset of grape bunches
to calculate the conversion factor R and then validate its applicability on the remaining
dataset. However, due to the constraints of our limited dataset, we chose the approach
described above, which remains a reasonable and practical solution for this preliminary
analysis. As a result, the estimated volume of the whole grape bunch in metric units is
computed by using Equation (6).

Ṽb,mm = ṼI,px · C3
px−mm · R (6)

This information serves as the final output for farmers, aiding them in estimating
the total yield of their grape harvest. It is important to note that this value is subject
to uncertainty.

2.5. Uncertainty Evaluation for Volume Estimation

Since the final output for the farmers is Ṽb,mm, it is necessary to evaluate the uncertainty
of each variable that contributes to its calculus by using the “Guide to the Expression of
Uncertainty” (GUM, linear propagation, simplified approach) [20,21].

Before estimating the uncertainty of Ṽb,mm, we first need to estimate the uncertainty of
VI,px (obtained from Equation (7)) and Vb,mm (obtained from Equation (8)) to ensure that
they can be taken as reference values. To achieve this, we need to evaluate the uncertainty of
(i) rpx, and (ii) rmm. For the manually annotated radius (rpx) and the caliber measured radius
(rmm) uncertainties, we considered, respectively, a√

3
, with a being 1 px (image resolution)

and 0.3 mm (calculated through repeated measures on the same berries). The uncertainties
of VI,px and Vb,mm were computed by applying GUM to Equations (7) and (8).

VI,px =
Ni

∑
k=1

4

3
· πr3

px (7)

Vb,mm =
NT

∑
k=1

4

3
· πr3

mm (8)

To compute the uncertainty of Ṽb,mm, we need to consider following variables: (i) con-
version factor Cpx−mm (and thus the camera–grape distance d and focal length f ), (ii) the
average ratio R, and (iii) the estimated grape bunch volume ṼI,px expressed in px3.

We chose to associate to d uncertainty σd = 25 mm. This assumption was defined
because the positioning of the grape bunch with respect to the camera varies depending on
where it is located on the vine (the vine distance was fixed to 500 mm from the camera). We
empirically defined σd as the half thickness of the vine considered. In real-case applications,
this parameter could be set to higher values to account also for the uncertainty on d. The
focal length f (in pixels) was estimated through a standard camera calibration procedure
as described in Section 2.3 with uncertainty equal to σf = 2 px.

The uncertainty of parameter R was computed as the standard deviation of the ob-
served ratio between the volume of the entire grape bunch Vb,mm and the volume of the
visible grapes VI,mm, averaged across all the images in the test dataset. This resulted in a
value of σR = 0.32.

The uncertainty of ṼI,px (Equation (5)) was obtained by computing the RMSE between
the estimated visible pixel volumes for each Image I in the test dataset, ṼI,px, and their
corresponding reference volume VI,px (Equation (7)). We recall that the main difference
between the two volumes stands in the radius used in the formulation, which is the
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predicted mean berry radius obtained from STEWIE in the case of ṼI,px and the manually
annotated radius of each visible berry in the case of VI,px.

To compute the uncertainty of the total estimated volume of each bunch b (Ṽb,mm), we
applied GUM to Equation (6).

3. Results and Discussion

3.1. Model Validation

Model performances in berry counting, radius, and volume estimation are shown in
Figure 4. For the berry counting task applied to the test dataset (red box plot in Figure 4),
the resulting mean error ME is −1.57 with a standard deviation σE equal to 1.9. The mean
percentage error MPE is equal to −5% with a standard deviation of 6.3%. For the sake of
completeness, we also present the individual count for each image in Table 2. The negative
value highlights that STEWIE tends to underestimate the number of berries, probably due to
occlusions (e.g., background berries completely or partially hidden by foreground berries).

Figure 4. Boxplot of the relative error REk in % computed for the number of visible berries, the value

of the average radius, and the visible volume of the bunch depicted in the test images.

Table 2. Estimated number of berries for each of the three images of the 10 bunches comprising the

test dataset. Inside the parentheses, the difference with respect to the ground truth (refer to Table 1

for comparison).

Bunch ID Ñ1 Ñ2 Ñ3

Bunch_01 30 (0) 28 (0) 26 (0)
Bunch_02 32 (−5) 35 (+3) 38 (−3)
Bunch_03 20 (−1) 24 (−1) 23 (−1)
Bunch_04 22 (−1) 23 (0) 20 (−1)
Bunch_05 28 (−3) 28 (−3) 21 (−6)
Bunch_06 33 (+1) 37 (+2) 36 (−3)
Bunch_07 31 (−2) 36 (−3) 31 (−3)
Bunch_08 28 (−2) 30 (+1) 29 (0)
Bunch_09 38 (−3) 42 (−1) 45 (−3)
Bunch_10 24 (−5) 23 (−1) 24 (0)

Table 3 shows the comparison between the validation and test datasets following the
procedure in Section 2.4.1 to obtain comparable results between single-cluster-per-image
and multiple-clusters-per-image scenarios. To enhance clarity and emphasize distinctions,
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the results are presented by dividing the outcomes associated with the validation dataset
based on the grape variety. Results obtained using the validation dataset are fully compa-
rable with those obtained with the test dataset. The MAE column indicates that counting
errors may reach around 32 berries for an image containing an average of 14 clusters. To
understand whether this error is acceptable, it is essential to determine the total number
of berries in the validation and test datasets. Based on the data shown in Table 1, we
hypothesize that the average number of berries for each cluster is 50 (obtained averaging
column NT of Table 1). Expanding this value to 14 clusters, we obtain an average number
of berries equal to 700. This value is utilized to compute the normalized MAE (column
MAEnorm in Table 3). The average MAE is equal to 3.1%, with a standard deviation of 0.8%.
This number is entirely suitable for the application considered.

Table 3. Evaluation metrics of the berry counting task computed for both test and validation images,

divided by grape variety. IT refers to the number of images of the variety in the dataset. The values

corresponding to the test dataset are the estimated values derived from the analysis detailed in

Section 2.4.1. Column MAEnorm is computed considering an average number of berries in each image

equal to 700.

Variety Dataset Used ME MAE MAEnorm RMSE IT

Chardonnay Validation −26.8 32.2 4.5% 45.5 13
Cabernet Franc Validation −0.7 17.0 2.4% 20.5 22

Cabernet Sauvignon Validation 4.0 21.1 2.9% 30.7 14
Sauvignon Blanc Validation 5.7 23.8 3.3% 31.6 15

Syrah Validation −8.6 16.5 2.3% 21.7 11

Flame Test −21.8 21.9 3.1% 23.1 30

Regarding the mean radius estimation task (green box plot in Figure 4), STEWIE
achieves a mean estimation error ME of 0.15 px with a standard deviation of 1.5 px,
corresponding to a mean percentage error MPE of 0.8% with a standard deviation of 7%,
which is a promising result.

Regarding the volume estimation, we first compare the reference visible volume using
the manual annotations, VI,px, with the estimated visible volume obtained using the mean
berry radius predicted by STEWIE, ṼI,px (blue box plot in Figure 4). We obtain a mean

estimation error ME of −20.7 · 103 px3 with a standard deviation of 2.9 · 105 px3 and a
mean percentage error MPE of 0.36% with a standard deviation of 20.8%. Even if the
average error is almost null, results on volume estimation (in pixels) show a high variability.
This inconsistency in results suggests that the low bias of the volume estimates may not
be reliable.

As described in Section 2.4.3, once the visible volume estimation ṼI,px is evaluated,
we examine the volume of whole bunches Vb,mm. Figure 5 shows the estimation error Ek

obtained as the difference between estimated volume Ṽb,mm and nominal volume Vb,mm for
each image k in the test dataset, coupled with the corresponding uncertainty. Uncertainties
of each quantity considered are computed as described in Section 2.5. Figure 5 shows that
the measured volume of almost every grape bunch is compatible with its nominal value.

For each grape bunch, we compute the coefficients of variability (CoV) (i.e., the
ratio between the standard deviation and the mean of each measure). All measurements
show high variability: average CoV within 30 measurements equals 24% with a standard
deviation of 7%. This effect is partially due to the variability of ṼI,px. Other parameters that
affect this result are the uncertainty of (i) Cpx−mm and (ii) R. To understand this result, a
further analysis of the uncertainty associated with the measurement must be conducted, as
described in the following section.
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Figure 5. Total bunch volume error Ek (difference between estimated volume Ṽb,mm and nominal

volume Vb,mm) for each image k in the test dataset, coupled with the corresponding uncertainty. The

shaded red area corresponds to the 95% confidence interval of the ground truth.

3.2. Uncertainty Analysis

As described in Section 2.5, we computed the measurement uncertainty of every
parameter that plays a role in the overall computation of the volume’s uncertainty. To
compute the uncertainty on the total estimated volume of each bunch b (Ṽb,mm), we applied
GUM to Equation (6).

Table 4 shows the summary of the variables coupled with their corresponding un-
certainty σ and a brief description of the uncertainty source. The last column shows their
average percentage contribution to the overall uncertainty (UPC). From this analysis, it is
evident that the most impact on the overall uncertainty was due to ṼI,px, which is estimated
considering the mean berry radius of the visible berries produced by STEWIE.

Table 4. Sources of uncertainty definition. To each variable, the corresponding uncertainty and UPC

are shown for quick reference.

Variables Uncertainty Definition and Reason of Uncertainty UPC

d 25 mm
Uncertainty set considering the vine thickness and the eventual
cluster misplacement that could modify the default value of d.

22.1%

f 2 px
Uncertainty depends on the quality of the images and of the
pattern used for the camera calibration procedure.

0.3%

R 0.32
Uncertainty set as the standard deviation of the values that
were averaged to compute R (e.g., the ratios between the visible
and the total volume of the bunches for each photo).

32.6%

ṼI,px 2.8 · 105 px3
Uncertainty set as the RMSE between the estimated pixel vol-
umes for each Image I in the test dataset, ṼI,px, and their corre-
sponding reference volume VI,px.

45%

The uncertainty on the estimated volume in pixel resulted in σṼI,px
= 2.8 · 105 px3

and the average uncertainty on the reference volume in pixel results in σVI,px
= 1.8 · 104

px3. We adopted the average uncertainty on the reference because, by applying GUM, we
obtained individual uncertainties for each Vk,px. It is worth noting that the uncertainty
on the estimated visible volume, σṼI,px

, exceeds by more than an order of magnitude the

average uncertainty on its reference, σVI,px
.
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While the uncertainty on the visible volume (σṼI,px
) was the most prominent (45%), it

can be noted that the uncertainties on the camera–grape cluster distance d (σd) and on the
total/visible volume ratio R (σR) had a combined impact that was greater than 50%. By
adopting strategies to increase the confidence level on d and R, it could be possible to halve
the uncertainty on the visible volume estimation formulation.

For each of the K = 30 images of the test dataset (depicting single grape bunches b), it
is shown in Figure 5 that the uncertainty on the estimated total volume of the bunch Ṽb,mm

was greater than the reference total volume Vb,mm by more than an order of magnitude
(considering all bunches, we obtained a mean uncertainty of 42 mm3, approximately equal
to the 20% of the estimated volume). This result is certainly not satisfactory and could be
improved by reducing the uncertainty related to the estimation of the total/visible volume
ratio R and of the camera–grape cluster distance d. To this aim, a possible solution is to
adopt depth cameras in a 2D–3D fusion fashion to always know the actual position of
the bunch with respect to the camera (d) and consequently design a better formulation
for parameter R. Moreover, the volume was elevated at the power of three, which greatly
emphasizes the effect of small errors in the estimation of the average berry radius. Addi-
tionally, it is worth mentioning that the RMSE on the volume estimation appeared unbiased
(average error close to zero). Thus, averaging multiple bunches could lead to favorable
outcomes in whole-orchard analysis.

4. Conclusions

In this article, we conducted a metrological validation of the performance of the weakly
supervised neural network named STEWIE introduced in our previous work [13], which
directly outputs both the number of individual grape berries and their average radius
from 2D images. This is a novel feature not yet explored by other works, especially for
small fruits such as grape berries. The contribution of this article stands in the thorough
validation and uncertainty evaluation of the model’s performance, a topic often overlooked
in precision agriculture research.

The validation was conducted on the two outputs of the model: (i) the visible berry
counting in the images and (ii) the corresponding berry radius estimation. From these
two parameters, it is possible to compute the overall grape bunch volume, which is the
key information needed by vinegrowers to accurately estimate the yield. To assess which
parameter contributes to the most uncertainty in the final volume estimation, we applied
the GUM and derived the UPC of each parameter. This analysis highlighted that half of the
total uncertainty on the volume is due to the camera–object distance d and parameter R
used to take into account the proportion of visible grapes with respect to the total grapes in
the grape cluster. As a result, by using more reliable sensors to measure d such as depth
cameras, our model performance improves.

Finally, since winegrowers are more interested in the whole orchard yield volume
information while taking into account the uncertainty of the measurement at the same time,
we aim to further improve STEWIE model and incorporate the uncertainty estimation on
the final volume output in its design. The complete system will be developed and deployed
on a robust embedded device able to acquire every information needed coupled with the
corresponding frames so that the whole orchard can be analyzed effortlessly.
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