TITLE: IONIC LIQUIDS-BASED INNOVATIVE SYNTHESIS OF Fe-Ru BIMETALLIC CATALYSTS FOR CO₂ HYDROGENATION: A SUSTAINABLE APPROACH TOWARDS NET-ZERO FUEL PRODUCTION

TITOLO IN ITALIANO: SINTESI INNOVATIVA DI CATALIZZATORI BIMETALLICI FERU PER L'IDROGENAZIONE DI CO₂ UTILIZZANDO LIQUIDI IONICI: UN APPROCCIO SOSTENIBILE VERSO LA PRODUZIONE DI FUELS A ZERO EMISSIONI NETTE

<u>Marina Maddaloni</u>^{1,3}, Ander Centeno-Pedrazo², Simone Avanzi¹, Nayan Jyoti Mazumdar², Haresh Manyar² and Nancy Artioli^{1,3}*

¹ceep laboratory, department of civil engineering, architecture, territory, environment and mathematics, university of brescia, via branze 38, 25123 brescia, italy;

²school of chemistry and chemical engineering, queen's university belfast, david-keir building, stranmillis road, belfast, bt9 5ag, uk

³Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Brescia, Via Branze 38, 25123 Brescia, Italy

Introduction

The use of a bifunctional catalysts capable of facilitating both the Reverse Water Gas Shift (RWGS) and Fischer—Tropsch reactions is crucial for efficiently converting CO2 into lower olefins (C2-C4), which is essential for sustainable chemical production and LPG. Recent research highlights the cost-effectiveness and efficacy of Fe-based catalysts, especially Fe/Ru bimetallic catalysts, in improving olefin selectivity. In this study, the application of ionic liquid solvents assumes a pivotal role, serving as nanosynthetic templates for the synthesis of Fe/Ru bimetallic catalysts. Unlike traditional solvents, ionic liquids offer enhanced stability to Metal NanoParticles (MNPs) owing to their elevated ionic charge, polarity, and supramolecular network. This innovative methodology enables precise modulation of stable MNPs synthesis, indispensable for ensuring stable catalytic performance in CO2 hydrogenation. Ionic liquids exhibit superior selectivity to hydrocarbons (HC) compared to conventional techniques, underscoring their potential in environmentally sustainable and scalable catalysis for the production of sustainable effuels.

Material and Methods

In our method [BmIm][BF₄] was employed as solvent with either Fe(acac)₃ or Ru₃(CO)₁₂ at 523 K for 18 hours. For bimetallic Fe-Ru NPs, three molar ratios (1:1, 3:1, and 9:1) were explored. These nanocatalysts were supported on γ -Al₂O₃ with variable metal loadings (1 or 4 wt.%). Characterization included XRF, XRD, SEM, and H₂ chemisorption analyses. Kinetic experiments were conducted at 593 K and 6 or 20 bar pressures, with adjustments to uphold CO₂ conversion below 5%. FT-IR gas analysis assessed yield and selectivity.

Results

Our study showcases the heightened cooperativity of bimetallic Fe and Ru species synthesized via the IL method, yielding superior activity and selectivity for LPG-range hydrocarbons over traditional colloidal synthesis.

Discussion

This study introduces an innovative method for synthesizing bimetallic 1% Fe-Ru catalysts using ionic liquids as solvents. Both mono(Fe)- and bimetallic catalysts Fe-Ru, prepared via the new method, demonstrate 12% higher selectivity towards C2–C5 hydrocarbons at 20 bar pressure, 5400 mL/h/gcat, and 320 °C, where the main product obsewrved is CH4, in contrast to the colloidal method catalysts with the same Fe:Ru ratio, which showed prominent selectivity to CO. For some catalysts, the selectivity to HC increases with lower space velocity from 0 to 15 %, . Increasing metal loading to 4 wt.% in the Fe-Ru 1:1 IL catalyst significantly boosts C2–C5 hydrocarbon generation to 13 %. The selectivity shift from

XIV Convegno INSTM, 9-12 giugno 2024, Cagliari

CO to methane and HC observed with IL-synthesized catalysts should be attributed to the synergistic interplay between iron and ruthenium, as confirmed by H₂-TPR reduction profiles, and the formation of iron carbide active species for Ftsynthes in reaction conditions.

DOMENICA 9 GIUGNO		LUNEDÌ 10 GIUGNO		MARTEDÌ 11 GIUGNO	MERCOLEDÌ 12 GIUGNO		
		Sessione Tematica 2 (T2) Transizione Ecologica & Energia		Sessione Tematica 1 (T1) Manifatturiero & Aerospazio	Scie	Sessione Tematica 5 (T5) nze della Vita e dell'alimentazione	
	8,45-9,10	KN1 – Nicola Pinna Novel materials chemistry for energy and environmental applications	8,45-9,10	KN4 – Fabio Ferracane	8,45- 9,10	KN5 - Niloofar Tahmasebi Birgani From micro-engineered biomaterials to mini- bones	
	9,10-9,22	O14 – Lo Presti SYNTHESIS AND LUMINESCENCE STUDY OF MOCVD-GROWN Eu-DOPED BaF ₂ THIN FILMS FOR ENHANCED ENERGY CONVERSION PHOTOVOLTAIC APPLICATIONS	9,10-9,22	O37 – Aronne SOL-GEL SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR QUANTUM SOURCES	9,10-9,22	O60 – Barbato ENHANCEMENT OF KRAFT PAPER PERFORMANCE WITH MODIFIED PVOH COATINGS FOR SUSTAINABLE FOOD PACKAGING	
	9,22-9,34	O15 – Lamberti COPPER-BASED PHOTOELECTRODES DEVELOPMENT FOR HYDROGEN PRODUCTION	9,22-9,34	O38 – Ingrosso Ag NANOPARTICLES DECORATED REDUCED GRAPHENE OXIDE - SYNTHESIS AND EVALUATION OF LONG-TERM ANTIMICROBIAL ACTIVITY OF THE NOVEL HYBRID NANOCOMPOSITE AS A TEXTILE COATING	9,22-9,34	O61 – Biblioteca DIFFERENT CULTIVATION SYSTEMS FOR MORE ECO-SUSTAINABLE AND HEALTHY PRODUCTS: TRADITIONAL CULTIVATION VS HYDROPONIC SYSTEM FOR NICKEL-FREE TOMATO	
	9,34-9,46	O16 – Duranti L. MULTIPURPOSE ELECTRODE FOR SYMMETRIC CO ₂ - SOECS	9,34-9,46	O39- Bavasso PLASMA-ASSISTED GROWTH OF CARBON NANOTUBES ON CONTINUOUS FIBERS AS REINFORCING AGENTS IN MULTIFUNCTIONAL POLYMER COMPOSITES	9,34-9,46	O62 – Cabrini MONTMORILLONITE/ GRAPHENE OXIDE AND CHITOSAN-BASED THIN FILMS WITH HIGH OXYGEN BARRIER AT HIGH HUMIDITY	
	9,46-9,58	O17 – Rizzuto A PERFLUORINATED MIL-140A(CE)-BASED MIXED MATRIX MEMBRANES FOR CO ₂ CAPTURE	9,46-9,58	O49 – Licheri FABRICATION OF HIGH ENTROPY DIBORIDE - SIC COMPOSITES THROUGH SELF PROPAGATING HIGH TEMPERATURE SYNTHESIS AND SPARK PLASMA SINTERING	9,46-9,58	O63 – Cadeddu DESIGN OF DUAL-EMITTING NONAROMATIC FLUORESCENT POLYMERS THROUGH THERMAL TREATMENT OF L-GLUTAMIC ACID AND L-LYSINE	
	9,58-10,10	O18 – Colombo V. ADSORPTION PROCESSES IN METAL-ORGANIC FRAMEWORKS: IN SITU INSIGHTS FROM COMBINED X-RAY TECHNIQUES	9,58-10,10	O41 – Biesuz RAPID FIRING OF 3YSZ: ON THE HEATING RATE IMPACT ON SINTERIN, PROPERTIES AND MICROSTRUCTURE	9,58-10,10	O64 – Danti ELECTROSPUN BACTERIAL CELLULOSE SCAFFOLDS COATED WITH ELECTROSPRAYED CHITIN NANOFIBRILS FOR EARDRUM REPAIR	
	10,10- 10,22	O19 – Scorciapino COMPUTATIONAL STUDY OF THE IMPACT OF AMINOPROPYL UNITS ON PHYSISORPTION OF CO2 AND CH4 IN MESOSTRUCTURED SILICA	10,10- 10,22	O42 – Calisi LEAD HALIDE PEROVSKITES AS SENSITIVE MATERIALS FOR SOFT X-RAY RADIATION DETECTION IN SPACE ENVIRONMENTS	10,10- 10,22	O65 – Graziani NEW ANTIBACTERIAL DRESSINGS FOR THE TREATMENT OF SURGICAL AND NON- SURGICAL WOUNDS IN SPINE SURGERY	
	10,22- 10,34	O20 – Perathoner THE DANTE PROJECT: THE INSTM-ENI COOPERATION FOR CO₂ CONVERSION TO E-FUELS THROUGH AN INNOVATIVE APPROACH	10,22- 10,34	O43 – Casu M. PROCESSING AND CHARACTERIZATION OF DENSE (Zr _{0.5} Ta _{0.5})B ₂ AND (Zr _{0.5} Hf _{0.5})B ₂ ULTRA HIGH TEMPERATURE CERAMICS	10,22- 10,34	O66 – Lucignano HUMAN H-CHAIN FERRITIN: A MULTITASKING SYSTEM FOR THE DESIGN OF NANOSTRUCTURED BIOMATERIALS	
	10,34- 10,46	O21 - Mulas CO ₂ CONVERSION THROUGH CARBONATION OF SILICATE BASED SYSTEMS INDUCED BY MECHANICAL TREATMENT: REACTIVITY AND KINETIC FEATURES	10,34- 10,46	O44 – Bemporad INTEGRATING HIGH-SPEED NANOINDENTATION AND MACHINE LEARNING: A NEW PARADIGM FOR ADVANCED STEEL DESIGN AND QUALITY ASSESSMENT	10,34- 10,46	O67 – Rizzi ADVANCED STIMULI RESPONSIVE NANOSTRUCTURES: MESOPOROUS SILICA CORE@SHELL ARCHITECTURES WITH DAHLIA- LIKE MORPHOLOGY AS INNOVATIVE SMART DRUG DELIVERY PLATFORMS TO FIGHT COLORECTAL CANCER	
		10,46-11,15 Coffee break (sala Terrazza)		10,46– 11.15 Coffee break (sala Terrazza)	10	0,46- 11,15 Coffee break (sala Terrazza)	
		Sessione Tematica 3 (T3) Economia verde e circolare		Sessione Tematica 1 (T1) Manifatturiero & Aerospazio		Sessione Tematica 5 (T5) nze della Vita e dell'alimentazione	
	11,15- 11,40	KN2 – Michela Signoretto From waste to product: examples of circularity	11,15- 11,27	O45 – La Mantia MICROPLASTICS POLLUTION: MAIN SOURCES AND THE ROLE OF THE PLASTICS INDUSTRY	11,15- 11,27	O68 – Montalbano DESIGN OF SMART PLATFORMS FOR APPLICATIONS IN TISSUE REGENERATION AND BIOMARKER DETECTION	

	11,40- 11,52- 12,04- 12,16- 12,16- 12,28	O22 – Acocella GREEN FUNCTIONALIZATION OF TORREFIED BIOMASS VIA MECHANOCHEMICAL APPROACH: NEW OPPORTUNITIES FOR FILLER PRODUCTION O23 – Alessandri WASTE-BASED HYDROGELS FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS O24 - Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 – Crucianelli DEEP EUTECTIC SOLVENTS ASSISTED GROWTH OF	11,27- 11,39- 11,51- 12,03	O46 – Frache DEVELOPMENT OF A PP-BASED MATERIAL WITH FLAME RETARDANT PROPERTIES FOR 3D PRINTING O47 – Mariani STAMPA 3D DI MESCOLE ELASTOMERICHE FOTOCURABILI RINFORZATE CON SWCNT, MWCNT, CF E SILICE O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D	11,27- 11,39 11,39- 11,51	O69 – Milanese PREPARATION AND CHARACTERISATION OF FDM 3D-PRINTED BIOCOMPOSITE SCAFFOLDS FOR BIOMEDICAL APPLICATIONS O70 – Simonetti 3D PRINTING OF LIQUID CRYSTAL ELASTOMERS AS ARTIFICIAL MUSCLES
	11,52- 12,04 12,04- 12,16	BIOMASS VIA MECHANOCHEMICAL APPROACH: NEW OPPORTUNITIES FOR FILLER PRODUCTION O23 – Alessandri WASTE-BASED HYDROGELS FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS O24 - Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 – Crucianelli	11,39- 11,51 11,51-	FLAME RETARDANT PROPERTIES FOR 3D PRINTING O47 – Mariani STAMPA 3D DI MESCOLE ELASTOMERICHE FOTOCURABILI RINFORZATE CON SWCNT, MWCNT, CF E SILICE O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D	11,39- 11,51 11,51-	FDM 3D-PRINTED BIOCOMPOSITE SCAFFOLDS FOR BIOMEDICAL APPLICATIONS O70 – Simonetti 3D PRINTING OF LIQUID CRYSTAL
	12,04 12,04- 12,16	NEW OPPORTUNITIES FOR FILLER PRODUCTION O23 – Alessandri WASTE-BASED HYDROGELS FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS O24 - Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 – Crucianelli	11,51	O47 – Mariani STAMPA 3D DI MESCOLE ELASTOMERICHE FOTOCURABILI RINFORZATE CON SWCNT, MWCNT, CF E SILICE O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D	11,51	FOR BIOMEDICAL APPLICATIONS O70 – Simonetti 3D PRINTING OF LIQUID CRYSTAL
	12,04 12,04- 12,16	O23 – Alessandri WASTE-BASED HYDROGELS FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS O24 - Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 – Crucianelli	11,51	STAMPA 3D DI MESCOLE ELASTOMERICHE FOTOCURABILI RINFORZATE CON SWCNT, MWCNT, CF E SILICE O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D	11,51	O70 – Simonetti 3D PRINTING OF LIQUID CRYSTAL
	12,04 12,04- 12,16	WASTE-BASED HYDROGELS FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS O24 - Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 - Crucianelli	11,51	STAMPA 3D DI MESCOLE ELASTOMERICHE FOTOCURABILI RINFORZATE CON SWCNT, MWCNT, CF E SILICE O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D	11,51	3D PRINTING OF LIQUID CRYSTAL
	12,04- 12,16 12,16-	AND AGRICULTURAL APPLICATIONS O24 - Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 - Crucianelli	11,51-	FOTOCURABILI RINFORZATE CON SWCNT, MWCNT, CF E SILICE O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D	11,51-	
	12,16	O24 - Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 - Crucianelli		CF E SILICE O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D		ELASTOMERS AS ARTIFICIAL MUSCLES
	12,16	PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 – Crucianelli		O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D		
	12,16	PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS O25 – Crucianelli		HARNESSING POLYETHYLENEIMINE IN 3D		
	12,16-	INVERSION TECHNIQUE USING GREEN SOLVENTS O25 – Crucianelli	12,03			Chair: Cecilia Bartuli, Maria Lucia Curri
		O25 – Crucianelli		DOMETING FOR THE AREA STATES CONTROL OF THE	12,10	
				PRINTING FOR TUNABLE HETEROGENEOUS		Intervento Prorettore ricerca UNICA prof.
				CATALYSTS		Luciano Colombo
	12,28	DEEP EUTECTIC SOLVENTS ASSISTED GROWTH OF	12,03-	O49 – Sciancalepore	12,10-	Premiazioni orali/poster
			12,15	POLYMER NANOCOMPOSITES AS INNOVATIVE	12,30	
		MAGNETIC NANOPARTICLES: A CORRELATION		ENCODING/DECODING MAGNETIC TAGS		
		STUDY				
	12,28-	O26 – Filippone	12,15-	050 - Valentini L.	12,30-	Donne nella scienza (7 minuti)
	12,40	ENHANCING THE BIODEGRADATION KINETICS OF	12,30	CONTROLLING THE CONFORMATION OF	12,37	
		PLA USING HEMP SHIVE FIBERS		REDISSOLVED SILK FIBROIN FOR PRINTABLE		
				MULTIFUNCTIONAL 3D MATERIALS		
	12,40-	O27 – Garbarino			12,37-	Donne nella scienza (7 minuti)
	12,52	OPPORTUNITIES IN SEAWATER USES:			12,44	,
	,==	APPLICATIONS AND CIRCULAR ECONOMY			,	
	12,52-	O28- Levi			12,44-	Donne nella scienza (7 minuti)
	13,04	CHARACTERIZATION AND COMPARISON OF VIRGIN			12,51	(
		AND RECYCLED POLYPROPYLENE FILAMENT			,	
		FEEDSTOCKS FOR FUSED FILAMENT FABRICATION				
		3D PRINTING				
					12,51-	Lancio XV Congresso INSTM
					13,10	(Antonio Comite, Davide Peddis, Università di
					13,10	Genova)
						School
						Conclusions and Final remarks
						(F.Bondioli, A. Caneschi)
14,00-15,15	13,04-14,30 Pausa pranzo (sala Terrazza)		13,00-14,30	Pausa pranzo (sala Terrazza)		1 (- 2
,	Chair:			· · · · · · · · · · · · · · · · · · ·		
REGISTRAZIONE	14.20	Giulio Oliviero		Carriero Tarrellos O (TO)		
	14,30-	BILANCIO DI SOSTENIBILITÀ INSTM		Sessione Tematica 3 (T3)		
	14,42	DILANCIO DI SOSTENIBILITA INSTIVI		Economia Verde e Circolare		
		Sessione Tematica 4 (T4)	14,30-	O51 - Maio		
		Costruito e Patrimonio Culturale	14,42	RAPID PREPARATION OF POLYMER-BASED		
				HIERARCHICAL STRUCTURES		
	14,42-	KN3 – Silvia Prati	14,42-	O52 - Manzoli		
	15,07	Towards the development of green strategies for	14,42	PLAYING WITH THE SIZE OF GOLD TO DESIGN		
	13,07	the conservation of cultural heritage: the	14,54	TAILORED CATALYSTS AND WIN THE MATCH OF		
		GOGREEN and SUPERSTAR projects		METHYL-2-FUROATE SUSTAINABLE PRODUCTION		
	15,07-	O29 – Caioni	14,54-	O53 – Rossi D.		
	-					
	13,19		13,00			
				A DASE DI RETI DA PESCA RICICLATE E BIOCHAR		
	15.40		15.00	OF 4 Olle		
	15,31		15,18			
		MATERIALS-DERIVED PORCELAIN STONEWARE		STRUCTURE AND PROPERTIES IN CARBON DOTS		
		TILES WITH SOLAR REFLECTIVE CHARACTERISTICS:				
		A CASE STUDIO				
	15,19 15,19- 15,31	A NOVEL MULTIFUNCTIONAL FINISH FOR THE ENHANCEMENT OF INDOOR AIR QUALITY: THE MAMMUT PROJECT O30 - Cedillo Gonzàlez HYPOTHETICAL RESTORATION OF BUILDING HERITAGE OF 1900 USING SECONDARY RAW	15,06 15,06- 15,18	COMPOSITI PER APPLICAZIONI AUTOMBILISTICHE A BASE DI RETI DA PESCA RICICLATE E BIOCHAR O54 - Olla A SYNERGIC COMPUTATIONAL AND EXPERIMENTAL APPROACH TO CORRELATE		

						T	
15,15- 15,30	Opening (F. Bondioli, A. Caneschi, Cecilia, M. Lucia, C.O.)	15,31- 15,43	031 – Ferone	D_RASED MATERIALS	15,18- 15,30	O55 – Perotto	MASS INTO HIGH VALUE
13,30	Lucia, C.O.j	13,43	USE OF GEOPOLYMER-BASED MATERIALS CONTAINING PORCELAIN STONEWARE WASTE IN RESTORATION OF CULTURAL HERITAGE		13,30	PRODUCTS: OIL-BASED THERMOSETS	
15,30-	Saluto istituzionale Rettore UNICA o Prorettore	15,43-	032 – Cioffi		15,30-	O56 – Dominici	
15,45	prof. Fabrizio Pilo	15,55		E ARTIFICIAL LIGHTWEIGHT	15,42		CH EXTRACT FROM CHESNUT
			AGGREGATES BASED AND MSWI FLY ASH	O ON CEMENT, SILICA FUME		(CSW) WASTES ON TH	ERMAL, MECHANICAL, ITIMICROBIAL PROPERTIES
			ANDIVISWITETASIT			OF POLYLACTIC ACID F	
	Chair: Alberto Cigada	15,55-	O33 – Menegazzo		15,42-	O57 – Sambri	
		16,07	FUNCTIONALIZED SII		15,54		PHOTOPOLYMERIZATION:
15,45- 16,00	Teodoro Valente IL SISTEMA SPAZIO ITALIA: SFIDE E OPPORTUNITÀ		PROTECT CULTURAL	SE OF ANTIMICROBIALS TO		LUMINESCENT ADDITI	ED RESINS CONTAINING
10,00	IL SISTEMA SPAZIO TIALIA. STIDE E OFFORTONTA		BIODETERIORATION			LOWINESCENT ADDITI	VLS
16,00-	Alessandro Viviani	16,07-	O34 – Porcu		15,54-	O58 – Scarpelli	
16,15	IL RUOLO DI AMBROSETTI EUROPE NEL	16,19		CIENTIFIC IN-DEPTH STUDY ON	16,06		LLULOSE-BASED MATERIAL
	TRASFERIMENTO TECNOLOGIVO NEL CAMPO DEI MATERIALI		THE DEGRADATION	OF CADMIUM PIGMENTS			H INORGANIC COMPOUND ADVANCED PERFORMANCE
	Sessione Tematica 2 (T2)	16,19-	O35 – Taglieri		16,06-	059 – Tabanelli	7.5 VIIIOLD I EIII OIIIVIAIICE
	Transizione Ecologica & Energia	16,31	ON-SITE PERFORMA	NCES OF A NEW NANOLIME,	16,18	ENHANCED REDUCTIV	
	Ü			TAINABLE AND LARGE-SCALE		FRACTIONATION OF R	
				SERVATIVE TREATMENTS OF AND ARCHITECTONIC		SAWDUST WITH A MA CATALYST	IGINETIC RECTCLABLE
			SURFACES				
16,15-	O1 – Sessoli	16,31-	O36 – Sambucci				
16,27	MAGNETIC MOLECULES FOR QUANTUM INFORMATION: THE CHALLENGE OF SINGLE SPIN	16,43		HWAY FOR METALLURGICAL HE PORTOVESME S.R.L. PLANT			
	ADDRESSING			MATERIALS FORMULATION:			
				NOLOGICAL BEHAVIOUR AND			
			ENVIRONMENTAL A	NALYSIS			
16,27- 16,39	O2 – Peddis DESIGN, SYNTHESIS, AND PROCESSING OF						
10,33	EXCHANGE-COUPLED NANOCOMPOSITES FOR						
	ADVANCED PERMANENT MAGNETS						
16,39-	O3 – Quochi	16,43-17,15 C	offee break (sala Terrazz	ra)		16,45-17,15 Coffee brea	k (sala Terrazza)
16,51	PHOTOPHYSICAL PROPERTIES OF NEAR- INFRARED EMITTING LANTHANIDE-BASED HALIDE						
	DOUBLE PEROVSKITES						
16,51-	O4 – Veneri	Sessioni Par		Sessioni Parallele		ssioni Parallele	Sessioni Parallele
17,03	ENVIRONMENTALLY FRIENDLY PATHWAY TO	Sala Castello		Sala Villanova		Sala Castello : Androa Canoschi	Sala Villanova
	KESTERITE NANOPARTICLES WITH CONTROLLABLE TIN CONTENT: AN IN-DEPTH	Chair: Feder	ica Doridioli	Chair: Cecilia Bartuli	Cnair	: Andrea Caneschi	Chair: Maria Lucia Curri
	STUDY OF MAGNETICAL AND OPTICAL						
47.55	PROPERTIES	47.45.47.00	CO4 All .: (=1)	CO45 5 '(75)	47.45.47.00	CO20 C III 1 (72)	CO42 C /To)
17,03- 17,15	O5 – Bonelli METHODS TO CONTROL THE PHASE	17,15-17,20	SO1 - Alberti (T1)	SO15 - Favuzzi (T5)	17,15-17,20	SO28 - Gallichi (T3)	SO42 - Spennati (T2)
17,13	COMPOSITION AND TO TUNE THE LIGHT						
	ABSORPTION PROPERTIES OF NANOMETRIC TiO ₂						
47.45	FOR SUSTAINABLE PHOTOCATALYTIC REACTIONS	17 20 17 25	502 Chana (T4)	SO16 Chicari (TE)	17 20 17 25	5030 Carafala (T3)	CO42 Valentini F (T2)
17,15- 17,27	O6 – Carpanese ELETTRODI A POROSITÀ GRADUALE PER CELLE AD OSSIDI SOLIDI	17,20-17,25	SO2 - Cheng (T1)	SO16 - Ghisoni (T5)	17,20-17,25	SO29 - Garofalo (T3)	SO43 - Valentini F. (T2)
1,2,	PRODOTTI TRAMITE FREEZE TAPE CASTING ED						
	INFILTRAZIONE						
17 27	O7 – Castro	17,25-17,30	SO3 - Chiappone (T1)	SO17 - Gulino (T5)	17,25-17,30	SO30 - Montini (T3)	S044 - Rusta (T2)
17,27- 17,39	ENHANCING PHOTOELECTROCHEMICAL	17,25-17,30	303 - Ciliappolle (11)	3017 - Guillio (13)	17,25-17,50	3030 - WOHLIH (13)	3044 - NUSIA (12)
,=3	PERFORMANCES OF FTO SUBSTRATES WITH						
	METAL-ORGANIC FRAMEWORK FILMS						

17,39-	O8 – Colombo A. NOVEL PERYLENE DIIMIDE DERIVATIVES AS	17,30-17,35	SO4 - Atzori (T2)	SO18 - Bonaccorsi (T3)	17,30-17,35	SO31 – Gigante G. (T1)	SO45 - Sebastiani (T2)	
17,51	EFFICIENT LUMINOPHORES IN LUMINESCENT							
	SOLAR CONCENTRATORS							
17,51-	O9 – Triolo	17,35- 17.40	SO5 - Bombaci (T2)	SO19 - Calovi (T3)	17,35- 17.40	SO32 - Lerda (T1)	SO46 - Mureddu (T3)	
18,03	LITHIUM-ION BATTERY ANODES BASED ON							
	$(Mn_{1/5}Fe_{1/5}Co_{1/5}Ni_{1/5}Zn_{1/5})_3O_4$ NANOFIBERS:							
	CHARGE STORAGE MECHANISM							
18,03-	O10 – Cattelan	17,40-17,45	SO6 - Casu A. (T2)	SO20 - Cera (T3)	17,40-17,45	SO33 - Martinuzzi (T1)	SO47 - Noè (T3)	
18,15	OPERANDO STUDY OF COBALT-ALUMINUM LDH							
	FOR OXYGEN EVOLUTION REACTION							
18,15-	O11 – Fasulo	17,45-17,50	SO7 - Seyed Sepehr	SO21 - Di Bartolomeo (T2)	17,45-17,50	SO34 - Muscas (T1)	SO48 - Padovano (T1)	
18,27	ROLE OF SURFACE IR-OXO SPECIE IN TUNING		Moeini (T4)					
	MOLECULAR OXYGEN EVOLUTION							
	ELECTROCATALYSIS BY IRIDIUM OXIDE: NEW INSIGHTS FROM MULTIREFERENCE							
	CALCULATIONS							
18,27-	012 – Gallo	17,50-17,55	SO8 - Sanfilippo (T4)	SO22 - Maddaloni (T2)	17,50-17,55	SO35 - Liboà (T5)	SO49 - Rigotti (T1)	
18,39	FUNCTIONALIZATION OF SILICA WITH AMINES BY							
	MEANS OF SUPERCRITICAL CO ₂							
18,39-	O13 – Gamberini	17,55-18,00	SO9 - Cagna (T5)	SO23 - Sidoli (T2)	17,55-18,00	SO36 - Milazzo (T5)	SO50 - Rizzo (T1)	
18,51	BLENDS OF POLYLACTIC ACID WITH BIOBASED,							
	CHEMICALLY RECYCLABLE, AND SELF-HEALABLE							
	THERMOSET	10.00.10.05	CO10 De Lee /TE\	CO24 Muncic F (T2)	10.00.10.05	CO27 Olia (TE)	COF1 Durain (T2)	
		18,00-18,05 18,05-18,10	SO10 - De Leo (T5) SO11 - Aliotta (T3)	SO24 - Murgia F. (T2) SO25 - Coppola (T1)	18,00-18,05 18,05-18,10	SO37 - Olia (T5) SO38 - Panebianco (T5)	SO51 - Ruggiu (T3) SO52 - Rossitti (T3)	
		18,10-18,15	SO12 - Balestra(T3)	SO26 - Gamba (T1)	18,10-18,15	SO39 - Ricci V. (T2)	SO53 - Soave (T3)	
		18,15-18,20	SO13 - Balsamo (T3)	S027 - Cristoforetti (T1)	18,15- 18,20		SO54 - Rossi E. (T1)	
		18,20-18,25	SO14 - Barbi (T3)		18,20- 18,25	SO41 - Signorile (T2)	SO55 - Yazdani (T1)	
				•••		20.00 4	alla 20.00	
	19,00-21,00 Welcome Party		19,00 -20,30 🗛		Tuesferius	20,00 Appuntamento alle 20:00 Trasferimento al Ristorante 20,30 CENA SOCIALE		
	I Sessione Poster (Sala Terrazza)		II Sessione Poste	er (Sala Terrazza)	irasteriment	o ai Kistorante 20,30 CENA	JUCIALE	

1:00-15,15 REGISTRATION							
Bondioli, A. Caneschi, Cecilia, M. Lucia, C.O.)							
ionale Rettore UNICA o Prorettore prof. Fabrizio Pilo							
Chair: Alberto Cigada							
ente PAZIO ITALIA: SFIDE E OPPORTUNITÀ							
iviani AMBROSETTI EUROPE NEL TRASFERIMENTO TECNOLOGICO NEL CAMPO DEI MATERIALI							
Sessione Tematica 2							
Transizione Ecologica & Energia							
10LECULES FOR QUANTUM INFORMATION: THE CHALLENGE OF SINGLE SPIN ADDRESSING							
THESIS, AND PROCESSING OF EXCHANGE-COUPLED NANOCOMPOSITES FOR ADVANCED PERMANENT MAGNETS							
5,51 O3 – Quochi PHOTOPHYSICAL PROPERTIES OF NEAR-INFRARED EMITTING LANTHANIDE-BASED HALIDE DOUBLE PEROVSKITES							
NTALLY FRIENDLY PATHWAY TO KESTERITE NANOPARTICLES WITH CONTROLLABLE TIN CONTENT: AN IN-DEPTH STUDY OF MAGNETICAL AND OPTICAL PROPERTIES							
CONTROL THE PHASE COMPOSITION AND TO TUNE THE LIGHT ABSORPTION PROPERTIES OF NANOMETRIC TIO ₂ FOR SUSTAINABLE PHOTOCATALYTIC REACTIONS							
ese							
POROSITÀ GRADUALE PER CELLE AD OSSIDI SOLIDI PRODOTTI TRAMITE FREEZE TAPE CASTING ED INFILTRAZIONE							
PHOTOELECTROCHEMICAL PERFORMANCES OF FTO SUBSTRATES WITH METAL-ORGANIC FRAMEWORK FILMS							
9-17,51 O8 – Colombo A. NOVEL PERYLENE DIIMIDE DERIVATIVES AS EFFICIENT LUMINOPHORES IN LUMINESCENT SOLAR CONCENTRATORS							
I BATTERY ANODES BASED ON (Mn1/5Fe1/5Co1/5Ni1/5Zn1/5)3O4 NANOFIBERS: CHARGE STORAGE MECHANISM							
an STUDY OF COBALT-ALUMINUM LDH FOR OXYGEN EVOLUTION REACTION							
FACE IR-OXO SPECIE IN TUNING MOLECULAR OXYGEN EVOLUTION ELECTROCATALYSIS BY IRIDIUM OXIDE: NEW INSIGHTS FROM MULTIREFERENCE CALCULATIONS							
IZATION OF SILICA WITH AMINES BY MEANS OF SUPERCRITICAL CO ₂							
erini OLYLACTIC ACID WITH BIOBASED, CHEMICALLY RECYCLABLE, AND SELF-HEALABLE THERMOSET							
19,00-21,00 Welcome Party							
I Sessione Poster (Sala Terrazza)							

	LUNEDÌ 10 GIUGNO					
	Sessione Tematica 2 Transizione Ecologica & Energia					
8,45-9,10	KN1 – Nicola Pinna Novel Materials Chemistry for Energy and Environmental Applications					
9,10-9,22	O14 – Lo Presti SYNTHESIS AND LUMINESCENCE STUDY OF MOCVD-GROWN Eu-DOPED BaF ₂ THIN FILMS FOR ENHANCED ENERGY CONVERSION PHOTOVOLTAIC APPLICATIONS					
9,22-9,34	O15 – Lamberti COPPER-BASED PHOTOELECTRODES DEVELOPMENT FOR HYDROGEN PRODUCTION					
9,34-9,46	O16 – Duranti L. MULTIPURPOSE ELECTRODE FOR SYMMETRIC CO ₂ -SOECS					
9,46-9,58	O17 – Rizzuto A PERFLUORINATED MIL-140A(CE)-BASED MIXED MATRIX MEMBRANES FOR CO₂ CAPTURE					
9,58-10,10	O18 – Colombo V. ADSORPTION PROCESSES IN METAL-ORGANIC FRAMEWORKS: IN SITU INSIGHTS FROM COMBINED X-RAY TECHNIQUES					
10,10-10,22	O19 – Scorciapino COMPUTATIONAL STUDY OF THE IMPACT OF AMINOPROPYL UNITS ON PHYSISORPTION OF CO₂ AND CH₄ IN MESOSTRUCTURED SILICA					
10,2210,34	O20 – Perathoner THE DANTE PROJECT: THE INSTM-ENI COOPERATION FOR CO2 CONVERSION TO E-FUELS THROUGH AN INNOVATIVE APPROACH					
10,34-10,46	O21 – Mulas CO ₂ CONVERSION THROUGH CARBONATION OF SILICATE BASED SYSTEMS INDUCED BY MECHANICAL TREATMENT: REACTIVITY AND KINETIC FEATURES					
	10,46-11,15 Coffee break (sala Terrazza)					
	Sessione Tematica 3 Economia verde e circolare					
11,15-11,40	KN2 – Michela Signoretto From waste to product: examples of circularity					
11,40-11,52	O22 – Acocella GREEN FUNCTIONALIZATION OF TORREFIED BIOMASS VIA MECHANOCHEMICAL APPROACH: NEW OPPORTUNITIES FOR FILLER PRODUCTION					
11,52-12,04	O23 – Alessandri WASTE-BASED HYDROGELS FOR ENVIRONMENTAL AND AGRICULTURAL APPLICATIONS					
12,04-12,16	O24 – Comite PVDF-BASED MICROPOROUS LAYER BY PHASE INVERSION TECHNIQUE USING GREEN SOLVENTS					
12,16-12,28	O25 – Crucianelli DEEP EUTECTIC SOLVENTS ASSISTED GROWTH OF MAGNETIC NANOPARTICLES: A CORRELATION STUDY					
12,28-12,40	O26 – Filippone ENHANCING THE BIODEGRADATION KINETICS OF PLA USING HEMP SHIVE FIBERS					
12,40-12,52	O27 – Garbarino OPPORTUNITIES IN SEAWATER USES: APPLICATIONS AND CIRCULAR ECONOMY					
12,52-13,04	O28 – Levi CHARACTERIZATION AND COMPARISON OF VIRGIN AND RECYCLED POLYPROPYLENE FILAMENT FEEDSTOCKS FOR FUSED FILAMENT FABRICATION 3D PRINTING					
	13,04-14,30 Pausa pranzo (sala Terrazza)					

		Chair:						
14,30-14,42	Giulio Oliviero							
	BILANCIO DI SOSTENIBILITÀ INSTM							
	Sessione Tematica 4 Costruito e Patrimonio Culturale							
14 42 15 07	KN3 – Silvia Prati							
14,42-15,07	TOWARDS THE DEVELOPMENT OF GREEN STRATEGIES FOR THE CONSERVATION OF CULTURAL HERITAGE: THE GOGREEN AND SUPERSTAR PROJECTS							
15,07-15,19	029 – Caioni	COLIDIO LE FILITIFICE. THE COCKLETY MAD SOI ENSIVINATINOSECTS						
	A NOVEL MULTIFUNCTIONAL FINISH FOR THE ENHANCEMENT OF INDOOR AIR QUAI	LITY: THE MAMMUT PROJECT						
15,19-15,31	O30 – Cedillo Gonzàlez							
		RAW MATERIALS-DERIVED PORCELAIN STONEWARE TILES WITH SOLAR REFLECTIVE CHARACTERISTICS: A CASE						
	STUDIO							
15,31-15,43	O31 – Ferone	ACTE IN DECTORATION OF CHILTIDAL HEDITACE						
15,43-15,55	USE OF GEOPOLYMER-BASED MATERIALS CONTAINING PORCELAIN STONEWARE WARE WARE WARE WARE WARE WARE WARE	ASTE IN RESTORATION OF CULTURAL HERITAGE						
15,45 15,55	HIGH-PERFORMANCE ARTIFICIAL LIGHTWEIGHT AGGREGATES BASED ON CEMENT, S	SILICA FUME AND MSWI FLY ASH						
15,55-16,07	O33 – Menegazzo							
	FUNCTIONALIZED SILICA NPs FOR THE CONTROLLED RELEASE OF ANTIMICROBIALS T	O PROTECT CULTURAL HERITAGE FROM BIODETERIORATION						
16,07-16,19	O34 – Porcu							
	PRESERVING ART: SCIENTIFIC IN-DEPTH STUDY ON THE DEGRADATION OF CADMIUN	M PIGMENTS						
16,19-16,31	O35 – Taglieri							
16,31-16,43	ON-SITE PERFORMANCES OF A NEW NANOLIME, OBTAINED BY A SUSTAINABLE AND LARGE-SCALE PROCESS, FOR CONSERVATIVE TREATMENTS OF HISTORIC, ARTISTIC AND ARCHITECTONIC SURFACES							
10,31-10,43	O36 – Sambucci VALORIZATION PATHWAY FOR METALLURGICAL BY-PRODUCTS OF THE PORTOVESME S.R.L. PLANT IN CEMENT-BASED MATERIALS FORMULATION: MECHANICAL, TECHNOLOGICAL BEHAVIOUR AND							
	ENVIRONMENTAL ANALYSIS							
	16,43-17,15	Coffee break (sala Terrazza)						
	Sessioni Parallele Sala Castello	Sessioni Parallele Sala Villanova						
	Chair: Federica Bondioli	Chair: Cecilia Bartuli						
17,15-17,20	SO1 – Alberti (T1)	SO15 – Favuzzi (T5)						
	IRON (III) ANCHORED ON SILICA NANOPARTICLES AS CURING ACTIVATOR FOR	THE ROLE OF SOL-GEL NANOCOATINGS IN THE CONTEXT OF ANTIBACTERIAL/ANTIVIRAL ADVANCED HIGH-						
17 20 17 25	RUBBER VULCANIZATION SO2 Chang (T1)	TRAFFIC SURFACES SO16 – Ghisoni (T5)						
17,20-17,25	SO2 – Cheng (T1) MECHANICAL PROPERTIES OF SINTERLESS 3D PRINTED SILICA GLASS: A MULTI-	CUTICLE-LIKE MORPHOLOGY OBTAINED VIA SOL-GEL SYNTHESIS						
	TECHNIQUE COMPARATIVE STUDY	COTICLE LIKE WORL HOLOGY OBTAINED VIA 30E GLE STIVITIESIS						
17,25-17,30	SO3 – Chiappone (T1)	SO17 - Gulino (T5)						
, ,	VAT 3D PRINTING OF IONICALLY CONDUCTIVE POLYMERS FOR TACTILE SENSORS	PREPARAZIONE E CARATTERIZZAZIONE DI MEMBRANE DI PVA OTTENUTE MEDIANTE HEAT ASSISTED SOLUTION						
		BLOW SPINNING						
17,30-17,35	SO4 – Atzori (T2)	SO18 – Bonaccorsi (T3)						
	MESOPOROUS NI/Zr MIXED OXIDES FOR THE CATALYTIC DRY REFORMING OF	ADSORBENT COMPOSITE MATERIALS FOR HEAT STORAGE AT LOW TEMPERATURE						
17 25 17 40	METHANE SOE Rembes: (T2)	SO10 Coloui (T2)						
17,35- 17.40	SO5 – Bombaci (T2) PRODUCTION, CHARACTERIZATION, AND APPLICATION OF NANOSTRUCTURED	SO19 – Calovi (T3) A SUSTAINABLE MULTILAYER COATING WITH CURCUMIN-DERIVED PIGMENT AND RICE BRAN WAX ADDITIVE						
	SPINEL FERRITE MOCVD FILMS FOR WATER SPLITTING	A 303 TAINABLE WIGETILATER COATING WITH CORCOVING DERIVED FIGURENT AND RICE BRAIN WAS ADDITIVE						
17,40-17,45	SO6 – Casu A. (T2)	SO20 – Cera (T3)						
, , -	UNDERSTANDING THE WORKING MECHANISM OF THERMALLY PROMOTED IN	BIO-CHEMICALS-BASED RECYCLING FOR HARD-METAL WASTES VALORISATION						
	SITU CATION EXCHANGE AT THE SOLID STATE IN A TRANSMISSION ELECTRON							

	MICROSCOPE	
17,45-17,50	SO7 – Seyed Sepehr Moeini (T4)	SO21 – Di Bartolomeo (T2)
	SELF-HEALING BIO-CONCRETE: DEVELOPMENT AND CHARACTERIZATION OF AN	ELETTRODI CON PROPRIETÀ MULTICATALITICHE PER CELLE AD OSSIDI SOLIDI SIMMETRICHE E REVERSIBILI
	INNOVATIVE GREEN MATRIX.	
17,50-17,55	SO8 – Sanfilippo (T4)	SO22 – Maddaloni (T2)
	EFFECT OF CALCIUM HYDROXIDE INNOVATIVE TREATMENT ON THE PROPERTIES	IONIC LIQUIDS-BASED INNOVATIVE SYNTHESIS OF Fe-Ru BIMETALLIC CATALYSTS FOR CO ₂ HYDROGENATION: A
	OF SISAL FIBERS AND THEIR GEOPOLYMER COMPOSITES	SUSTAINABLE APPROACH TOWARDS NET-ZERO FUEL PRODUCTION
17,55-18,00	SO9 – Cagna (T5)	SO23 – Sidoli (T2)
	SURFACE ACTIVATION OF MEDICAL-GRADE TITANIUM DISCS BY CHEMICAL AND	ACTIVATED CARBONS DERIVED FROM AGRIFOOD WASTE FOR HYDROGEN STORAGE
	PHYSICAL OXIDATION PROCESS FOR THE DEPOSITION OF A BIOCOMPATIBLE FILM	
18,00-18,05	SO10 – De Leo (T5)	SO24 – Murgia F. (T2)
	POLYDOPAMINE COATING FOR LIPOSOMES: A POTENTIAL ALTERNATIVE TO	FAST MICROWAVE-ASSISTED SYNTHESES FOR OLD AND NEW POSITIVE ELECTRODES IN CONVENTIONAL AND
	PEGYLATION FOR APPLICATIONS IN BIOMEDICAL FIELD	SOLID-STATE BATTERIES
18,05-18,10	SO11 – Aliotta (T3)	SO25 – Coppola (T1)
	DEVELOPMENT OF SUSTAINABLE ANTIMICROBIAL FILMS TO EXTEND FRUIT AND	DLP OF TEXTURED ALUMINA CERAMICS: POWDERS SYNTHESIS, 3D PRINTING AND MICROSTRUCTURAL
	VEGETABLE SHELF-LIFE	CHARACTERIZATION
18,10-18,15	SO12 – Balestra(T3)	SO26 - Gamba (T1)
	CuMgAl LAYERED DOUBLE HYDROXIDE AS ELECTROCATALYSTS FOR ONE-POT	CORROSION RESISTANT PEO COATING ON ALUMINIUM 2024 WITH A BIOMIMETIC SURFACE FOR
	REDUCTION OF CO₂ TOWARDS C2 PRODUCTS	AERONAUTICAL APPLICATIONS
18,15-18,20	SO13 – Balsamo (T3)	S027 – Cristoforetti (T1)
	OPTIMIZATION OF PROCESS PARAMETERS FOR THE PRODUCTION OF POROUS	THROUGH-MASK ELECTROCHEMICAL ETCHING ON AA2024 FOR FLUID-DRAG REDUCTION
	SYSTEMS BY 3D PRINTING FOR CONTROLLED RELEASE	
18,20 – 18,25	SO14 – Barbi (T3)	
	FeSO ₄ AND FeCl ₂ FUNCTIONALIZED BACTERIAL CELLULOSE THROUGH IN-SITU AND EX-	
	SITU METHODS	
	19,00 -	20,30 Aperitivo

II Sessione Poster (Sala Terrazza)

	MARTEDÌ 11 GIUGNO					
	Sessione Tematica 1					
	Manifatturiero & Aerospazio					
8,45-9,10	KN4 – Fabio Ferracane					
9,10-9,22	O37 – Aronne SOL-GEL SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR QUANTUM SOURCES					
9,22-9,34	O38 – Ingrosso Ag NANOPARTICLES DECORATED REDUCED GRAPHENE OXIDE - SYNTHESIS AND EVALUATION OF LONG-TERM ANTIMICROBIAL ACTIVITY OF THE NOVEL HYBRID NANOCOMPOSITE AS A TEXTILE COATING					
9,34-9,46	O39 – Bavasso PLASMA-ASSISTED GROWTH OF CARBON NANOTUBES ON CONTINUOUS FIBERS AS REINFORCING AGENTS IN MULTIFUNCTIONAL POLYMER COMPOSITES					
9,46-9,58	O49 – Licheri FABRICATION OF HIGH ENTROPY DIBORIDE - SIC COMPOSITES THROUGH SELF PROPAGATING HIGH TEMPERATURE SYNTHESIS AND SPARK PLASMA SINTERING					
9,58-10,10	O41 – Biesuz RAPID FIRING OF 3YSZ: ON THE HEATING RATE IMPACT ON SINTERIN, PROPERTIES AND MICROSTRUCTURE					
10,10-10,22	O42 – Calisi LEAD HALIDE PEROVSKITES AS SENSITIVE MATERIALS FOR SOFT X-RAY RADIATION DETECTION IN SPACE ENVIRONMENTS					
10,22-10,34	O43 – Casu M. PROCESSING AND CHARACTERIZATION OF DENSE (Zr _{0.5} Ta _{0.5})B ₂ AND (Zr _{0.5} Hf _{0.5})B ₂ ULTRA HIGH TEMPERATURE CERAMICS					
10,34-10,46	O44 – Bemporad INTEGRATING HIGH-SPEED NANOINDENTATION AND MACHINE LEARNING: A NEW PARADIGM FOR ADVANCED STEEL DESIGN AND QUALITY ASSESSMENT					
	10,46– 11.15 Coffee break (sala Terrazza)					
	Sessione Tematica 1 Manifatturiero & Aerospazio					
11,15-11,27	O45 – La Mantia MICROPLASTICS POLLUTION: MAIN SOURCES AND THE ROLE OF THE PLASTICS INDUSTRY					
11,27-11,39	O46 – Frache DEVELOPMENT OF A PP-BASED MATERIAL WITH FLAME RETARDANT PROPERTIES FOR 3D PRINTING					
11,39-11,51	O47 – Mariani STAMPA 3D DI MESCOLE ELASTOMERICHE FOTOCURABILI RINFORZATE CON SWCNT, MWCNT, CF E SILICE					
11,51-12,03	O48 – Rossetti HARNESSING POLYETHYLENEIMINE IN 3D PRINTING FOR TUNABLE HETEROGENEOUS CATALYSTS					
12,03-12,15	O49 – Sciancalepore POLYMER NANOCOMPOSITES AS INNOVATIVE ENCODING/DECODING MAGNETIC TAGS					
12,15-12,30	050 - Valentini L. CONTROLLING THE CONFORMATION OF REDISSOLVED SILK FIBROIN FOR PRINTABLE MULTIFUNCTIONAL 3D MATERIALS					
	13,00-14,30 Pausa pranzo (sala Terrazza)					

	Sessione Tematica 3
	Economia Verde e Circolare
14,30-14,42	O51 – Maio
	RAPID PREPARATION OF POLYMER-BASED HIERARCHICAL STRUCTURES
14,42-14,54	O52 – Manzoli
	PLAYING WITH THE SIZE OF GOLD TO DESIGN TAILORED CATALYSTS AND WIN THE MATCH OF METHYL-2-FUROATE SUSTAINABLE PRODUCTION
14,54-15,06	O53 – Rossi D.
	COMPOSITI PER APPLICAZIONI AUTOMBILISTICHE A BASE DI RETI DA PESCA RICICLATE E BIOCHAR
15,06-15,18	054 – Olla
	A SYNERGIC COMPUTATIONAL AND EXPERIMENTAL APPROACH TO CORRELATE STRUCTURE AND PROPERTIES IN CARBON DOTS
15,18-15,30	O55 – Perotto
	VALORIZATION OF BIOMASS INTO HIGH VALUE PRODUCTS: OIL-BASED COATINGS AND THERMOSETS
15,30-15,42	O56 – Dominici
	EFFECT OF PHENOL-RICH EXTRACT FROM CHESNUT (CSW) WASTES ON THERMAL, MECHANICAL, ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF POLYLACTIC ACID FILMS
15,42-15,54	O57 – Sambri
	3D-PRINTING VIA VAT PHOTOPOLYMERIZATION: SUSTAINABLE BIOBASED RESINS CONTAINING LUMINESCENT ADDITIVES
15,54-16,06	O58 – Scarpelli
	ENHANCING NANOCELLULOSE-BASED MATERIAL PROPERTIES THROUGH INORGANIC COMPOUND ADDITION: A PATH TO ADVANCED PERFORMANCE
16,06-16,18	059 – Tabanelli
	ENHANCED REDUCTIVE CATALYTIC FRACTIONATION OF RAW POPLAR WOOD SAWDUST WITH A MAGNETIC RECYCLABLE CATALYST

16,45-17,15 Coffee break (sala Terrazza)

	Sessioni Trasversali - Parallele	Sessioni Parallele
	Sala Castello	Sala Villanova
	Chair: Andrea Caneschi	Chair: Maria Lucia Curri
17,15-17,20	SO28 – Gallichi (T3) PREPARATION AND CHARACTERIZATION OF BIOPOLYMER-BASED COMPOSITES WITH	SO42 – Spennati (T2) (Cu, Ni) CATALYSTS FOR ETHANOL DEHYDROGENATION: EFFECT OF SUPPORT AND SYNTHETIC ROUTE
	NATURAL FILLERS	(cu, Ni) CATALISTS FOR ETHANOL DETINOROGENATION. EFFECT OF SOFT ON TAND STATILETIC ROOTE
17,20-17,25	SO29 – Garofalo (T3)	SO43 – Valentini F. (T2)
	PROCESSABILITY AND FIL PROPERTIES OF POLY(BUTYLENESUCCINATE)/POLY(LACTIDE) BLENDS SUBJECTED TO REPEATED EXTRUSION CYCLES	STABILIZATION OF PHASE CHANGE MATERIALS FOR THE THERMAL MANAGEMENT OF PHOTOVOLTAIC CELLS
17,25-17,30	SO30 – Montini (T3)	SO44 – Rusta (T2)
	SILICA FROM WASTE OF FLUORINE-DERIVATIVES INDUSTRY APPLIED FOR	CERIUM-OXIDE BASED CATALYSTS FOR DIRECT SYNTHESIS OF DIMETHYL CARBONATE FROM CO ₂ AND
	MICROSCAFS® SYNTHESIS	METHANOL
17,30-17,35	SO31 – Gigante G. (T1)	SO45 – Sebastiani (T2)
	A NANOMECHANICAL APPROACH FOR EFFICIENT SUBSTITUTION OF COBALT IN HIGH-ENTROPY ALLOYS AND HARDMETALS FOR THERMAL SPRAYED COATINGS	MICRON-SCALE FRACTURE TOUGHNESS OF 3D PRINTED ALD-COATED NANO-CERAMICS
17,35- 17.40	SO32 – Lerda (T1)	SO46— Mureddu(T3)
	ANALYSIS OF THE MICROSTRUCTURE AND DEFECTS IN INCONEL 738 SUPERALLOY MADE BY ELECTRON BEAM POWDER BED FUSION (EB-PBF)	TOWARDS THE USE OF CATALYSTS WITHOUT ACTIVATION STEP: A CU-CuO/ZnO/ZrO2@SBA-15 NANOCATALYST FOR CO2 TO GREEN METHANOL CONVERSION
17,40-17,45	SO33 – Martinuzzi (T1)	SO47 – Noè (T3)
	DENSE EUTECTIC CERAMIC OXIDE BY ADDITIVE MANUFACTORING: SUSTAINABLE BY- DESIGN MATERIALS AND TECHNOLOGIES (ECOBAM PROJECT)	UV-CURABLE BOBASED ANTICORROSION COATINGS
17,45-17,50	SO34 – Muscas (T1)	SO48 – Padovano (T1)
	THE ROLE OF ANTISITE DEFECTS ON EXCHANGE BIAS IN DOUBLE PEROVSKITES	PROCESSING OF PURE COPPER VIA LASER POWDER BED FUSION USING A GREEN LASER SOURCE

17,50-17,55	SO35 – Liboà (T5)	SO49 – Rigotti (T1)				
	SUSTAINABLE SERICIN COATED NANOLIPIDS, AS TUNABLE PLATFORM FOR DRUG	DESIGN OF ADVANCED SELF-HEALING MECHANISM IN FIBER REINFORCED				
	DELIVERY IN FOOD	COMPOSITE				
17,55-18,00	SO36 – Milazzo (T5)	SO50 – Rizzo (T1)				
	ELECTROSPUN MULTI-LAYERED STRUCTURES WITH ANTIFOULING PROPERTIES	NANOPOROUS CRYSTALLINE POLYMER MATERIALS FOR CONTROLLED RELEASE: STRUCTURAL FEATURES AND				
	INDUCED BY SURFACE MORPHOLOGY	APPLICATIONS				
18,00-18,05	SO37 – Olia (T5)	SO51 – Ruggiu (T3)				
	CITRIC ACID DERIVED CARBON DOTS WITH ANTIOXIDANT ACTIVITY	HIERARCHICAL ZEOLITES PREPARED VIA TEMPLATE-ASSISTED DESILICATION HYDROTHERMAL METHOD FOR				
		CATALYSTS AND ELECTROCATALYSTS PRODUCTION				
18,05-18,10	SO38 – Panebianco (T5)	SO52 – Rossitti (T3)				
	CYCLODEXTRIN NANOPARTICLES CONTAINING TERPYRIDINE MOIETIES:	CLEAVABLE BIO-EPOXY RESIN PRODUCTION PROCESS, FIBER RECOVERY AND THERMOPLASTIC DERIVED				
	EXPLOITING METAL COORDINATION TO MODULATE ANTICANCER PROPERTIES	MATERIAL CHARACTERIZATION				
18,10-18,15	SO39 – Ricci V. (T2)	SO53 – Soave (T3)				
	HYDROGEN EVOLUTION REACTION (HER) PHOTOELECTROCATALYTIC ACTIVITY OF a-	CATALYTIC OXIDATIVE DEGRADATION OF HIGHLY HAZARDOUS CHEMICAL AND BIOLOGICAL CONTAMINANTS				
	SnO2/SnSe ₂ HETEROSTRUCTURES	OVER SULFONIC ACID ION-EXCHANGE RESINS				
18,15 - 18,20	SO40 - Secci (T2)	SO54 – Rossi E. (T1)				
	MESOSTRUCUTRED ALUMINOSILICATES FOR DIMETHYL ETHER PRODUCTION FROM	MULTI-SCALE CHARACTERIZATION AND FABRICATION OF NANOCOMPOSITE CERAMICS WITH IMPROVED				
	CO ₂ : ROLE OF THE NATURE, STRENGTH AND DENSITY OF THE ACID SITES	TOUGHNESS FOR BIOMEDICAL APPLICATIONS				
18,20 – 18,25	SO41 – Signorile (T2)	SO55 – Yazdani (T1)				
	MIXED MATRIX MEMBRANES FOR CO2 TO HYDROCARBONS: THE SEPARATION	FABBRICAZIONE E CARATTERIZZAZIONE ELETTROCHIMICA DI MATERIALI ELETTRODICI CO-FREE PER CELLE AD				
	STAGE IN THE DAM4CO2 PROJECT	OSSIDI SOLIDI				
		ntamento alle 20:00				
	Trasferimento al Ristorante 20,30 CENA SOCIALE					

	MERCOLEDÌ 12 GIUGNO
	Sessione Tematica 5
	Scienze della Vita e dell'alimentazione
8,45-	KN5 – Niloofar Tahmasebi Birgani
9,10	FROM MICRO-ENGINEERED BIOMATERILAS TO MINI-BONES
9,10-9,22	O60 – Barbato
	ENHANCEMENT OF KRAFT PAPER PERFORMANCE WITH MODIFIED PVOH COATINGS FOR SUSTAINABLE FOOD PACKAGING
9,22-9,34	O61 – Biblioteca
	DIFFERENT CULTIVATION SYSTEMS FOR MORE ECO-SUSTAINABLE AND HEALTHY PRODUCTS: TRADITIONAL CULTIVATION VS HYDROPONIC SYSTEM FOR NICKEL-FREE TOMATO
9,34-9,46	O62 – Cabrini
	MONTMORILLONITE/ GRAPHENE OXIDE AND CHITOSAN-BASED THIN FILMS WITH HIGH OXYGEN BARRIER AT HIGH HUMIDITY
9,46-9,58	O63 – Cadeddu
	DESIGN OF DUAL-EMITTING NONAROMATIC FLUORESCENT POLYMERS THROUGH THERMAL TREATMENT OF L-GLUTAMIC ACID AND L-LYSINE
9,58-10,10	O64 – Danti
	ELECTROSPUN BACTERIAL CELLULOSE SCAFFOLDS COATED WITH ELECTROSPRAYED CHITIN NANOFIBRILS FOR EARDRUM REPAIR
10,10-10,22	O65 – Graziani
	NEW ANTIBACTERIAL DRESSINGS FOR THE TREATMENT OF SURGICAL AND NON-SURGICAL WOUNDS IN SPINE SURGERY
10,22-10,34	O66 – Lucignano
	HUMAN H-CHAIN FERRITIN: A MULTITASKING SYSTEM FOR THE DESIGN OF NANOSTRUCTURED BIOMATERIALS
10,34-10,46	O67 – Rizzi
	ADVANCED STIMULI RESPONSIVE NANOSTRUCTURES: MESOPOROUS SILICA CORE@SHELL ARCHITECTURES WITH DAHLIA-LIKE MORPHOLOGY AS INNOVATIVE SMART DRUG DELIVERY PLATFORMS
	TO FIGHT COLORECTAL CANCER
	10,46- 11,30 Coffee break (sala Terrazza)
	Sessione Tematica 5
	Scienze della Vita e dell'alimentazione
11,15-11,27	O68 – Montalbano
	DESIGN OF SMART PLATFORMS FOR APPLICATIONS IN TISSUE REGENERATION AND BIOMARKER DETECTION
11,27-11,39	O69 – Milanese
	PREPARATION AND CHARACTERISATION OF FDM 3D-PRINTED BIOCOMPOSITE SCAFFOLDS FOR BIOMEDICAL APPLICATIONS
11,39-11,51	O70 – Simonetti
	3D PRINTING OF LIQUID CRYSTAL ELASTOMERS AS ARTIFICIAL MUSCLES

POSTER SESSIONS

DOMENICA 9 GIUGNO 2024

P1	Arrigo Rossella	RECYCLED POLYPROPYLENE WITH ENHANCED PROCESSABILITY: EFFECT OF A REPAIRING ADDITIVE	T1
2	Blondelli Francesca	INNOVATIVE POLYIMIDE-BASED MATERIALS WITH SELF-HEALING PROPERTIES FOR SPACE APPLICATIONS	T1
3	Bocchi Pierluigi	RE.MO.PACK - STUDY AND DEVELOPMENT OF AN INNOVATIVE RECYCLABLE MONOMATERIAL FILM AND ITS INTRODUCTION INTO THE FOOD PACKAGING PROCESSES	T1
4	Concas Giorgio	CHARGE ORDERING AND MAGNETIC TRANSITIONS IN NANOSTRUCTURED Ho _{0.5} Ca _{0.5} MnO ₃ MANGANITE	T1
5	Cosola Andrea	3D PRINTING OF MULTIFUNCTIONAL MAGNETO-BASED NANOCOMPOSITES	T1
5	Cuccu Federico	EXPLORING THE MECHANOCHEMICAL BEHAVIOR OF METAL CATALYSTS IN ORGANIC REACTIONS	T1
7	Delogu Francesco	DEVELOPING MECHANOCHEMICAL TECHNOLOGIES TO RENDER CROP-PROTECTION AGROCHEMICALS GREENER (DEMETRA)	T1
8	Duranti Daniele	HIGH-SPEED NANOINDENTATION MAPPING: ENHANCING MEASUREMENT RELIABILITY ON HETEROGENEOUS SOFT MATRIX MATERIALS VIA AN INNOVATIVE PILE-UP ERROR CORRECTION PROTOCOL	T1
9	Formisano Antonio	INCREMENTAL FORMING OF NATURAL FIBRE REINFORCED POLYPROPYLENE COMPOSITES	T1
P10	Improta Ilaria	DESIGN, DEPOSITION AND PERFORMANCE EVALUATION OF CONDUCTIVE INKS FOR WEARABLE ELECTRONICS	T1
11	Miranda Riccardo	AN INNOVATIVE TWO-STEP ELECTROCHEMICAL PROCEDURE AIMED TO IMPROVE THE MECHANICAL PERFORMANCES AND THE CORROSION RESISTANCE OF FIBER METAL LAMINATES	T1
212	Moeini Seyed Sepehr	PYROLYZED PMMA ON CARBON FIBER AS ELECTRODE FOR PIEZOELECTRIC ACOUSTIC SENSOR	T1
P13	Aghapour Ghourichay Sahar	FUNCTIONALIZED CARBON NANOTUBE/PHENYL DOPED G-C3N4 SYSTEM FOR EFFICIENT VISIBLE PHOTOCATALYTIC APPLICATIONS	T2
214	Anwar Usama	BORON NANOPARTICLES AND ITS OPTOELECTRONIC PROPERTIES	T2
15	Baggio Andrea	OPTIMIZATION OF DIRECT INK DEPOSITION PROCESS OF GLASS-CERAMIC SEALANT FOR A NEW GENERATION OF BATTERIES: A DoE APPROACH	T2
16	Basso Maria	PULSED LASER-ANNEALED VO ₂ THIN FILMS FOR H ₂ SENSING APPLICATIONS	T2
17	Baudino Luisa	TITANIUM DIOXIDE NANOTUBES: A VERSATILE MATERIAL FOR ENERGY STORAGE AND MATERIAL RECOVERY APPLICATIONS	T2
18	Cappai Marta	PREPARATION OF NANOSTRUCTURED TIO₂ IN THE GREEN UP PROJECT	T2
19	Casti Federico	TRANSPARENT WOOD AS A NEW BUILDING MATERIAL WITH PHOTO-SWITCHING PROPERTIES	T2
20	Ceraulo Manuela	GEOPOLYMER COMPOSITES WITH CARBON FIBERS FOR APPLICATION IN ENERGY STORAGE SYSTEMS	T2
21	Cocco Andrea	STUDY AND SYNTHESIS OF NEW COUMARINS WITH THERMALLY ACTIVATED DELAYED FLUORESCENCE (TADF) PROPERTIES FOR SENSING APPLICATIONS	T2
22	Depalo Nicoletta	DECODING MOLECULAR ASPECTS OF THE GROWTH AND SURFACE FEATURES OF HIGHLY LUMINESCENT CsPbbr3 NANOPARTICLES FOR THEIR TECHNOLOGICAL APPLICATIONS	T2
23	Fredi Giulia	MULTIFUNCTIONAL SANDWICH COMPOSITES CONTAINING PHASE CHANGE MATERIALS FOR SIMULTANEOUS STRUCTURAL AND THERMAL PERFORMANCE	T2
24	Fuoco Alessio	INNOVATIVE MATERIALS FOR GAS SEPARATION MEMBRANES AND THEIR TRANSPORT PROPERTIES	T2
25	Gabellini Lapo	METAL NITRIDES AND OXYNITRIDES AS CATALYSTS AND CATALYSTS SUPPORT FOR GREEN ENERGY CONVERSION	T2
26	Gatti Teresa	SUSTAINABLE SOLAR CELLS BASED ON NON-TOXIC METAL HALIDE PEROVSKITES	T2
27	Malara Angela	BLACK MASS FROM SPENT LITHIUM-ION BATTERIES AS A POTENTIAL ELECTRODE MATERIAL FOR CAPACITIVE DEIONIZATION OF WATER	T2
28	Sidoli Michele	METAL/METAL OXIDE DECORATED GRAPHENE FOR WATER ELECTROLYSIS	T2
29	Abbà Lorenza	DEVELOPMENT OF FLAME-RETARDANT POLYELECTROLYTE COMPLEX COMPOSITE WITH COLLAGEN-RICH SHAVINGS FROM TANNERY WASTES	T3
30	Barbieri Francesco	DEVELOPMENT OF NEW BIO-COMPOSITE MATERIALS FOR POTENTIAL HOSPITAL WASTEWATER TREATMENT	Т3
31	Bolognesi Francesco	DEVELOPMENT OF NOVEL WOOD POLYMERIC HYBRIDS (WPHS): ASSESSMENT STUDY OF MEDITERRANEAN WOODS	T3
32	Bragaglia Mario	DIGITAL LIGHT PROCESSING (DLP) 3D PRINTING OF SELF-MONITORING CARBON NANOTUBES LOADED BIOBASED RESIN	T3
33	Caggiu Laura	TOWARDS SUSTAINABLE LEAD-FREE BCZT: A COMPARISON BETWEEN SOL-GEL METHOD AND MICROWAVE SOLID-STATE SYNTHESIS	T3
34	Cappello Miriam	BIOBASED POLYURETHANE FOAMS PRODUCED BY USING POLYOLS FROM USED COOKING OIL	T3
35	Carnevale Mattia	SUSTAINABLE COATINGS: LIGNIN AND NOVEL BIO-BASED CROSS-LINKING AGENTS	T3
36	Citarrella Maria Clara	FROM ANCHOVY BONES TO 3D-PRINTED BIOCOMPOSIT FISH CRATES, THE TRANSFORMATION OF A FOOD WASTE INTO A SUSTAINABLE RESOURCE	T3
37	Cocco Simone	SMART PCBs: AN ECO-FRIENDLY PLATFORM TO PCBS VALORIZATION	T3
38	Colucci Giovanna	3D PRINTING OF BIODEGRADABLE SOYBEAN OIL-BASED COMPOSITES	Т3
39	Calvino Martina Maria	UNLOCKING ECO-FRIENDLY SOLUTIONS: INNOVATIVE COMPOSITE GEOPOLYMERIC MATERIALS BASED ONHALLOYSITE CLAY NANOTUBES	T4
P40	Meloni Paola	MARBLE SCRAPS IN ECO-FRIENDLY MORTARS	T4

P41	Botta Luigi	PLA ELECTROSPUN MATS WITH ANTIOXIDANT ACTIVITY FOR FOOD PACKAGING APPLICATIONS	T5
P42	Ciarleglio Gianluca	BIOACTIVE WOUND DRESSINGS BASED ON POLYMER NANOFIBERS FABRICATED BY ELECTROSPINNING	T5
P43	D'Agostino Agnese	ELECTROSPUN TITANIUM DIOXIDE NANOFIBERS FOR BIOMEDICAL APPLICATION: PREPARATION, CHARACTERIZATION AND BIOLOGICAL INVESTIGATION	T5
P44	Daniele Valeria	AN INNOVATIVE AND SUSTAINABLE ROUTE TO PRODUCE MgO NANOPARTICLES TO BE USED IN CANCER THERAPY	T5
P45	De Giorgio Giuseppe	NANOSTRUCTURED SILK FIBROIN CARRIERS AS INNOVATIVE APPROACH FOR PULMONARY DRUG DELIVERY	T5
P46	Depalo Nicoletta	NEW OPPORTUNITIES FOR IMMUNOTHERAPY: CRAFTING LARGE-PORE MESOPOROUS SILICA NANOSTRUCTURES AND NANOSTRUCTURED LIPID	T5
		NANOPARTICLES	
P47	D'Onofrio Ilenia	DESIGN AND FABRICATION OF DRUG-LOADED SILK FIBROIN MICROCARRIERS WITH TAILORED SIZE AND SHAPE FOR DRUG DELIVERY APPLICATION	T5
P48	Fiorati Andrea	DEVELOPMENT OF ACID-FREE CHITOSAN FILMS IN FOOD COATING APPLICATIONS: PROVOLONE CHEESE AS A CASE STUDY	T5
P49	Fiori Federico	PHOTOSTABLE AND BIOCOMPATIBLE CARBON DOTS FROM CITRIC ACID FOR BIOIMAGING	T5
P50	Grimaldi Maria	RAMAN-BASED TECHNOLOGIES FOR CANCER DIAGNOSIS AND THERAPY IN THE PHAST-ETN PROJECT	T5

LUNEDÌ 10 GIUGNO 2024

P31	Vernile Filippo Antonio	ACCELERATED CORROSION ASSESSMENT OF AA1050 EXPOSED TO E27 BIOFUEL	T2
P30	Sirna Lorenzo	HIGHLY STABLE CsPbBr₃ PEROVSKITE PHASES FROM NOVEL β-DIKETONATE GLYME ADDUCTS	T2
P29	Sglavo Vincenzo	FLASH SINTERING OF CARBIDES AND BORIDES	T2
		METABOLITES RELEASE	
P28	Semeraro Paola	OPTIMIZATION OF BIOFUEL PRODUCTION BY MICROBIAL FERMENTATION: A NEW STRATEGY FOR MONITORING SUBSTRATES CONSUMPTION AND	T2
P27	Seggiani Maurizia	NUOVO E SEMPLICE METODO DI FABBRICAZIONE DI PELLETS A BASE DI Li ₄ SiO ₄ -K ₂ CO ₃ PER LA CATTURA DI CO ₂ AD ALTA TEMPERATURA	T2
P26	Schirru Manuela	STRUCTURE AND MORPHOLOGY OF E-WASTE-DERIVED HIGH VALUE METAL NANOPARTICLES	T2
P25	Scamporrino Andrea	PHOTO- AND WATER-DEGRADATION PHENOMENA OF ZNO BIO-BLEND BASED ON POLY(LACTIC ACID) AND POLYAMIDE 11	T2
P24	Scaglione Federico	RAPID FABRICATION OF FE AND PD THIN FILMS AS SERS-ACTIVE SUBSTRATES VIA DYNAMIC HYDROGEN BUBBLE TEMPLATE METHOD	T2
P23	Sacchet Sereno	DISPERSION OF EXPANDED GRAPHITE (EG) IN STEARIC AND PALMITIC ACID MIXTURE FOR THERMAL MANAGEMENT OF PHOTOVOLTAIC CELLS	T2
P22	Rizzardi Ilaria	STUDY OF THE INFLUENCE OF MEMBRANE SURFACE PROPERTIES ON BUBBLE FORMATION AND RELEASE DURING THE AERATION PROCESS	T2
P21	Pozzati Micaela	SYSTEMATIC INVESTIGATION ON THE SURFACTANT-ASSISTED LIQUID PHASE EXFOLIATION OF MoS ₂ AND WS ₂ IN WATER FOR SUSTAINABLE 2D MATERIAL	T2
P20	Perra Francesca	MESOSTRUCTURED SILICA-BASED MATERIALS AS SORBENTS AND CATALYSTS FOR POLLUTANT REMOVAL AND CCU TECHNOLOGIES	T2
P19	Paolucci Valentina	TWO-DIMENSIONAL CrCl ₃ LAYERED TRIHALIDE SENSOR FOR DETECTION OF HUMIDITY, H ₂ AND NO ₂	T2
P18	Morandi Sara	NOVEL INSIGHTS ON THE Pd SPECIATION IN Pd/SSZ-13 AND ON THE ROLE OF H2O IN THE Pd REDUCTION BY CO	T2
P17	Montorsi Monia	PRELIMINARY CHARACTERIZATION OF SPENT ALUMINIUM POWDERS AND THEIR REACTION PRODUCTS FOR HYDROGEN PRODUCTION	T2
P16	Matta Selene	SPACE-CONFINED 2D AND QUASI-2D HALIDE PEROVSKITE SINGLE CRYSTALS	T2
P15	Manna Fabio	A SERIES OF CONDUCTING TETRATHIAFULVALENE-BASED 2D MOFs WITH LANTHANIDES IONS (Dy", Er"&Yb")	T2
P14	Malara Angela	OPTIMITAZION OF ELECTROSPUN NICKEL/MICROPOROUS MATERIAL CATALYSTS FOR METHANATION REACTION	T2
P13	Macario Anastasia	A PROJECT IN THE FRAMEWORK "NEXTGENERATIONEU": SUSTAINABLE PHOTOELECTROCHEMICAL HYDROGEN EVOLUTION - SERGIO	T2
P12	Lai Stefano	WARM WHITE LIGHT EMISSION FROM Cs ₂ Na _{1-x} Ag _x In _{1-y} Bi _y Cl ₆ DOUBLE PEROVSKITE NANOPARTICLES	T2
P11	Hazra Moulika	EFFICIENT VISIBLE-LIGHT-RESPONSIVE CORE-SHELL PHCN-TIO₂ PHOTOCATALYSTS FOR SIMULTANEOUS ORGANIC POLLUTANT REMOVAL AND HYDROGEN PRODUCTION	T1
	Pedro		
P10	Vieira Alexandrino Luis	SMART TEXTILE OF PVDF WITH MORPHING AND PIEZOELECTRIC PROPERTIES	T1
P9	Venturelli Giovanni	3D-PRINTABLE COMPOSITE MATERIALS AS SUSTAINABLE ALTERNATIVES TO LEATHER FOR THE UPCYCLING OF LEATHER WASTE	T1
P8	Valenza Federica	INFLUENCE OF PRODUCTION SYSTEMS AND ANODIZING TREATMENTS ON ADDITIVELY MANUFACTURED MECHANICAL INTERLOCKING STRUCTURES	T1
P7	Savo Valerio	ADVANCED COMBINATORIAL APPROACH TO ASSESS PROCESSING AND ENVIRONMENTAL DAMAGE IN TITANIUM THIN FOILS	T1
P6	Santi Sofia	RICICLO DI POLIURETANO TERMOPLASTICO IMPIEGATO IN STAMPANTI 3D BINDER JET	T1
P5	Ricci Carlo	UNVEILING HIDDEN PRINTS: OPTICALLY STIMULATED LUMINESCENCE FOR LATENT FINGERPRINT DETECTION	T1
P4	Rashid Sagib	ADVANCEMENTS IN RESIDUAL STRESS ANALYSIS VIA ION BEAM MICROSCOPY: NEW PERSPECTIVES AND HIGH-RESOLUTION PROTOCOLS FOR INDUSTRY	T1
P3	Pia Giorgio	INVESTIGATING ISOTHERMAL ANNEALING EFFECTS ON NANOPOROUS GOLD LIGAMENT MORPHOLOGY	T1
P2	Pelucchi Mattia	DEVELOPMENT OF GRAPHENE-BASED ANTI-CORROSIVE COATINGS FOR HYDROGEN TRANSPORT NETWORKS	T1
P1	Paleari Lorenzo	3D-PRINTED SOFT MAGNETIC COMPOSITES FOR BRUSHLESS MOTORS IN SPACE COLONIZATION APPLICATIONS	T1

	1		
P32	Vitillo Jenny	GREEN UP: GREENER NANOMATERIALS FOR UPCONVERSION IN PHOTOCATALYTIC APPLICATIONS	T2
P33	De Luca Stefano	DESIGN, REALIZATION AND CHARACTERIZATION OF BIOCOMPOSITE MATERIALS BASED ON BREWER'S SPENT GRAIN	T3
P34	Gigante Vito	DEVELOPMENT OF CELLULOSE BIO-BASED RECYCLABLE BIOCOMPOSITES FOR 3D-PRINTING AND INJECTION MOLDING ITEMS	T3
P35	Gorrasi Giuliana	HEMP FIBERS MODIFIED WITH GRAPHITE OXIDE AS GREEN SOLUTION FOR WATER REMEDIATION	T3
P36	Guida Luca	3D-PRINTABLE LEATHER SCRAP-POLYMER COMPOSITE MATERIALS IN A CIRCULAR ECONOMY PERSPECTIVE	T3
P37	Guiotto Virginia	THE ROLE OF FLUORINE FUNCTIONALIZATION ON THE FLEXIBLE BEHAVIOUR OF NOVEL Ce/Al-BASED METAL ORGANIC FRAMEWORKS	T3
P38	Lazzarini Andrea	CERIUM DOPED METAL ORGANIC FRAMEWORKS CATALYSTS FOR WATER SPLITTING REACTION	T3
P39	Marinelli Andrea	FIBRE-BASED PACKAGING AND DISPERSION COATINGS: INVESTIGATION ON THE BARRIER, CONVERTING, AND RECYCLING PERFORMANCE	T3
P40	Mistretta Maria Chiara	EFFECT OF ADDING MANDARIN PEELS POWDERS ON BIOPOLYMER BLENDS	T3
P41	Mureddu Marzia	MECHANISM AND PROPERTIES OF EMERGING LEAD-FREE BCZT PEROVSKITE	T3
P42	Maria Carlo Carbonaro	SELECTING MOLECULAR OR SURFACE CENTERS IN CARBON DOTS-SILICA HYBRIDS TO TUNE THE OPTICAL EMISSION	T3
P43	Pastorino Andrea	POLYMERIC WASTE PYROLYSIS, KINETIC ASPECTS AND PRODUCTS VALORIZATION	T3
P44	Porcarello Matilde	DESIGN OF BIOBASED UV CURABLE FORMULATIONS FOR 3D PRINTING	T3
P45	Pulvirenti Luca	PHOTOCATALYTIC DEGRADATION OF POLLUTANTS BY NANOMETRIC BIMETALLIC-MOF: NON-TOXICITY AND LOW ENVIRONMENTAL IMPACT	T3
P46	Romani Alessia	VALORIZING SCRAPS FROM THE LEATHER INDUSTRY THROUGH ADDITIVE MANUFACTURING: DIRECT INK WRITING AND NONPLANAR SLICING FOR	T3
		PERSONALIZED PRODUCTS IN THE WATCH SECTOR	
P47	Sanna Anna Laura	MOLECULAR PACKING OF THIOPHENE DERIVATIVES: THE ROLE OF THIOCARBONYL-DIHALOGEN INTERACTIONS	T3
P48	Scaffaro Roberto	HIGH PERFORMANCE GREEN COMPOSITES WITH GRAPHENE OXIDE-COATED DWARF PALM FIBERS	T3
P49	Taherinezhad Tayebi	PHYSICAL, MORPHOLOGICAL, AND MECHANICAL CHARACTERIZATION OF RECYCLED HYBRID NON-WOVEN MATS AS A CONTINUOUS FIBROUS	T3
	Sara	REINFORCEMENT FOR NOVEL ECO-SUSTAINABLE PMMA THERMOPLASTIC COMPOSITES FABRICATION	
P50	Togliatti Elena	STUDY OF POTENTIAL BIOLOGICAL RECYCLING THROUGH ANAEROBIC FERMENTATION OF PHBV BLENDED WITH BIOPLASTICIZER	T3
P51	Viscusi Gianluca	REMOVAL OF METHYL ORANGE AND PHARMACEUTICAL COMPOUNDS FROM WASTEWATERS BY COPPER-MODIFIED HEMP FIBERS	T3
P52	Murgia Simone	ADVANCED INORGANIC CONSOLIDANTS FOR CARBONATE ROCKS PRESERVATION	T4
P53	Rosace Giuseppe	SYNTHESIS AND CHARACTERIZATION OF INORGANIC SILICA-BASED COATINGS TO PROTECT CULTURAL HERITAGE TEXTILES	T4
P54	Innocenzi Plinio	INTEGRATING 2D MATERIALS INTO MESOPOROUS FILMS, AN ADVANCED FUNCTIONAL PLATFORM	T5
P55	Luzi Francesca	DEVELOPMENT AND CHARACTERIZATION OF COST-EFFECTIVE 3D BIOPRINTABLE HYDROGELS	T5
P56	Mastrogiacomo Rita	ADVANCE IN LIPOSOMAL NANOFORMULATIONS: TARGETING NLRP3 INFLAMMASOME FOR FATTY LIVER DISEASE TREATMENT	T5
P57	Mohamed Sara Saber	MESOPOROUS SILICA MICROSPHERES CONTAINING TRANEXAMIC FOR HEMOSTATIC APPLICATION	T5
	Younes		
P58	Palmieri Francesco	PRODUCTION AND CHARACTERIZATION OF INNOVATIVE BIODEGRADABLE FILMS BASED ON PBS/BVOH BLENDS	T5
P59	Pavarini Matteo	TUNING THE CORROSION RESISTANCE OF MAGNESIUM FOR IN VIVO APPLICATIONS BY BIPOLAR PLASMA ELECTROLYTIC OXIDATION	T5
P60	Scano Alessandra	MECHANOSYNTHESIS OF NANOMATERIALS FOR BIOMEDICAL APPLICATIONS. QUO VADIS?	T5
P61	Trucillo Paolo	PHYSICAL EXPANSION OF PCL-FOAMS LOADED WITH AQUEOUS EXTRACT OF HIBISCUS SABDARIFFA	T5
P62	Turilli Laura	AN INNOVATIVE AND SUSTAINABLE SYNTHESIS FOR THE PRODUCTION OF IRON OXIDES NANOPARTICLES COATED WITH BIOCOMPATIBLE POLYMERS FOR	T5
		BIOMEDICAL FIELD	
P63	Zavagna Lorenzo	GELLAN GUM MICROPARTICLES FOR INTESTINE-TARGETED DELIVERY OF PROBIOTICS	T5
P64	Morreale Marco	APPLICATIONS OF BIODEGRADABLE POLYMERS AND PAPER FOR THE PACKAGING INDUSTRY	T3