
Journal of Computational Physics 478 (2023) 111984
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A matrix–free high–order solver for the numerical solution of 

cardiac electrophysiology

P.C. Africa a,∗, M. Salvador a, P. Gervasio b, L. Dede’ a, A. Quarteroni a,c

a MOX – Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci, 32, 20133 Milano, Italy
b DICATAM, Università degli Studi di Brescia, Via Branze, 38, 25123 Brescia, Italy
c Mathematics Institute, École Polytechnique Fédérale de Lausanne, Av. Piccard, CH-1015 Lausanne, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 May 2022
Received in revised form 13 January 2023
Accepted 28 January 2023
Available online 3 February 2023

Keywords:
Cardiac electrophysiology
Matrix–free solver
Spectral element method
High performance computing
Geometric multigrid

We propose a matrix–free solver for the numerical solution of the cardiac electrophysiology 
model consisting of the monodomain nonlinear reaction–diffusion equation coupled 
with a system of ordinary differential equations for the ionic species. Our numerical 
approximation is based on the high–order Spectral Element Method (SEM) to achieve 
accurate numerical discretization while employing a much smaller number of Degrees 
of Freedom than first–order Finite Elements. We combine vectorization with sum–
factorization, thus allowing for a very efficient use of high–order polynomials in a high 
performance computing framework. We validate the effectiveness of our matrix–free solver 
in a variety of applications and perform different electrophysiological simulations ranging 
from a simple slab of cardiac tissue to a realistic four–chamber heart geometry. We 
compare SEM to SEM with Numerical Integration (SEM–NI), showing that they provide 
comparable results in terms of accuracy and efficiency. In both cases, increasing the local 
polynomial degree p leads to better numerical results and smaller computational times 
than reducing the mesh size h. We also implement a matrix–free Geometric Multigrid 
preconditioner that results in a comparable number of linear solver iterations with respect 
to a state–of–the–art matrix–based Algebraic Multigrid preconditioner. As a matter of 
fact, the matrix–free solver proposed here yields up to 45× speed–up with respect to 
a conventional matrix–based solver.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical and numerical modeling of cardiac electrophysiology provides meaningful tools to address clinical prob-
lems in silico, ranging from the cellular to the organ scale [1–5]. For this reason, several mathematical models and methods 
have been designed to perform electrophysiological simulations [6,7]. Among these, we consider the monodomain equation 
coupled with suitable ionic models, which describes the space–time evolution of the transmembrane potential and the flow 
of chemical species across ion channels [8].

This set of combined partial and ordinary differential equations describes solutions that resemble those of a wavefront 
propagation problem, i.e. manifesting very steep gradients. Despite being extensively used [9–12], the Finite Element Method 
(FEM) with first order polynomials does not seem to be the most suitable to properly capture the physical processes under-

* Corresponding author.
E-mail address: pasqualeclaudio.africa@polimi.it (P.C. Africa).
https://doi.org/10.1016/j.jcp.2023.111984
0021-9991/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2023.111984
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.111984&domain=pdf
mailto:pasqualeclaudio.africa@polimi.it
https://doi.org/10.1016/j.jcp.2023.111984


P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
lying cardiac electrophysiology [13]. Indeed, in such cases, a very fine mesh resolution is required to obtain fully convergent 
numerical results [14], which calls for an overwhelming computational burden.

High–order numerical methods come into play to tackle this specific issue: Spectral Element Method (SEM) [15–17], 
high–order Discontinuous Galerkin (DG) [18,19], Finite Volume Method (FVM) [20], or Isogeometric Analysis (IGA) [21] ac-
count for small numerical dispersion and dissipation errors while allowing for converging numerical solutions with less 
Degrees of Freedom (DOFs) [22–25]. However, the use of high–order polynomials in matrix–based solvers for complex sce-
narios has been hampered by several numerical challenges, which are mostly related to the stiffness of the discretized 
monodomain problem [26].

In this context, we develop and implement a high–order matrix–free numerical solver that can be readily employed for 
CPU–based, massively parallel, large–scale numerical simulations. Since there is no need to assemble any matrix, all the 
floating point operations are associated with matrix–vector products that represent the most demanding computational 
kernels at each iteration of iterative solvers. Thanks to vectorization [27], which enables algebraic operations on multiple 
mesh cells at the same time, and sum–factorization [28,29], the higher the polynomial degree, the higher the computational 
advantages provided by the matrix–free solver [23,30]. Moreover, the small memory occupation required by the matrix–free 
implementation allows for its exploitation in GPU–based cardiac solvers [31–33].

In this manner, we obtain very accurate and efficient numerical simulations for cardiac electrophysiology, even if the 
linear solver remains unpreconditioned. Additionally, we implement a matrix–free Geometric Multigrid (GMG) precondi-
tioner that is optimal for the values of h (mesh size) and p (polynomial degree) considered in this paper when continuous 
model properties (i.e. a single ionic model and a continuous set of conductivity coefficients) are employed throughout the 
computational domain.

We present different benchmark problems of increasing complexity for cardiac electrophysiology, ranging from the 
Niederer benchmark on a slab of cardiac tissue [34] to a whole–heart numerical simulation. We focus on two high–order 
discretization methods, namely, we compare SEM to SEM with Numerical Integration (SEM–NI), following the notations 
introduced in [17]. These two methods differ in the use of quadrature formulas, namely Legendre–Gauss for SEM and 
Legendre–Gauss–Lobatto for SEM–NI. Numerical results of Section 5 show that the two methods feature a similar behavior
in terms of both accuracy and computational costs. In both cases, choosing a higher polynomial degree p leads to a fairly 
more beneficial ratio between accuracy and computational costs than reducing the mesh size h. For instance, working with 
two discretizations with the same number of DOFs on the Niederer benchmark, the solution computed with Q4 (local 
polynomials of degree 4 with respect to each spatial coordinate) and average mesh size havg = 0.48 mm is more accurate 
than the one obtained with Q1 and average mesh size havg = 0.12 mm. Moreover, the former one has been computed at a 
computational cost that is about 40% of the latter one.

We also evaluate the performance of our matrix–free solver: a 45× speed–up is achieved with respect to the matrix–
based solver. Furthermore, while with the matrix–based implementation the assembling and solving phases of the mon-
odomain problem take more than 70% of the total computational time, which also includes the solution of the system 
of ODEs associated with the coupled ionic models and the evaluation of the ionic current at each time step, plus some 
negligible initialization stages, this value drops to approximately 20% with the matrix–free solver.

The mathematical models and the numerical methods contained in this paper have been implemented in lifex [35]
(https://lifex .gitlab .io/), a high-performance C++ library developed within the iHEART project and based on the deal.II
(https://www.dealii .org) Finite Element core [36].

The outline of the paper is as follows. We describe the monodomain model in Section 2. We address its space and 
time discretizations in Section 3. We propose the matrix–free solver for cardiac electrophysiology and the matrix–free 
GMG preconditioner in Section 4, discussing details about vectorization, sum–factorization and highlighting similarities and 
differences between the matrix–based and the matrix–free solvers. Finally, the numerical results in Section 5 demonstrate 
the high efficiency of our high–order SEM matrix–free solver against the low–order FEM matrix–based one.

2. Mathematical model

For the mathematical modeling of cardiac electrophysiology, we consider the monodomain equation coupled with suit-
able ionic models [6,8]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ

(
Cm

∂u

∂t
+ Iion(u, w, z)

)
− ∇ · (DM∇u) = χIapp(x, t), in � × (0, T ],

(DM∇u) · n = 0, on ∂� × (0, T ],
dw

dt
= H(u, w, z), in � × (0, T ],

dz

dt
= G(u, w, z), in � × (0, T ],

u(x,0) = u0(x), w(x,0) = w0(x), z(x,0) = z0(x), in �.

(1)

The unknowns are: the transmembrane potential u, the vector w = (w1, . . . , w M) of the probability density functions of 
M gating variables, which represent the fraction of open channels across the membrane of a single cardiomyocyte, and the 
2

https://lifex.gitlab.io/
https://www.dealii.org


P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
vector z = (z1, . . . , zP ) of the concentrations of P ionic species. For the sake of simplifying the notation, in the following 
the membrane capacitance per unit area Cm and the membrane surface–to–volume ratio χ are set equal to 1.

The mathematical expressions of the functions H (u, w, z) and G(u, w, z), which describe the dynamics of gating vari-
ables and ionic concentrations respectively, and the ionic current Iion(u, w, z) strictly depend on the choice of the ionic 
model. Here, the TTP06 [37] ionic model is adopted for the slab and ventricular geometries, while the CRN [38] ionic model 
is employed for the atria. The action potential is triggered by an external applied current Iapp(x, t).

The diffusion tensor DM is expressed as follows

DM = σlf0 ⊗ f0 + σts0 ⊗ s0 + σnn0 ⊗ n0, (2)

where the vector fields f0, s0 and n0 express the fiber, the sheetlet and the sheet–normal (cross–fiber) directions, re-
spectively [39,40]. We also define longitudinal, transversal and normal conductivities as σl, σt, σn ∈ R+ , respectively [39]. 
Homogeneous Neumann boundary conditions are prescribed on the whole boundary ∂� to impose the condition of electri-
cally isolated domain, n being the outward unit normal vector to the boundary.

In this paper, the computational domain � ⊂ R3 is represented either by a slab of cardiac tissue or by the Zygote 
geometry [41].

3. Space and time discretizations

In order to discretize in space the system (1), we adopt SEM [15–17,42,43], a high-order method that can be recast in 
the framework of the Galerkin method [13].

We consider a family of hexahedral conforming meshes, satisfying standard assumption of regularity and quasi–
uniformity [13], and let h > 0 denote the mesh size.

At each time, we look for the discrete solution belonging to the space of globally continuous functions that are the 
tensorial product of univariate piecewise (on each mesh element) polynomial functions of local degree p ≥ 1 with respect 
to each coordinate. The local finite element space is referred to as Qp , while we denote by Vh,p the global finite dimensional 
space.

When using SEM, the univariate basis functions are of Lagrangian (i.e., nodal) type and their support nodes xi are the 
Legendre–Gauss–Lobatto quadrature nodes (see, e.g., [44, Ch. 2]), suitably mapped from the reference interval [−1, 1] to the 
local 1D elements.

One of the main features of SEM is that, when the data are smooth enough, the induced approximation error decays 
more than algebraically fast with respect to the local polynomial degree. Indeed, it is said that SEM features exponential or 
spectral convergence. At the same time, the convergence with respect to the mesh size h behaves as in FEM. More precisely, 
if u ∈ Hs(�), with s > 3

2 , denotes the exact solution of a linear second–order elliptic problem in a Lipschitz domain � and 
uSEM ∈ Vhp is its SEM approximation, the following error estimate holds

‖u − uSEM‖H1(�) ≤ Chmin(p+1,s)−1 p1−s‖u‖Hs(�). (3)

We refer, e.g., to [17,45] for an experimental support to this estimate.
SEM can be considered as a special case of hp−FEM ([43,46,47]) with nodal basis functions and conforming hexahedral 

meshes.
Typically, when using SEM, the integrals appearing in the Galerkin formulation of the differential problem (1) are com-

puted by the composite Legendre–Gauss (LG) quadrature formulas (see [17,44]). In principle, one can choose LG formulas 
of the desired order of exactness to guarantee a highly accurate computation of all the integrals appearing in (1). However, 
a typical choice is to use LG formulas with (p + 1) quadrature nodes, which guarantees that the entries of both the mass 
matrix and the stiffness matrix with constant coefficients are computed exactly while keeping the computational costs not 
too large [30,48].

A considerable improvement in reducing the computational times of evaluating the integrals consists of using Legendre–
Gauss–Lobatto (LGL) quadrature formulas (instead of LG ones), again with (p + 1) nodes that now coincide with the support 
nodes of the Lagrangian basis functions. This results into the so–called SEM–NI method (NI standing for Numerical Integra-
tion). Since the Lagrangian basis functions are mutually orthogonal with respect to the discrete L2−inner product induced 
by the LGL formulas, the mass matrix of the SEM–NI method is diagonal, although not integrated exactly; this is a great 
strength of SEM–NI in solving time–dependent differential problems through explicit methods when the mass matrix is as-
sembled. On the other hand, as the degree of exactness of LGL quadrature formulas using (p +1) nodes along each direction 
is 2p − 1, the integrals associated with the nonlinear terms of the differential problem may introduce quadrature errors and 
aliasing effects that are as significant as the nonlinearities.

We remark that Q1−SEM is equivalent to Q1−FEM, while Q1−SEM–NI is in fact Q1−FEM in which the integrals are 
approximated by the trapezoidal quadrature rule [13].

We choose the same local polynomial degree p (and then the same finite dimensional space) for approximating the 
transmembrane potential u, the gating variables wi (for i = 1, . . . , M) and the ionic concentrations zi (for i = 1, . . . , P ) at 
each time t ∈ (0, T ].
3



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
All the time derivatives appearing in Equation (1) have been approximated using the 2nd–order Backward Differentiation 
Formula (BDF2) over a discrete set of time steps tn = n�t, n = 0, . . . , N , being �t the time step size.

One may wonder whether the BDF2 scheme is accurate enough for our simulations, even when high-order spatial dis-
cretizations (Q3 and Q4 SEM) are used, or if it is better to consider higher order methods like, e.g., the BDF3 scheme. To 
remove any doubt, we have approximated the heat equation in a two–dimensional domain, with discretization parameters 
similar to those used in our simulations. We have verified that, with these discretization parameters, the errors in space 
overbear those in time, thus making the use of BDF3 worthless. Moreover, we remark that, while BDF2 is absolutely stable, 
BDF3 is not, then special care should be given to the choice of the time step. We refer to Appendix A for a more in–depth 
analysis.

Regardless of the quadrature formula (LG or LGL), the algebraic counterpart of the monodomain problem (1) reads: given 
w0, z0 and u0, and suitable initializations for w1, z1 and u1, then, for any n ≥ 1, find wn+1, zn+1 and un+1 by solving the 
following partitioned scheme:⎧⎪⎪⎨⎪⎪⎩

3wn+1 − 4wn + wn−1

2�t
= H(u∗,wn+1, zn+1),

3zn+1 − 4zn + zn−1

2�t
= G(u∗,wn+1, zn+1),

(4a)

M
3un+1 − 4un + un−1

2�t
+ Kun+1 = sn+1 + fn+1. (4b)

The arrays un+1 and wn+1 and zn+1 contain the SEM or SEM–NI DOFs of the transmembrane potential, gating variables 
and ionic concentrations, respectively, M and K are the SEM or SEM–NI mass and stiffness matrices, respectively, and fn+1

i =
Iapp(xi, tn+1). The entries of sn+1 are computed with Ionic Current Interpolation (ICI) [49], i.e.,

sn+1
i = −

∫
�

⎛⎝∑
j

Iion(u∗
j ,wn+1

j , zn+1
j )ϕ j

⎞⎠ϕi, (5)

with ϕi the ith Lagrange basis function of the finite dimensional space Vh,p . We remark that, when SEM–NI with LGL 
quadrature formulas are employed, ICI coincides with Lumped–ICI [50], as the lumping of the SEM mass matrix coincides 
with the SEM–NI mass matrix.

If we set u∗ = un+1, then we recover the fully implicit BDF2 scheme. Nevertheless, we highlight that the function Iion
is typically strongly nonlinear. To overcome the drawbacks of this nonlinearity, we adopt the extrapolation formula u∗ =
2un − un−1 of un+1, that is second–order accurate with respect to �t . The resulting semi–implicit scheme is 2nd–order 
accurate in time when �t → 0 (see, e.g., [51]).

The ordinary differential equations (4a) are associated with the ionic model and provide both the gating variables and 
the ionic species, while Equation (4b) is the discretization of the monodomain equation and its solution at the generic time 
step n ≥ 1 is obtained by solving the linear system

Aun+1 = bn+1, (6)

where

A = 3

2�t
M + K, bn+1 = 1

2�t
M(4un − un−1) + sn+1 + fn+1. (7)

Solving the linear system (6) represents the most computationally demanding part of Equation (4). We refer to Section 5, in 
particular to Table 8, for further details about this specific aspect.

4. Matrix–free and matrix–based solvers

As in FEM, the matrix A based on either SEM or SEM–NI has a very sparse structure, thus iterative methods are the 
natural candidates to solve the linear system (6). Since A is symmetric and positive definite, we have adopted the Conjugate 
Gradient (CG) method or its preconditioned version (PCG).

Excluding the preconditioner step, the most expensive part of one CG–iteration is the evaluation of a matrix–vector 
product Av, where v is a given vector.

Typically, in a conventional matrix–based solver, the matrix A is assembled and stored in sparse format, then referenced 
whenever the matrix–vector product has to be evaluated, i.e. during each CG iteration. The matrix–based solver aims at 
minimizing the number of floating point operations required for such evaluation and is a winning strategy in Q1−FEM 
discretization for which the band of the matrix A is small.

When SEM or SEM–NI discretizations of local degree p are employed, each cell counts (p + 1)3 DOFs. It follows that 
the typical bandwidth of SEM (or SEM–NI) stiffness matrices is about C(p + 1)3 (where C is the maximum number of 
4



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 1. Comparison between scalar and vectorized operations.

Fig. 2. Vectorization in a parallel framework: when the original mesh is partitioned and distributed among multiple computational units, vectorization is 
applied at the level of each processor (in this example, 4 parallel processors are considered). Here, different colors refer to different parallel units and 
light/dark variations represent different vectorized batches (in this example, vectorization acts on 8 cells). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

cells sharing one node of the mesh) and it exceeds widely that of Q1−FEM stiffness matrices. The large bandwidth of the 
SEM matrix A can worsen the computational times of accessing the matrix entries, thus deteriorating the efficiency of the 
iterative solver.

Moreover, in modern processors, access to the main memory has become the bottleneck in many solvers for partial 
differential equations: a matrix–vector product based on matrices requires far more time waiting for data to arrive from 
memory than on actually doing the floating point operations. Thus, it is demonstrated to be more efficient to recompute 
matrix entries – or rather, the action of the differential operator represented by these entries on a known vector, cell by cell 
– rather than looking up global matrix entries in the memory, even if the former approach requires a significant number of 
additional floating point operations [30].

This approach is referred to as matrix–free. In practice, shape functions values and gradients are pre-computed for each 
basis function on the reference cell, for each quadrature node. Then, the Jacobian of the transformation from the real to the 
reference cell is cached, thus improving the computational cost of the evaluation.

4.1. Vectorization and sum–factorization

In FEM solvers (and, similarly, in SEM ones), the cell–wise computations are typically exactly the same for all cells, 
and hence a Single–Instruction, Multiple–Data (SIMD) stream can be used to process several values at once (see Fig. 1). 
Vectorization is a SIMD concept, that is, one CPU instruction is used to process multiple cells at once. Modern CPUs support 
SIMD instruction sets to different extents, i.e. one single CPU instruction can simultaneously process from two doubles (or 
four floats) up to eight doubles (or sixteen floats), depending on the underlying architecture [52]. Additionally, vectorization 
can also be combined to a distributed memory parallelism [53]. In our case, the mesh cells and degrees of freedom are 
partitioned and distributed among different parallel processing units via MPI [54], resulting in the scheme shown in Fig. 2.

Vectorization is beneficial only in arithmetic intensive operations, whereas additional computational power becomes use-
less when the workload bottleneck is the memory bandwidth. For this reason, vectorization is typically not used explicitly 
in matrix–based Finite Element codes, whose computational efficiency is dominated by memory access. On the other hand, 
matrix–free solvers can easily benefit from the additional computational speed–up brought in by vectorized operations. As a 
5



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
matter of fact, in this case a matrix–vector product results from recomputing the local action of the matrix on the vector, 
cell by cell, every time that it is needed, rather than accessing global matrix entries in the memory. In our matrix–free 
Algorithm 2, vectorization acts on the cell loop performed at line 13.

Finally, thanks to the fact that the multivariate SEM Lagrange basis is of tensorial type, in order to reduce the com-
putational complexity of one evaluation of the product Av, sum–factorization can also be exploited [28,29,55]. In this way, 
the matrix–vector product for the Laplace operator in the generic three dimensional cell requires only 9(p + 1) floating 
point operations instead of (p + 1)3 per degree of freedom, resulting in a complexity equal to O

(
9(p + 1)4

)
instead of 

O
(
(p + 1)6

)
, and this still plays in favor of repeating computations rather than accessing the memory (see [56, Section 

2.3.1] and [44, Section 4.5.1]).
On these bases, a high–order matrix–free solver is more efficient both in terms of memory occupation (no system matrix 

is assembled and stored globally) and computational time [30], as we will also show in Section 5.

4.2. Application to cardiac electrophysiology

In Algorithms 1 and 2 we display the computational workflow resulting from applying the matrix–free and the matrix–
based solver to problem (4), respectively. The different phases are listed. We highlight that the operations needed to solve 
the ionic model (4a) and to compute Iion are the same for both algorithms.

In the following, the expression assembly phase will refer to the assembly of the right–hand side, in the case of the 
matrix–free solver, and to the assembly of both the right–hand side and the system matrix, in the case of the matrix–based 
solver. On the other hand, the linear solver phase of the matrix–free algorithm encloses also a cell loop for computing the 
local action of the discretized operator at each CG iteration, which is not required in the matrix–based case.

Finally, we remark that the diffusion tensor DM is evaluated as in Equation (2) at every quadrature point, resulting in 
9(p + 1)3 additional memory accesses per cell.

Both Algorithms 1 and 2 are run in parallel as described in the previous section, by distributing all loops over DOFs and 
cells according to the mesh partitioning. For the sake of simplicity, the application of suitable preconditioners is omitted 
from the listings. More details on this topic are discussed in the next section.

4.3. A Geometric Multigrid matrix–free preconditioner

In order to precondition the CG method we have chosen Multigrid preconditioners. For the matrix–based solver, the 
Algebraic Multigrid (AMG) preconditioner [57,58] turns out to be a very efficient choice. Nevertheless, its implementation 
requires the explicit knowledge of the entries of the matrix A.

Hybrid multigrid algorithms with matrix–free implementation for high–order discretizations have recently been proposed 
and discussed in [59,60]. In particular the methods proposed in [60] combine h−coarsening, p−coarsening, and AMG on 
the coarsest level, and they fully exploit the advantages of matrix–free algorithms with sum–factorization for the multigrid 
smoothers. The matrix assembly at the coarsest level is however required to implement the AMG solver. We refer to [60]
for an interesting presentation of hybrid multigrid techniques and of the challenges to face for improving the efficiency of 
these algorithms.

To overcome the drawback of assembling the matrix A even at the coarsest level, we have adopted a fully Geometric 
Multigrid (GMG) preconditioner, more precisely the high–order h–multigrid preconditioner [61], which uses p–degree inter-
polation and restriction among geometrically coarsened meshes. GMG methods are among the most efficient solvers for 
linear systems arising from the discretization of elliptic partial differential equations, offering an optimal complexity O(n)

in the number of unknowns n, and they are often used as very efficient preconditioners (see [32,57,62,63] and the literature 
cited therein).

In the spirit of [30,32], our GMG implementation relies on the simple yet effective scheme that considers a polynomial 
variant of the point–Jacobi smoother, namely a Chebyshev method with optimal parameters determined by an eigenvalue 
estimation based on Lanczos iterations [64]. This choice turns out to be very efficient in a matrix–free context because all 
its computational kernels, including the smoother and the transfer between different grid levels, are based on matrix–vector 
products involving suitable collections of mesh cells [64]. In our case, a hierarchical collection of octree meshes is built by 
the recursive subdivision of each cell into 8 subcells, starting from a coarse mesh T0 of size h0, as shown in Fig. 3. Despite 
the higher throughput provided by multigrid in single precision [30], due to the high accuracy required by the monodomain 
problem at hand we decided to evaluate our GMG preconditioner in double precision, consistently with the matrix and 
vector representations within the CG solver.

5. Numerical results

We present several numerical simulations of cardiac electrophysiology. First, we consider a benchmark problem on a slab 
of cardiac tissue [34], in order to compare SEM against SEM–NI and matrix–free against matrix–based in terms of computa-
tional efficiency and numerical accuracy. Then, we employ the Zygote left ventricle geometry [41] and we analyze the sole 
impact of increasing p, i.e. the local polynomial degree, on the numerical solution. Finally, for the sake of completeness, we 
6



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Input: w0, z0 and u0, and suitable initializations for w1, z1 and u1

1 foreach time step n ≥ 1 do
2 Compute u∗ = 2un − un−1

Solve the ionic model and compute the ionic current DOF–wise:
3 foreach DOF i do
4 Solve Eq. (4a) for wn+1

i and zn+1
i

5 Compute Iion,i = Iion(u∗
i , wn+1

i , zn+1
i )

6 end

Assembly phase: assemble the rhs of Eq. (4b):
7 foreach mesh cell K do
8 Compute the local right–hand side

bK = sn+1
K + fn+1

K + MK
2�t

(
4un

K − un−1
K

)
9 Compress bK into a global right–hand side b

10 end

Solve the monodomain equation 
(

3
2�t M + K

)
u(n+1) = b

as in Eq. (4b) using CG:
11 foreach CG iteration m until convergence do
12 Determine the new conjugate vector v

13 foreach mesh cell K // Vectorized loop.
14 do
15 Compute the local mass matrix MK

16 Evaluate the diffusion tensor DM at quadrature nodes over K
17 Compute the local stiffness matrix KK

18 Compute the local matrix–vector product:

zK =
(

3
2�t MK + KK

)
vK

19 Compress the local contribution zK into a global vector z
20 end

21 Apply the CG steps to z in order to get the new solution u(n+1)
m

22 end

23 u(n+1) ← u(n+1)
m

24 end

Algorithm 1: Workflow for the matrix–free solver.

Input: w0, z0 and u0, and suitable initializations for w1, z1 and u1

1 foreach time step n ≥ 1 do
2 Compute u∗ = 2un − un−1

Solve the ionic model and compute the ionic current DOF–wise:
3 foreach DOF i do
4 Solve Eq. (4a) for wn+1

i and zn+1
i

5 Compute Iion,i = Iion(u∗
i , wn+1

i , zn+1
i )

6 end

Assembly phase: assemble the global system matrix
and right–hand side:

7 foreach mesh cell K do
8 Compute the local mass matrix MK

9 Evaluate the diffusion tensor DM at quadrature nodes over K
10 Compute the local stiffness matrix KK

11 Compress the local system matrix AK =
(

3
2�t MK + KK

)
into a global matrix A

12 Compress the local right–hand side

bK = sn+1
K + fn+1

K + MK
2�t

(
4un

K − un−1
K

)
into a global right–hand side b

13 end

14 Solve the monodomain equation Au(n+1) = b
as in Eq. (4b) using CG

15 end

Algorithm 2: Workflow for the matrix–based solver.
7



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 3. Schematization of multigrid methods in a two dimensional case. Starting from the real mesh T , the action of the restriction and prolongation operators 
is shown, down to the coarse mesh T0.

Table 1
Parameters of the electrophysiology model. The conductivity tensor is de-
fined as in Equation (2). For the CRN and TTP06 ionic models, we adopt 
the parameters reported in the original papers [37,38] for epicardial cells.

Variable Value Unit Variable Value Unit

Conductivity tensor Applied current
σl 0.7643 · 10−4 m2 s−1 Ĩmax

app 15 V s−1

σt 0.3494 · 10−4 m2 s−1 tapp 3 · 10−3 s
σn 0.1125 · 10−4 m2 s−1

show the capability of our matrix–free solver by presenting a detailed Zygote four–chamber heart [41] electrophysiological 
simulation in sinus rhythm.

For the time discretization, we use the BDF2 scheme with a time step �t = 0.1 ms. The final time T differs with the 
specific test case. We employ T = 0.2 s in the Niederer benchmark [34], while T = 0.6 s and T = 0.8 s are considered for 
the left ventricle and whole–heart geometries, respectively.

For what concerns the GMG–preconditioned CG solver in the matrix–free setting, we estimate the largest eigen-
value λ̃max for the Chebyshev smoother on each level by performing 10 CG sub–iterations, set the smoothing range to 
[0.08λ̃max, 1.2λ̃max] (the number 1.2 is a safety factor that allows for some inaccuracies in the eigenvalue estimate) and 
choose a polynomial degree of 5 (i.e., 5 matrix—vector products per level and iteration). Besides, for the AMG–preconditioned 
matrix–based CG solver we rely on the Trilinos ML smoothed aggregation [65], by performing 3 V –cycles with polyno-
mial Chebyshev smoother of order 3 and by setting the aggregation threshold to 10−1. All the parameters reported above 
have been empirically determined in order to keep the number of PCG iterations as low as possible.

In all cases the PCG solver is run with a stopping criterion based on the absolute residual with tolerance 10−15 .
To compute the solution at time tn+1, we use the solution at time tn as initial guess for the PCG algorithm. Because 

in our simulations we take a very small �t (typically �t = 10−4), the initial guess is itself a good approximation of the 
solution and a low number of iterations is needed to satisfy the stopping criterion. We have verified that the norm of the 
starting residual of the linear system is between 10−9 and 10−8 along the whole numerical simulation, thus, an absolute 
stopping test on the residual with tolerance 10−15 means that we reduce the norm of the residual of about six to seven 
orders of magnitude.

In the two test cases involving the slab and left ventricle, we employ the GMG (AMG) preconditioner for the matrix–free 
(matrix–based) solver. On the other hand, no preconditioner is introduced in the four–chamber heart numerical simulation, 
as the presence of different ionic models in the computational domain, namely the CRN model ([38]) for atria and the TTP06 
one ([37]) for ventricles, would make our GMG preconditioner non–optimal in h and p.

In Table 1 we report the parameters of the monodomain equation. In particular, the conductivity tensor depends on the 
fiber distribution as in Equation (2), which is generated by means of the Laplace–Dirichlet Rule–Based Methods proposed in 
[39,40].

The external current Iapp(x, t) = Ĩmax
app is applied for t ∈ (0, tapp] in a cuboid for the Niederer benchmark (as described in 

[34]), otherwise in different spheres for the ventricle and whole–heart test cases (we can deduce them from the numerical 
results shown in Figs. 4, 10 and 14).

All the numerical simulations were performed by using one cluster node endowed with 56 cores (two Intel Xeon Gold 
6238R, 2.20 GHz), which is available at MOX, Dipartimento di Matematica, Politecnico di Milano.
8



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 4. Niederer benchmark. The geometry with the corresponding fiber, sheetlet and cross–fiber orientations and an example of mesh (left) and the associated 
simulated activation map (right). The blue color represents the region where the cubic stimulus is initially applied; the red one is associated with the 
corresponding diagonally opposite vertex, which is activated as last. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

5.1. Slab of cardiac tissue

The computational domain with an example of mesh (left) and the associated numerical simulation (right) for the 
Niederer benchmark [34] is depicted in Fig. 4. An external stimulus of cubic shape is applied at one vertex, the electric 
signal propagates through the slab, and the diagonally opposite vertex is activated as the last point. The domain is dis-
cretized by means of a structured, uniform hexahedral mesh.

We present a systematic comparison between SEM and SEM–NI for several values of both the mesh size h and the local 
polynomial degree p, in order to understand which is the best formulation in terms of accuracy and computational cost. 
Moreover, we compare the efficiency of the matrix–free and matrix–based solvers for SEM.

In Figs. 5 and 6 we show the action potential and the calcium concentration computed with SEM and SEM–NI, respec-
tively, over time. More precisely, the minimum, average, maximum and point values are plotted, where the max, min, and 
mean functions are evaluated on the set of nodes of the mesh. We notice that the convergence is faster for increasing p
rather than for vanishing h.

At each node xi of the mesh, we also compute the activation time τ as the time instant when the approximation of the 
transmembrane potential u exhibits maximum derivative, i.e.

τ (xi) = arg max
t

∣∣∣∣∂u

∂t
(xi, t)

∣∣∣∣ . (8)

In the formula above t spans over the discrete set of time steps and the time derivative is approximated via the same 
scheme used for the time discretization of problem (1).

In Fig. 7 we show the activation times along the slab diagonal, for different choices of the local space (from Q1 to Q4) 
and mesh refinements. As the error accumulates over the diagonal, the inset plots show a zoom around the right endpoint. 
Such results demonstrate that high polynomial degrees p, even with a coarse mesh size h, lead to a faster convergence rate 
compared to the small–p, small–h scenario.

To better investigate the comparison between SEM and SEM–NI, in Fig. 8 we show the quantities

errmax =
(

�t
∑

n

∣∣∣max
x

uhp(x, tn) − max
x

uref(x, tn)

∣∣∣2
)1/2

(9a)

errmin =
(

�t
∑

n

∣∣∣min
x

uhp(x, tn) − min
x

uref(x, tn)

∣∣∣2
)1/2

(9b)

errmean =
(

�t
∑

n

∣∣∣mean
x

uhp(x, tn) − mean
x

uref(x, tn)

∣∣∣2
)1/2

(9c)

errP =
(

�t
∑

n

∣∣uhp(P , tn) − uref(P , tn)
∣∣2

)1/2

(9d)

versus the total number of mesh points, for both the fully discrete SEM and SEM–NI solutions uhp . Our reference solution 
uref has been computed with Q4−SEM on a grid with average mesh size havg = 0.24 mm, for a total of 11′401′089 mesh 
points. P is a random point within the computational domain away from the initial stimulus. The max, min, and mean
functions are evaluated on the set of nodes of the mesh. The number of mesh points increases by reducing h for both “SEM 
h” and “SEM–NI h”, while it increases with p for both “SEM p” and “SEM–NI p”. The numerical results confirm the typical 
behavior of SEM and SEM–NI discretizations, i.e. the errors decrease faster by increasing p rather than by decreasing h. 
Moreover, we notice that SEM and SEM–NI errors behave quite similarly, with a slight advantage for SEM.
9



Fig. 5. Niederer benchmark. Minimum (top), average (second), maximum (third) and point values (bottom) of the action potential u and intracellular calcium 
concentration Ca2+ over time for a slab of cardiac tissue. P is a random point within the computational domain away from the initial stimulus. We consider 
different hp combinations: SEM Q1 to Q4 and havg = 0.48 mm to havg = 0.06 mm (havg is the average mesh size).

In Tables 2–5 we report the CPU time required by the linear solver for the whole numerical simulation (the times are 
cumulative over all time steps), for SEM and SEM–NI discretizations, matrix–free and matrix–based solvers. We refer to 
Section 4.2 for the details of the different algorithmic phases. Furthermore, in Fig. 9 we plot the errors (9) versus the CPU 
time required to solve all the linear systems along the whole numerical simulation. For SEM–NI we only report the times 
relative to the matrix–free solver, while for SEM we report the times for both the matrix–free and matrix–based solvers. The 
same symbol (circle, square, diamond, and cross) refers to the numerical simulations carried out on the meshes with the 
same number of DOFs. If we compare the errors and the CPU–times of Q1−SEM, havg = 0.12 mm with those of Q4−SEM, 
havg = 0.48 mm (these two configurations share the same number 1′449′665 of mesh nodes), we notice that the errors of 
Q4−SEM are at most about 1/3 – 1/2 of that of Q1−SEM and the ratio between the corresponding CPU times is about 40%. 
Thus, we conclude that Q4−SEM outperforms Q1−SEM (that is Q1−FEM).
P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
10



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984

Fig. 6. Niederer benchmark. Minimum (top), average (second), maximum (third) and point values (bottom) of the action potential u and intracellular calcium 
concentration Ca2+ over time for a slab of cardiac tissue. P is a random point within the computational domain away from the initial stimulus. We consider 
different hp combinations: SEM-NI Q1 to Q4 and havg = 0.48 mm to havg = 0.06 mm (havg is the average mesh size).

Table 2
Niederer benchmark. Computational times for SEM and SEM–NI, with a fixed average mesh size havg =
0.48 mm and p ranging from 1 to 4. Matrix–free solver.

Mesh points 
number

Cells 
number

Local 
space

Linear solver 
SEM [s]

Linear solver 
SEM–NI [s]

Assemble rhs 
SEM [s]

Assemble rhs 
SEM–NI [s]

25′025 21′888 Q1 10.769 8.031 0.784 0.766
187′425 21′888 Q2 14.694 12.383 4.710 4.645
618′529 21′888 Q3 37.733 36.419 14.867 14.542
1′449′665 21′888 Q4 91.380 90.370 33.899 32.920
11



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984

Fig. 7. Niederer benchmark. Activation times computed along the diagonal of the slab (see Fig. 4), with different choices of the local space (Q1 to Q4) and 
mesh refinements (havg = 0.48 mm to havg = 0.06 mm).

Table 3
Niederer benchmark. Computational times for SEM and SEM–NI, with an average mesh size havg ranging from 
0.48 mm to 0.06 mm and p = 1. Matrix–free solver.

Mesh points 
number

Cells 
number

havg

[mm]
Linear solver 
SEM [s]

Linear solver 
SEM–NI [s]

Assemble rhs 
SEM [s]

Assemble rhs 
SEM–NI [s]

25′025 21′888 0.48 10.769 8.031 0.784 0.766
187′425 175′104 0.24 29.157 27.951 5.771 5.656
1′449′665 1′400′832 0.12 256.295 270.959 42.783 43.548
11′401′089 11′206′656 0.06 2137.329 2158.751 336.272 336.641

Table 4
Niederer benchmark. Computational times for matrix–free and matrix–based solvers, SEM Qp with a fixed average mesh 
size havg = 0.48 mm and p ranging from 1 to 4.

Mesh points 
number

Cells 
number

Local 
space

Linear solver 
matrix–free [s]

Assembly phase 
matrix–free [s]

Linear solver 
matrix–based [s]

Assembly phase 
matrix–based [s]

25′025 21′888 Q1 10.769 0.784 4.086 18.076
187′425 21′888 Q2 14.694 4.710 44.200 180.705
618′529 21′888 Q3 37.733 14.867 343.243 963.549
1′449′665 21′888 Q4 91.380 33.899 1557.144 3874.602

Table 5
Niederer benchmark. Computational times for matrix–free and matrix–based, SEM Q1 with an average mesh size havg rang-
ing from 0.48 mm to 0.06 mm.

Mesh points 
number

Cells 
number

havg

[mm]
Linear solver 
matrix–free [s]

Assembly phase 
matrix–free [s]

Linear solver 
matrix–based [s]

Assembly phase 
matrix–based [s]

25′025 21′888 0.48 10.769 0.784 4.086 18.076
187′425 175′104 0.24 29.157 5.771 15.373 145.244
1′449′665 1′400′832 0.12 256.295 42.783 204.809 1171.724
11′401′089 11′206′656 0.06 2137.329 336.272 1867.746 9266.635
12



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 8. Niederer benchmark. Errors for action potential u and intracellular calcium concentration Ca2+ versus the number of mesh points (DOFs) used in a 
slab of cardiac tissue.

Table 6
Niederer benchmark. Speed–up of the matrix–free 
solver over the matrix–based one when havg =
0.48 mm.

Local space Q1 Q2 Q3 Q4

(CPU time)mb

(CPU time)mf
∼ 2 ∼ 12 ∼ 25 ∼ 45

Table 7
Niederer benchmark. Speed–up of the matrix–free 
solver over the matrix–based one when p = 1.

havg 0.48 0.24 0.12 0.06

(CPU time)mb

(CPU time)mf
∼ 2 ∼ 5 ∼ 5 ∼ 5

For the comparison between matrix–free and matrix–based solvers, we notice that the former one is always faster, and 
the gain of matrix–free over matrix–based solver increases with the polynomial degree p. More precisely, the speed–up 
factors are shown in Table 6 when havg = 0.48 mm, and in Table 7 when p = 1.
13



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 9. Niederer benchmark. Errors of action potential u and intracellular calcium concentration Ca2+ versus CPU time required to solve all the linear systems 
in a slab of cardiac tissue. Equal symbols identify the same number of mesh points: ◦ 25′025, ♦ 187′425, × 618′529, � 1′449′665, � 11′401′089.

Table 8
Niederer benchmark. Matrix–free and matrix–based percentages for the assembling and solving phases. Note that 
in the matrix–free case we only need to assemble the right–hand side vector, as there is no matrix. Moreover, 
these percentages are computed without taking into account all other phases of the numerical simulation, such 
as mesh allocation, fiber generation and output of the results.

Solver Monodomain solver Monodomain assembly Ionic model solver

Matrix–based (Q1, havg = 0.12 mm) 10.54% 60.41% 29.05%
Matrix–free (Q4, havg = 0.48 mm) 14.95% 3.36% 81.69%

Moreover, from Table 8 we observe that, in a matrix–based electrophysiological simulation, most of the computational 
time is spent to solve the linear system associated with the monodomain equation. On the contrary, in the matrix–free 
solver most of the computational time is devoted to the ionic model. This means that the cost for solving the linear system 
has been highly optimized.

Finally, we compare the performance of the AMG and GMG preconditioners, used by the matrix–based and matrix–free 
solvers, respectively. In Tables 9 and 10 we show the average number of iterations required by the PCG method to solve 
the linear system (6) for different combinations of h and p. We notice that, for the values of h and p considered here, both 
the AMG and GMG preconditioners appear to be optimal in the number of PCG iterations versus both h and p. As a matter 
14



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Table 9
Niederer benchmark. Average number of CG iterations for matrix–free (SEM, SEM–NI) and matrix–based (SEM) 
solvers, Qp with a fixed average mesh size havg = 0.48 mm and p ranging from 1 to 4.

Mesh points 
number

Cells 
number

Local 
space

Matrix–free (SEM) 
GMG preconditioner

Matrix–free (SEM–NI) 
GMG preconditioner

Matrix–based (SEM) 
AMG preconditioner

25′025 21′888 Q1 1.6362 1.8126 0.9780
187′425 21′888 Q2 1.8056 1.8581 1.0025
618′529 21′888 Q3 1.7906 1.8161 1.0205
1′449′665 21′888 Q4 1.7371 1.7826 1.0250

Table 10
Niederer benchmark. Average number of CG iterations for matrix–free (SEM, SEM–NI) and matrix–based (SEM) 
solvers, Q1 with an average mesh size havg ranging from 0.48 mm to 0.06 mm.

Mesh points 
number

Cells 
number

havg

[mm]
Matrix–free (SEM) 
GMG preconditioner

Matrix–free (SEM–NI) 
GMG preconditioner

Matrix–based (SEM) 
AMG preconditioner

25′025 21′888 0.48 1.6362 1.8126 0.9780
187′425 175′104 0.24 1.5757 1.6847 0.9855
1′449′665 1′400′832 0.12 1.4448 1.5937 1.0060
11′401′089 11′206′656 0.06 1.4468 1.4923 1.0180

Table 11
Zygote left ventricle. Average number of PCG iterations for the 
matrix–free solver with SEM discretization, Qp with a fixed 
average mesh size havg = 2.0 mm and p ranging from 1 to 4.

Mesh points 
number

Cells 
number

Local 
space

PCG iterations 
GMG preconditioner

159′149 139′684 Q1 2.0770
1′172′919 139′684 Q2 1.9628
3′879′415 139′684 Q3 1.9455
9′116′741 139′684 Q4 1.9440

of fact, the average number of iterations is about 1.0 (matrix–based) and 1.8 (matrix–free) for all hp configurations. More 
precisely, the number of iterations throughout all the simulations ranges from 1 to 4.

The numerical results shown in this section highlight how much advantageous the matrix–free solver with SEM or SEM–
NI is for cardiac electrophysiology simulations, with respect to the matrix–based solver with low–order FEM.

Since the matrix–free implementation outperforms the matrix–based one, while SEM and SEM–NI provide comparable 
results in terms of accuracy and efficiency, we will employ the matrix–free solver with just the SEM formulation for the 
numerical simulations that we are going to present in the next sections.

5.2. Left ventricle

We report the results for the electrophysiological simulations performed with the Zygote left ventricle geometry [41]. 
The settings of this test case are summarized at the beginning of Section 5. We consider a mesh with havg = 2.0 mm and 
polynomial degree p from 1 to 4. In all cases, we keep the mesh boundary fixed to the one resulting from a linear mapping 
to neglect the impact of boundary deformation on the accuracy of the numerical simulations.

In Table 11 we report the number of mesh nodes, the number of cells and the average number of iterations required 
by the PCG method to solve the linear system (6). As for the Niederer benchmark, the GMG preconditioner turns out to be 
optimal also for these numerical simulations. Indeed, the number of PCG iterations is about 2 along the whole time history 
for any polynomial degree between 1 and 4.

In Fig. 10 we depict the activation maps for different choices of the local space (from Q1 to Q4). By looking at the 
contour lines, we observe that the Q3 solution is very close to the Q4 solution, that means we reach convergence for 
p = 3, even with such a relatively low mesh resolution havg = 2.0 mm. Whereas, it is a well–established result in the 
literature that first order Finite Elements would reach convergence for a value of havg that is about 100 times smaller – i.e.
for a much higher number of DOFs (see, e.g., [14]). We remark that here “DOFs” refers to the number of degrees of freedom 
associated with the action potential, disregarding both gating variables and ionic species, thus it coincides with the number 
of mesh nodes. The same conclusions hold when considering Fig. 11, where we show the minimum, average, and maximum 
pointwise values of both the action potential u and the intracellular calcium concentration Ca2+ over time.

To further verify these conclusions, we consider different combinations of h and p that lead to the same number of 
DOFs, namely 9′116′741 for Q1 with havg = 0.5 mm, Q2 with havg = 1.0 mm and Q4 with havg = 2.0 mm. The activation 
maps displayed in Fig. 12 and the pointwise values of the action potential and intracellular calcium shown in Fig. 13 reveal 
that all the results are quite similar and pretty close to convergence, with the Q4 simulation still being the most accurate. 
Table 12 summarizes the parameters and the computational times recorded for the three simulations, which have been 
performed with the matrix–free solver and the SEM formulation. Going from Q1 to Q4, the time spent in solving the linear 
15



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 10. Zygote left ventricle. Three views of the activation maps computed with Qp elements (p = 1, . . . ,4) and a fixed average mesh size havg = 2.0 mm.

Table 12
Zygote left ventricle. Computational times for Q1, Q2, Q4 elements and a fixed number of DOFs equal to 
9′116′741.

Mesh points 
number

Cells 
number

havg

[mm]
Local 
space

PCG iterations 
GMG preconditioner

Linear solver 
[s]

Assemble rhs 
[s]

9′116′741 8′939′776 0.05 Q1 2.54 12440.968 1241.884
9′116′741 1′117′472 0.1 Q2 2.54 12334.152 1020.451
9′116′741 139′684 0.2 Q4 2.07 11328.664 687.311

system is reduced of about 9%, whereas the cost of assembling the right–hand side is reduced of about 50%, leading to an 
overall reduction of about 12%. These results further confirm that in the matrix–free context the strategy of increasing p
rather than reducing h is more advantageous in terms of both numerical accuracy and computational efficiency.

5.3. Whole–heart

The aim of this section is to show that our matrix–free solver can be successfully applied even in a much more complex 
framework. For this purpose we perform a numerical simulation in sinus rhythm with the Zygote four–chamber heart [41]. 
The settings of this test case can be found at the beginning of Section 5. We consider different ionic models, namely 
CRN [38] and TTP06 [37] for atria and ventricles, respectively. Furthermore, we model the valvular rings as non-conductive 
regions of the myocardium. The mesh is endowed with 355’664 cells and 10’355’058 nodes (havg = 1.6 mm). We employ the 
matrix–free solver and Q3−SEM, this choice is motivated by the numerical results obtained for the Niederer benchmark 
(Section 5.1) and the convergence test performed on the Zygote left ventricle geometry (Section 5.2).

We depict in Fig. 14 the evolution of the transmembrane potential over time on the whole–heart geometry. The electric 
signal initiates at the sinoatrial node in the right atrium and then propagates to the left atrium and ventricles by means 
of preferential conduction lines, such as the Bachmann’s and His bundles [66]. The wavefront propagation appears very 
smooth, while accounting for small dissipation and dispersion throughout the heartbeat, as expected from the use of high–
order discretizations [22].
16



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 11. Zygote left ventricle. Minimum (top), average (mid), maximum (bottom) pointwise values of action potential u and intracellular calcium concentration 
Ca2+ over time, Qp with a fixed average mesh size havg = 2.0 mm and p ranging from 1 to 4.

6. Conclusions

We developed a matrix–free solver for cardiac electrophysiology tailored to the efficient use of high–order numeri-
cal methods. We employed the monodomain equation to model the propagation of the transmembrane potential and 
physiologically–based ionic models (CRN and TTP06) to describe the behavior of different chemical species at the cell level.

We run several electrophysiological simulations for three different test cases, namely a slab of cardiac tissue, the Zygote 
left ventricle and the Zygote whole–heart to demonstrate the effectiveness and generality of our matrix–free solver in 
combination with Spectral Element Methods. SEM and SEM–NI provided comparable numerical results in terms of both 
accuracy and efficiency. Furthermore, we showed the importance of considering high–order Finite Elements in improving 
the accuracy and the computational burden for this class of mathematical problems, i.e. with sharp wavefronts involved.

Our matrix–free solver outperforms state–of–the–art matrix–based solvers in terms of computational costs and memory 
requirements. This is true even when matrix–vector products are computed without any matrix–free preconditioner, thanks 
to both vectorization and sum–factorization. Finally, the low memory footprint of the matrix–free implementation may 
allow for the development of GPU–based solvers of the cardiac function.

CRediT authorship contribution statement

P.C. Africa: Conceptualization, Investigation, Methodology, Software, Visualization, Writing – original draft. M. Salvador:
Conceptualization, Investigation, Methodology, Software, Visualization, Writing – original draft. P. Gervasio: Conceptualiza-
tion, Formal analysis, Investigation, Methodology, Supervision, Writing – original draft. L. Dede’: Project administration, 
Writing – review & editing. A. Quarteroni: Funding acquisition, Project administration, Writing – review & editing.
17



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
Fig. 12. Zygote left ventricle. Three views of the activation maps computed with Q1,Q2,Q4 elements and a fixed number of DOFs equal to 9′116′741.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This research has been funded partly by the Italian Ministry of University and Research (MIUR) within the PRIN (Research 
projects of relevant national interest 2017 “Modeling the heart across the scales: from cardiac cells to the whole organ” 
Grant Registration number 2017AXL54F).
18



Fig. 13. Zygote left ventricle. Minimum (top), average (mid), maximum (bottom) pointwise values of action potential u and intracellular calcium concentration 
Ca2+ over time, for Q1, Q2, Q4 elements and a fixed number of DOFs equal to 9′116′741.

Appendix A

Let us consider the domain � × (0, T ) with � = (0, 1 cm)2 and T = 1 s. For the discretization we have taken a mesh size 
h = 0.5 mm (consistently with those chosen in the simulations shown in Section 5), polynomial degree p = 3 and p = 4, 
and the BDF schemes of order 1, 2, and 3 in time. Then we have measured the errors

errH1 =
(

�t
∑

n

∥∥uhp(tn) − u(tn)
∥∥2

H1(�)

) 1
2

, (A.1a)

errL2 =
(

�t
∑

n

∥∥uhp(tn) − u(tn)
∥∥2

L2(�)

) 1
2

, (A.1b)

between the exact solution u and the fully discrete SEM–NI solution uhp .
We have considered the exact solutions u(x, t) = (x2

1 + x2
2)(2 + sin(πt)) and u(x, t) = sin(πx1) sin(πx2)(2 + sin(πt)). 

The former one is solved exactly in space by both Q3 and Q4 discretizations, so that in Fig. A.15 we can appreciate the 
full convergence order in time of all the three schemes BDF1, BDF2, and BDF3. On the contrary, the latter solution is not 
captured exactly. The associated errors are shown in Fig. A.16 and we observe that they are bounded from below from the 
space discretization error when �t � 10−4 s, making the higher accuracy of BDF3 worthless. We notice that �t = 10−4 s
coincides with the time step of 0.1 ms used in the simulations reported in Section 5. We remark that the numerical solutions 
we are looking for in cardiac electrophysiology typically feature steepest gradients than those we have considered in these 
P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
19



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984

Fig. 14. Zygote whole–heart. Time evolution of the transmembrane potential u during one heartbeat.

Fig. A.15. Errors (A.1) for SEM–NI discretization of the heat equation, with h = 0.5 mm and test solution u(x, t) = (x2
1 + x2

2)(2 + sin(πt)). p = 3 on the left 
and p = 4 on the right.

Fig. A.16. Errors (A.1) for SEM–NI discretization of the heat equation, with h = 0.5 mm and test solution u(x, t) = sin(πx1) sin(πx2)(2 + sin(πt)). p = 3 on 
the left and p = 4 on the right.
20



P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
examples, thus it is unlikely that the plateaux in the errors starts in correspondence of time steps much smaller than 
10−4 ms. Finally, we bear in mind that, while BDF2 is absolutely stable, BDF3 is not, then special care should be given to 
the choice of the time step.

References

[1] T. Gerach, S. Schuler, J. Fröhlich, L. Lindner, E. Kovacheva, R. Moss, E. Wülfers, G. Seemann, C. Wieners, A. Loewe, Electro-mechanical whole-heart digital 
twins: a fully coupled multi-physics approach, Mathematics 9 (11) (2021) 1247.

[2] R. Gray, P. Pathmanathan, Patient-specific cardiovascular computational modeling: diversity of personalization and challenges, J. Cardiovasc. Transl. Res. 
11 (2018) 80–88.

[3] R. Piersanti, F. Regazzoni, M. Salvador, A. Corno, L. Dede’, C. Vergara, A. Quarteroni, 3D-0D closed-loop model for the simulation of cardiac biventricular 
electromechanics, Comput. Methods Appl. Mech. Eng. 391 (2022) 114607.

[4] M. Potse, D. Krause, W. Kroon, R. Murzilli, S. Muzzarelli, F. Regoli, E. Caiani, F. Prinzen, R. Krause, A. Auricchio, Patient-specific modelling of cardiac 
electrophysiology in heart-failure patients, Europace 16 (2014) v56–iv61.

[5] M. Strocchi, C. Augustin, M. Gsell, E. Karabelas, A. Neic, K. Gillette, O. Razeghi, A. Prassl, E. Vigmond, J. Behar, J. Gould, B. Sidhu, C. Rinaldi, M. Bishop, 
G. Plank, S. Niederer, A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations, PLoS ONE 15 (2020) 
1–26.

[6] A. Quarteroni, L. Dede’, A. Manzoni, C. Vergara, Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical 
Applications, Cambridge University Press, 2019.

[7] N.A. Trayanova, R. Winslow, Whole-heart modeling: applications to cardiac electrophysiology and electromechanics, Circ. Res. 108 (1) (2011) 113–128.
[8] P. Colli Franzone, L. Pavarino, S. Scacchi, Mathematical Cardiac Electrophysiology, vol. 13, Springer, 2014.
[9] H. Arevalo, F. Vadakkumpadan, E. Guallar, A. Jebb, P. Malamas, K. Wu, N. Trayanova, Arrhythmia risk stratification of patients after myocardial infarction 

using personalized heart models, Nat. Commun. 7 (2016) 11437.
[10] J. Bayer, V. Sobota, A. Moreno, P. Jais, E. Vigmond, The Purkinje network plays a major role in low-energy ventricular defibrillation, Comput. Biol. Med. 

141 (2022) 105133.
[11] K. Gillette, M. Gsell, A. Prassl, E. Karabelas, U. Reiter, G. Reiter, T. Grandits, C. Payer, D. Štern, M. Urschler, J. Bayer, C. Augustin, A. Neic, T. Pock, E. 

Vigmond, G. Plank, A framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs, Med. Image Anal. 71 
(2021) 102080.

[12] C. Mendonca Costa, A. Neic, E. Kerfoot, B. Porter, B. Sieniewicz, J. Gould, B. Sidhu, Z. Chen, G. Plank, C. Rinaldi, M. Bishop, S. Niederer, Pacing in proximity 
to scar during cardiac resynchronization therapy increases local dispersion of repolarization and susceptibility to ventricular arrhythmogenesis, Heart 
Rhythm 16 (10) (2019) 1475–1483.

[13] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer Verlag, Heidelberg, 1994.
[14] L. Woodworth, B. Cansız, M. Kaliske, A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology, Int. J. Numer. 

Methods Biomed. Eng. 37 (5) (2021) e3443.
[15] A. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys. 54 (1984) 468–488.
[16] Y. Maday, A. Patera, Spectral element methods for the incompressible Navier-Stokes equations, in: A.K. Noor, J.T. Oden (Eds.), State-of-the-Art Surveys 

on Computational Mechanics, 1989, pp. 71–143.
[17] C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer, 

Heidelberg, 2007.
[18] D. Arnold, F. Brezzi, B. Cockburn, L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (5) (2001) 

1749–1779.
[19] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (6) (1998) 

2440–2463.
[20] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
[21] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 2009.
[22] M. Bucelli, M. Salvador, L. Dede’, A. Quarteroni, Multipatch isogeometric analysis for electrophysiology: simulation in a human heart, Comput. Methods 

Appl. Mech. Eng. 376 (2021) 113666.
[23] C. Cantwell, S. Yakovlev, R. Kirby, N. Peters, S. Sherwin, High-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: 

application to cardiac electrophysiology, J. Comput. Phys. 257 (2014) 813–829.
[24] Y. Coudière, R. Turpault, Very high order finite volume methods for cardiac electrophysiology, Comput. Math. Appl. 74 (4) (2017) 684–700.
[25] J. Hoermann, C. Bertoglio, M. Kronbichler, M. Pfaller, R. Chabiniok, W. Wall, an adaptive hybridizable discontinuous Galerkin approach for cardiac 

electrophysiology, Int. J. Numer. Methods Biomed. Eng. 34 (5) (2017).
[26] K. Vincent, M. Gonzales, A. Gillette, C. Villongco, S. Pezzuto, J. Omens, M. Holst, A. McCulloch, High-order finite element methods for cardiac mon-

odomain simulations, Front. Physiol. 6 (2015) 217.
[27] D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch, W. Wall, J. Witte, ExaDG: high-order discontinuous Galerkin for the exa-scale, 

in: Software for Exascale Computing - SPPEXA 2016-2019, Springer International Publishing, Cham, 2020, pp. 189–224.
[28] S. Orszag, Spectral methods for problem in complex geometries, J. Comput. Phys. 37 (1980) 70–92.
[29] J. Melenk, K. Gerdes, C. Schwab, Fully discrete hp−finite elements: fast quadrature, Comput. Methods Appl. Mech. Eng. 190 (32–33) (2001) 4339–4364.
[30] M. Kronbichler, K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63 (2012) 135–147.
[31] Y. Xia, K. Wang, H. Zhang, Parallel optimization of 3D cardiac electrophysiological model using GPU, Comput. Math. Methods Med. 2015 (2015) 862735.
[32] M. Kronbichler, K. Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM Trans. Parallel Comput. 

6 (1) (2019) 1–32.
[33] G. Del Corso, R. Verzicco, F. Viola, A fast computational model for the electrophysiology of the whole human heart, J. Comput. Phys. 457 (2022) 111084.
[34] S.A. Niederer, E. Kerfoot, A.P. Benson, M.O. Bernabeu, O. Bernus, C. Bradley, E.M. Cherry, R. Clayton, F.H. Fenton, A. Garny, E. Heidenreich, S. Land, M. 

Maleckar, P. Pathmanathan, G. Plank, J.F. Rodríguez, I. Roy, F.B. Sachse, G. Seemann, O. Skavhaug, N. Smith, Verification of cardiac tissue electrophysiol-
ogy simulators using an N-version benchmark, Philos. Trans. Royal Soc. A, Math. Phys. Eng. Sci. 369 (1954) (2011) 4331–4351.

[35] P.C. Africa, lifex: a flexible, high performance library for the numerical solution of complex finite element problems, SoftwareX 20 (2022) 101252, 
https://doi .org /10 .1016 /j .softx .2022 .101252.

[36] D. Arndt, W. Bangerth, B. Blais, T. Clevenger, M. Fehling, A. Grayver, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J. Pelteret, R. Rastak, I. 
Tomas, B. Turcksin, Z. Wang, D. Wells, The deal.II library, Version 9.2, J. Numer. Math. 28 (3) (2020) 131–146.

[37] K. ten Tusscher, A. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol. Heart Circ. Physiol. 291 (2006) 1088–1100.
[38] M. Courtemanche, R. Ramirez, S. Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, 

Am. J. Physiol. Heart Circ. Physiol. 275 (1) (1998) H301–H321.
21

http://refhub.elsevier.com/S0021-9991(23)00079-7/bib2888060E652DDB1B410AB362EA86EBAFs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib2888060E652DDB1B410AB362EA86EBAFs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibB2748BB43B39180658EA618DEC120770s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibB2748BB43B39180658EA618DEC120770s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib40FFE7F5D7A3A4429F94C01975AF14B3s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib40FFE7F5D7A3A4429F94C01975AF14B3s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibA8318FCF250D1FA16A77E3C7F5446A5Fs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibA8318FCF250D1FA16A77E3C7F5446A5Fs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib87FE8BE9297CFD808CAA44236C1FACC8s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib87FE8BE9297CFD808CAA44236C1FACC8s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib87FE8BE9297CFD808CAA44236C1FACC8s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib26272992934339EC47A1394293AB886Ds1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib26272992934339EC47A1394293AB886Ds1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibA9AACCC0EA67D25991E1A6ED418302F6s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibD15ABDED286C11F61CC03214E754BCDCs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibE456EB2A1E81018F94F4B8A716F0B3DFs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibE456EB2A1E81018F94F4B8A716F0B3DFs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib4BBA71434AEA7079350F56912B79A202s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib4BBA71434AEA7079350F56912B79A202s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib07DCF1F6F408EDF00626A67D841CB656s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib07DCF1F6F408EDF00626A67D841CB656s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib07DCF1F6F408EDF00626A67D841CB656s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib614E9D35DCBF7019096CA03CE7EC98F2s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib614E9D35DCBF7019096CA03CE7EC98F2s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib614E9D35DCBF7019096CA03CE7EC98F2s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibD51D8A41B96905B142E91BD4DA1E46DCs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibE5B02E11C5314CA04EC20E54007BA64Bs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibE5B02E11C5314CA04EC20E54007BA64Bs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibF422997FF4E31EE80D7D21627047BE8Cs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib2217F1908CE1F5F41FE1D0DC9C3A1C89s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib2217F1908CE1F5F41FE1D0DC9C3A1C89s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibB450D8E505AAB80207A34DE9B61E0372s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibB450D8E505AAB80207A34DE9B61E0372s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibA436A6960BA029A0A7302D1FBE1DAB65s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibA436A6960BA029A0A7302D1FBE1DAB65s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibF86480EFB37ECAE8912B0DD39826D405s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibF86480EFB37ECAE8912B0DD39826D405s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib30CC8C98CC3C1634E7668EA43A371D71s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibD8EA29CB2A7412B832CCADD147FF5EC2s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibC1594C597A1E64CCE46D836C8C11797Ds1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibC1594C597A1E64CCE46D836C8C11797Ds1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib8FAE2B197C938676DB2E75ABE4A4C0C7s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib8FAE2B197C938676DB2E75ABE4A4C0C7s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib25D847AE01C6C2E56C1E3AE149B791D7s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibCD212BE91FA3BC53276C49FBD5C81324s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibCD212BE91FA3BC53276C49FBD5C81324s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib1CCD63B9454430E03BC352357520B84Es1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib1CCD63B9454430E03BC352357520B84Es1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib7CBEB1E3F7D00D2746F2274275210485s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib7CBEB1E3F7D00D2746F2274275210485s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib5EDE71F60C612087BAAE0A4BCAA35AD6s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib426AB48D190F9FE0B7D46B78CF6A0EE1s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib9A8E8533220C8D088EAE248963584CCDs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibB2DBE994F679143A3D83921E707E358Cs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib44EF030ADE748412BA662A88906A7F77s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib44EF030ADE748412BA662A88906A7F77s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibAC42FC651C4F26CFB47708B050BB33F8s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib781A22DADE0BEACA58CF813A0280CE51s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib781A22DADE0BEACA58CF813A0280CE51s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib781A22DADE0BEACA58CF813A0280CE51s1
https://doi.org/10.1016/j.softx.2022.101252
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib496AE2858DE6FFD2D8BB8EEC3991C499s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib496AE2858DE6FFD2D8BB8EEC3991C499s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib937CF34EE9EB2832FE2A8A089274CE6Fs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib625FEC4B0F68DFA13881326FB90151CCs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib625FEC4B0F68DFA13881326FB90151CCs1


P.C. Africa, M. Salvador, P. Gervasio et al. Journal of Computational Physics 478 (2023) 111984
[39] R. Piersanti, P. Africa, M. Fedele, C. Vergara, L. Dede’, A. Corno, A. Quarteroni, Modeling cardiac muscle fibers in ventricular and atrial electrophysiology 
simulations, Comput. Methods Appl. Mech. Eng. 373 (2021) 113468.

[40] P. Africa, R. Piersanti, M. Fedele, L. Dede’, A. Quarteroni, An open tool based on lifex for myofibers generation in cardiac computational models, 
https://doi .org /10 .48550 /arXiv.2201.03303, 2022.

[41] Zygote Media Group Inc., Zygote Solid 3D heart Generation II, Development Report, 2014.
[42] C. Bernardi, Y. Maday, Spectral, spectral element and mortar element methods, in: Theory and Numerics of Differential Equations, Durham, 2000, in: 

Universitext, Springer, Berlin, 2001, pp. 1–57.
[43] G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd ed., Oxford University Press, 2005.
[44] C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods. Fundamentals in Single Domains, Springer, Heidelberg, 2006.
[45] P. Gervasio, L. Dede’, O. Chanon, A. Quarteroni, A computational comparison between isogeometric analysis and spectral element methods: accuracy 

and spectral properties, J. Sci. Comput. 83 (2020) 18, https://doi .org /10 .1007 /s10915 -020 -01204 -1.
[46] B. Szabó, I. Babuška, Finite Element Analysis, John Wiley & Sons, New York, 1991.
[47] C. Schwab, p− and hp− Finite Element Methods, Oxford University Press, Oxford, 1998.
[48] N. Fehn, W. Wall, M. Kronbichler, A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: a performance comparison of 

compressible and incompressible formulations for turbulent incompressible flows, Int. J. Numer. Methods Fluids 89 (3) (2019) 71–102.
[49] F. Regazzoni, M. Salvador, P. Africa, M. Fedele, L. Dede’, A. Quarteroni, A cardiac electromechanical model coupled with a lumped-parameter model for 

closed-loop blood circulation, J. Comput. Phys. 457 (2022) 111083.
[50] A. Quarteroni, T. Lassila, S. Rossi, R. Ruiz-Baier, Integrated heart-coupling multiscale and multiphysics models for the simulation of the cardiac function, 

Comput. Methods Appl. Mech. Eng. 314 (2017) 345–407.
[51] P. Gervasio, F. Saleri, A. Veneziani, Algebraic fractional step schemes with spectral methods for the incompressible Navier-Stokes equations, J. Comput. 

Phys. 214 (1) (2006) 347–365.
[52] J.M. Cebrian, L. Natvig, M. Jahre, Scalability analysis of AVX-512 extensions, J. Supercomput. 76 (3) (2020) 2082–2097.
[53] D. Zhong, Q. Cao, G. Bosilca, J. Dongarra, Using long vector extensions for MPI reductions, Parallel Comput. 109 (2022) 102871.
[54] Message Passing Interface Forum, MPI: a Message-Passing Interface Standard Version 4.0, https://www.mpi -forum .org /docs /mpi -4 .0 /mpi40 -report .pdf, 

Jun. 2021.
[55] M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Softw. 45 (3) (2019) 

1–40.
[56] C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements, 

Comput. Fluids 43 (1) (2011) 23–28.
[57] B. Janssen, G. Kanschat, Adaptive multilevel methods with local smoothing for H1− and Hcurl−conforming high order finite element methods, SIAM J. 

Sci. Comput. 33 (4) (2011) 2095–2114.
[58] J. Xu, L. Zikatanov, Algebraic multigrid methods, Acta Numer. 26 (2017) 591–721.
[59] P. Bastian, E. Müller, S. Müthing, M. Piatkowski, Matrix-free multigrid block-preconditioners for higher order discontinuous Galerkin discretisations, J. 

Comput. Phys. 394 (2019) 417–439, https://doi .org /10 .1016 /j .jcp .2019 .06 .001.
[60] N. Fehn, P. Munch, W. Wall, M. Kronbichler, Hybrid multigrid methods for high-order discontinuous Galerkin discretizations, J. Comput. Phys. 415 

(2020) 109538, https://doi .org /10 .1016 /j .jcp .2020 .109538.
[61] H. Sundar, G. Stadler, G. Biros, Comparison of multigrid algorithms for high-order continuous finite element discretizations, Numer. Linear Algebra 

Appl. 22 (4) (2015) 664–680.
[62] U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Elsevier Academic Press, London, UK, 2001.
[63] T. Clevenger, T. Heister, G. Kanschat, M. Kronbichler, A flexible, parallel, adaptive geometric multigrid method for FEM, ACM Trans. Math. Softw. 47 (1) 

(2021) 7.
[64] M. Adams, M. Brezina, J. Hu, R. Tuminaro, Parallel multigrid smoothing: polynomial versus Gauss-Seidel, J. Comput. Phys. 188 (2) (2003) 593–610.
[65] M. Gee, C. Siefert, J. Hu, R. Tuminaro, M. Sala, ML 5.0 Smoothed Aggregation User’s Guide (SAND2006-2649).
[66] R. Harrington, J. Narula, Z. Eapen, Hurst’s the Heart, MacGraw-Hill, 2011.
22

http://refhub.elsevier.com/S0021-9991(23)00079-7/bib34C3C2FDD52A40E5C203C1B2EB5BDC12s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib34C3C2FDD52A40E5C203C1B2EB5BDC12s1
https://doi.org/10.48550/arXiv.2201.03303
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibFE7E6475E632F2EBC6D5C5C9E3828811s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib12B752D620EBA8E61E2D24CE1A8A0A81s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib12B752D620EBA8E61E2D24CE1A8A0A81s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib791CE77ACDDB4E4BB9FF97F52D9DE41Ds1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib305A6E2767DE71F78FE38DB316807B7Fs1
https://doi.org/10.1007/s10915-020-01204-1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibDD06965054DCEC1D419EACB274F67304s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib3D481134451782B0B83163D5A354726Ds1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib38153D461ED9C0C78DA2DB283B12B1AAs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib38153D461ED9C0C78DA2DB283B12B1AAs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib097E3929B04DF59FE7537736082A0FFDs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib097E3929B04DF59FE7537736082A0FFDs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib7CBF562430263B58309CF73A8726AB99s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib7CBF562430263B58309CF73A8726AB99s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib1BEF890955A9710F59B2D08FF8C11663s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib1BEF890955A9710F59B2D08FF8C11663s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib5545310CCB9BE0AE92DBE5776B76A890s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib65D337476A19DF785B4B59F29461DB35s1
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibAAA3C055B752BEC671CD143088C1C718s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibAAA3C055B752BEC671CD143088C1C718s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib9EA47715D886E885A6527660F84F2973s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib9EA47715D886E885A6527660F84F2973s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib6781294F45AD9EDDD0D74995F710E94Bs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib6781294F45AD9EDDD0D74995F710E94Bs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib294FEAE107659A5E6CC3C3F76C707FC5s1
https://doi.org/10.1016/j.jcp.2019.06.001
https://doi.org/10.1016/j.jcp.2020.109538
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibC0AC8C28F27EFC88DBEB96944453943As1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bibC0AC8C28F27EFC88DBEB96944453943As1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib6FCC64B791CF84FE2B2BA901A5BAB21Cs1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib06145AEDF3E24ED23EC6E745853C22D3s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib06145AEDF3E24ED23EC6E745853C22D3s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib76508D42401B87E108560657753D2656s1
http://refhub.elsevier.com/S0021-9991(23)00079-7/bib137813E166AF2140F7B2CE2601465E39s1

	A matrix--free high--order solver for the numerical solution of cardiac electrophysiology
	1 Introduction
	2 Mathematical model
	3 Space and time discretizations
	4 Matrix--free and matrix--based solvers
	4.1 Vectorization and sum--factorization
	4.2 Application to cardiac electrophysiology
	4.3 A Geometric Multigrid matrix--free preconditioner

	5 Numerical results
	5.1 Slab of cardiac tissue
	5.2 Left ventricle
	5.3 Whole--heart

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


