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Original Article

Deep learning to predict long-term mortality from plain chest X-ray 
in patients referred for suspected coronary artery disease
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Background: The hypothesis that a deep learning (DL) model can produce long-term prognostic 
information from chest X-ray (CXR) has already been confirmed within cancer screening programs. We 
summarize our experience with DL prediction of long-term mortality, from plain CXR, in patients referred 
for angina and coronary angiography.
Methods: Data of patients referred to an Italian academic hospital were analyzed retrospectively. We 
designed a deep convolutional neural network (DCNN) that, from CXR, could predict long-term mortality. 
External validation was performed on patients referred to a Dutch academic hospital.
Results: A total of 6,031 were used for model training (71%; n=4,259) and fine-tuning/validation 
(10%; n=602). Internal validation was performed with the remaining patients (19%; n=1,170). Patients’ 
stratification followed the DL-CXR risk score quartiles division. Median follow-up was 6.1 years [interquartile 
range (IQR), 3.3–8.7 years]. We observed an increment in estimated mortality with the increase of DL-
CXR risk score (low-risk 5%, moderate 17%, high 29%, very high 46%; P<0.001). The DL-CXR risk score 
predicted median follow-up outcome with an area under the curve (AUC) of 0.793 [95% confidence interval 
(CI): 0.759–0.827, sensitivity 78%, specificity 68%]. Prediction was better than that achieved using coronary 
angiography findings (AUC: 0.569, 95% CI: 0.52–0.61, P<0.001) and age (AUC: 0.735, 95% CI: 0.69–0.77, 
P<0.004). At Cox regression, the DL-CXR risk score predicted follow-up mortality (P<0.005, hazard ratio: 
3.30, 95% CI: 2.35–4.64). External validation confirmed the DL-CXR risk score performance (AUC: 0.71, 
95% CI: 0.49–0.92; sensitivity 0.838; specificity 0.338).
Conclusions: In patients referred for coronary angiogram because of angina, the DL-CXR risk score 
could be used to stratify mortality risk and predict long-term outcome better than age and coronary artery 
disease status.
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Introduction

The chest X-ray (CXR) is a first-line tool adopted on 
patients referred for suspicion of cardiac conditions and 
possibly the most common imaging test performed in 
the medical field (1,2). Most CXRs are reported as non-
pathologic and are used to rule out a specific clinical 
suspicion mostly related to the lungs. However, CXRs 
carry a plethora of different information, often completely 
undiscovered and unreported, concerning the patient’s 
overall and specific health status (3). When identified, this 
information could help make the diagnosis at the time of 
referral, support risk stratification of future morbidity and 
mortality, and guide a chain of decisions concerning lifestyle 
changes, screening planning, and prevention strategies. 
Clinicians and radiologists evaluate many CXRs during 
their medical career but are rarely able to follow patients 
in their long-term clinical developments, and, for this 
reason, they cannot connect and articulate the multifaceted 
radiographic findings at time zero with events occurring at 
long-term follow-up.

Artificial intelligence (AI) has recently resurged interest 
in the essential role that non-invasive ubiquitous and 
affordable imaging modalities such as CXRs may play 
in diagnosing pathologies and eventually helping define 

outcomes at follow-up. Deep learning (DL) can detect 
information that has been overlooked by human observers 
and, consequently, could strengthen image interpretation 
across many clinical specialties (4). Apart from the emerging 
potential that AI is demonstrating for the enhancement 
and support of diagnosis at the time of patient referral, 
the use of AI to define a patient’s prognosis starting from 
simple medical images, offers even more fascinating, and 
challenging, perspectives. The hypothesis that a DL model 
can produce long-term prognostic information from CXR 
has already been confirmed within a lung and prostate 
screening program (5). In this manuscript, we present 
our experience with a DL algorithm we have specifically 
designed for predicting, from a single projection CXR, 
long-term mortality of patients referred for coronary 
angiography to rule out the presence of coronary artery 
disease (CAD). We present this article in accordance with 
the TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-322/rc).

Methods

Imaging and data curation

The patients’ cohort included in the present study has 
been already used by our group to test, train, and validate 
a deep convolutional neural network (DCNN) solution for 
detecting significant CAD based on chest radiographs (6).

Data of patients referred to our institution (Spedali 
Civili di Brescia, Brescia, Italy) for suspected angina were 
retrospectively analysed. Radiographs were performed using 
nine different radiographic machines. Exclusion criteria 
included: previous percutaneous coronary revascularization, 
cardiac surgery, cardiac electronic devices implantation, and 
images with low-quality acquisition.

One-projection CXRs were included in the study. We 
decided to exclude lateral radiographs because not present 
in the entire cohort. All images had been performed during 
the index admission. Images storage took place in the 
institutional Picture Archiving and Communication System 
(PACS).

Coronary angiography findings were produced by 
experienced interventional cardiologists, prospectively 
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collected, and stored in an electronic database at the time 
of investigation. Severe CAD was confirmed when at 
least one visually estimated coronary diameter stenosis 
with severity of ≥70% for non-left main disease and 
≥50% for left main disease was present (6). We only used 
physiological assessment with fractional flow reserve (FFR) 
and instantaneous wave-free ratio (iFR) in coronary lesions 
of uncertain significance.

Demographic and clinical information concerning the 
patient’s age, biological sex, body mass index (BMI), angina 
status at time of referral were also collected (7).

For every patient included in the cohort, demographic 
information contained in the hospital electronic medical 
records (EMR) was matched with the Italian National 
Census data, to document follow-up status (alive, dead, and 
eventual death date) in August 2022.   

Patients had signed informed consent to use relevant 
clinical information for scientific purposes. All data have 
been anonymized, and the study protocol has been approved 
by the local scientific and ethical committee (Comitato 
Etico-Scientifico Brescia, Protocol No. NP 4817). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Algorithm settings

A DCNN was trained to detect long-term clinical outcome 
from the patient CXR at time of referral for coronary 
angiogram. The ground truth reference of follow-up status 
was structured using official data from the Italian census. 
Based on the follow-up status, we identified two groups, 
dead or alive at long-term follow-up. 

We trained the system for binary classification (0, alive; 
1 dead). Patients were randomly divided for training (70%) 
and DCNN model tuning (10%). We performed internal 
validation (model testing) with the remaining patients (20%).

Given the workload and the numerosity of training 
samples, we selected a DCNN pre-trained on PadChest (8),  
NIH ChestX-ray8 (9), CheXpert (10), and MIMIC (11) 
datasets. In particular, after an extensive model search, we 
found ResNet50 to be the most suited (12). We exploited 
TorchXRayVision backed up with PyTorch on Python 3.7 
for the model training and validation (13). The performed 
hyperparameters search to minimize validation loss was 
carried out using a binary cross-entropy with 100 maximum 
epochs and early stopping to avoid overfitting. To improve 
robustness, data augmentation was performed by applying 

random geometric, brightness, and contrast transformations. 
All the images underwent a standard normalization between 
0 and 1.

External validation

After internal validation of the DCNN, we performed 
external validation using a sample of 193 patients referred 
for chest pain to a different medical institution located 
in north-western Europe, the Leiden University Medical 
Center (Leiden, the Netherlands). Inclusion criteria in the 
external validation group were the same as those used for 
the inclusion in the original dataset.

Statistical analysis

Statistical analysis was performed using the Python scikit-
learn and scipy libraries. Sensitivity, specificity, and area 
under the receiver operating characteristic (ROC) curve 
(AUC) were calculated to evaluate the binary classifier 
performance of the DCNN at different thresholds and 
achieve the highest sensitivity or the maximum sum of 
sensitivity and specificity. AUCs were compared using 
the DeLong parametric method, and 95% confidence 
intervals (CIs) were produced using two-sided CIs for 
proportions. The association between the DL-CXR risk 
score and follow-up all-cause mortality (primary outcome) 
was tested using Cox proportional hazards regression 
models and Kaplan-Meier (KM) statistics. The ROC 
AUCs were used to further assess follow-up mortality 
discrimination of the AI derived radiography risk score and 
compare it to that of already known risk-factors (age, sex, 
BMI, presence and extension of CAD, and angina status). 
The statistical significance threshold was a P value <0.05. 
Finally, GradCAM heat maps were generated to define the 
chest radiograph features supporting the different DCNN 
decisions (14). 

Results

Patients

A total of 6,031 patients was randomly divided for model 
training (71%; n=4,259) and model fine-tuning/model 
validation (10%; n=602). Internal clinical validation (model 
testing) was performed with the remaining patients (19%; 
n=1,170). Demographic and clinical information, including 
presence and eventual degree of CAD, are presented in Table 1. 
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DCNN

Patients were stratified according to DL-based interpretation 
quartiles (DL-CXR risk score). Median follow-up was  
6.1 years [interquartile range (IQR), 3.3–8.7 years] with a 
KM overall estimated mortality of 21.9% (95% CI: 19.2–
24.5%) (Figure 1A) (15). Estimated mortality increased 
significantly according to the DL-CXR risk score (low-risk 
5%, moderate 17%, high 29%, very high 46%; P<0.001) 
(Figure 1B). At Cox regression, DL-CXR risk score 
[P<0.005; hazard ratio (HR): 3.30; 95% CI: 2.35–4.64], age 
(P<0.005; HR: 1.8; 95% CI: 1.1–2.1), presence of severe 
CAD (P<0.005; HR: 1.3; 95% CI: 1.0–1.7), and angina 
status (P=0.03; HR: 0.8; 95% CI: 0.7–1.0) were independent 
predictors of long-term follow-up mortality. Sex (P=0.4) 
and BMI (P=0.9) were not mortality predictors (Figure 2). 

The DL-CXR risk score AUC was 0.793 (95% CI: 
0.75–0.82, sensitivity 78%, specificity 68%), significantly 
better than that achieved when using coronary angiography 
findings (AUC: 0.569, 95% CI: 0.52–0.61) (P<0.001) and 
age (AUC 0.735, 95% CI: 0.69–0.77) (P<0.004) as predictors. 
The DL-CXR mortality prediction model improved when 
age and CAD status at the referral time were included 
(AUC 0.809; 95% CI: 0.77–0.84) (Figure 3) (15). Table 2 
summarizes the confusion matrix of the model including 
DL-CXR score, age, and CAD status.

External validation with 193 patients confirmed the 
DL-CXR risk score prediction performance (AUC: 0.71; 
95% CI: 0.49–0.92; sensitivity 0.838; specificity 0.338). KM 
survival analysis revealed a graded association between DL-

CXR risk score categories and mortality (P=0.04) (Figure S1).

Heat maps and nomogram for mortality prediction

Attention maps were generated using the DCNN that 
demonstrated the highest performance, specifically the 
one incorporating the DL-CXR risk score, CAD status, 
and age. Heat map activations predominantly focused on 
areas including the cardiac silhouette, left ventricular apex, 
pulmonary bases, pulmonary parenchyma, costophrenic 
sinuses, pulmonary hila, thoracic aorta, neck/supra-aortic 
vessels, and the clavicle region. Interactive nomograms, 
derived from the Cox regression analysis, are presented as 
illustrative cases. These nomograms enable the prediction 
of mortality risks based on the DL-CXR score, CAD status, 
and age (Figure S2).

Discussion

Our study shows that: (I) the DCNN model predicted long-
term (6-year) overall mortality from a single CXR view 
performed in patients referred for coronary angiogram 
for  suspected angina pectoris; (II) DL-based prediction 
of long-term mortality outperformed the prediction based 
on age, sex and CAD presence/severity; (III) the intrinsic 
generalizability of the model is supported by the fact that 
the dataset covered many years of clinical routine, in a 
large academic hospital, where CXRs are performed using 
different radiographic equipment; (IV) the DL-CXR 

Table 1 Baseline characteristics of the overall study population and of the internal validation cohort split into four quartiles according to DL-
CXR risk score

Clinical data
Overall cohort 

(N=6,031)

Validation cohort (N=1,170)

Low risk (N=234) Moderate risk (N=206) High risk (N=318) Very high risk (N=412)

Age (years), mean ± SD 68±12 69±12 71±11 67±11 64±12

Biological sex (male) (%) 67 65 63 69 75

BMI (kg/m2), mean ± SD 26±5 26±5 26±5 26±4 27±4

CAD (%)

No-CAD/non-severe CAD 44 41 46 44 47

One vessel severe CAD 27 26 29 28 23

Two vessels severe CAD 16 18 15 18 17

Three vessels severe CAD 12 14 11 10 13

Left main CAD 1 1 1 0 0

DL-CXR, deep learning chest X-ray; SD, standard deviation; BMI, body mass index; CAD, coronary artery disease.

https://cdn.amegroups.cn/static/public/JTD-24-322-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-24-322-Supplementary.pdf
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performance has been confirmed with validation, internal 
and external, on patients referred for a similar reason (chest 
pain, CAD suspicion) to a different medical facility in a 
different European country; (V) although our results are 
encouraging, the DCNN has not been tested on a broader 
population without chest pain, with a lower prevalence of 

CAD, with a less complex comorbidity profile who may 
have a lower long-term mortality rate. 

CXR is a routine first-line diagnostic armamentarium in 
patients referred for suspected cardiopulmonary conditions. 

1.0

0.9

0.8

0.7

0.6

0.5

0.4

S
ur

vi
va

l r
at

e

0         2         4         6         8        10       12
Time, years

AI negative (404/611)

At risk 
Censored 

Events

611
0
0

503
42
66

307
190
114

197
250
164

90
325
196

27
380
204

0
404
207

AI positive (468/559)

At risk 
Censored 

Events

559
0
0

538
8
13

476
59
24

407
106
46

291
203
65

132
341
86

0
468
91

Overall mortality according to AI prediction
AI negative (404/611)
AI positive (468/559)
Overall population

P<0.001

1.0

0.8

0.6

0.4

0.2

S
ur

vi
va

l r
at

e

0         2         4         6         8        10       12
Time, years

High (215/305)

At risk 
Censored 

Events

305
0
0

263
20
22

172
89
44

123
116
66

59
162
84

18
197
90

0
215
90

Low (239/278)

At risk 
Censored 

Events

278
0
0

274
2
2

258
14
6

232
33
13

175
82
21

88
155
35

0
239
39

Stratification according to AI risk score

Low risk 
Moderate risk 
High risk 
Very high risk

P<0.001

P<0.001

P<0.001

Moderate (258/328)

At risk 
Censored 

Events

328
0
0

304
9
15

247
56
25

197
84
47

129
139
60

48
212
68

0
258
70

Very high (160/259)

At risk 
Censored 

Events

259
0
0

200
19
40

106
90
63

52
123
84

18
145
96

5
157
97

0
160
99

A B

Figure 2 Forest plot illustrating HRs for long-term mortality. 
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continuous scale from 0 to 1, age in bins of 10 years, BMI in a 
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Figure 1 Kaplan-Meier curves for all-cause mortality in the overall population and two groups stratified by AI prediction. (A) Follow-up 
curve. (B) Quartile analysis of AI prediction. Modified from (15) with permission from Oxford University Press. AI, artificial intelligence.
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CXR contains a plethora of information about the patient’s 
general health, such as body habitus, cardiovascular 
condition, pulmonary status [lung congestion, interstitial 
lung disease, chronic obstructive pulmonary disease 
(COPD)], and the bones/skeletal condition, including 
mineral density. All this information is related to the 
presence of comorbidities and a frailty profile that may 
impact follow-up survival (16-20) and may support the fact 
that DL-read plain CXR may predict patients’ outcomes 
better than any single risk factor taken alone. The DL-CXR 
risk could be a surrogate for frailty and other comorbidities 
and could be capturing unmeasured confounders, such as 
chronic pulmonary disease, osteoporosis, and many other 
comorbidities that may suggest worse prognosis and frailty. 

We have previously demonstrated that DL-read CXRs 
could be used to pre-test significant CAD probability 
in patients referred for suspected angina (6). A DCNN 
adequately trained in identifying severe CAD, using 
coronary angiography as ground truth, can detect the 
presence of severe CAD from a one-projection CXR and 
distinguish among patients with different degrees of CAD 
severity (6). Starting from this assumption, we have focused 
the present study on the same patient cohort previously 
referred for coronary angiography and have trained, this 
time, our DCNN to predict mortality outcomes at long-
term follow-up. In a prognostic study, Lu et al. have used 
a large cohort of patients (over 50,000) from the Prostate, 
Lung, Colorectal, and Ovarian Cancer Screening Trial 
(PLCO) to train and validate a DCNN to predict long-
term mortality from chest radiograms. System performance 
was externally validated using data from the screening 
radiography arm of the National Lung Screening (NLS) 
Trial (5). Using DCNN interpretation of diagnostic 
findings and standard risk factors, Lu et al. could identify 
patients with an increased risk of 6- and 12-year mortality. 

The DL-CXR risk score exhibited a graded association 
with mortality, ranging from 2.7% in the low-risk group to 
33.9% in the very high-risk group (5). The DL-CXR risk 
score achieved AUC values of 0.75 for 12-year mortality in 
the internal testing set and 0.68 for 6-year mortality in the 
external testing set (5). In the same patient population, the 
same group has more recently confirmed that the DL-CXR 
risk has a graded association with lung disease mortality 
after adjustment for risk factors, including age, smoking, 
and radiologic findings (with HR up to 11) (21). Our study, 
conducted in a cohort with a high prevalence of severe CAD 
(over 50%), further confirms this graded association. All 
quartiles of DL-CXR risk scores showed higher mortality 
rates, possibly due to the complex comorbid profile of 
our patients, particularly those with severe CAD, which 
led to poorer outcomes compared to patients in a cancer 
prevention program. 

As emerging from our analysis and previously confirmed 
by Lu et al., the DCNN interpretation of the CXRs allows 
us to identify a prognostic value that is complementary 
to broadly used risk factors for follow-up mortality (5). 
It has already been proposed that substituting biological 
age measures for chronological age could improve the 
performance of existing risk scores (22). Raghu et al. and 
more recently Mitsuyama et al. have proposed an AI/
DL-based estimate of biological age starting from a CXR 
(22,23). The CXR age predicts longevity and the presence 
of various chronic diseases beyond chronological age (23,24). 
There are possibly some common activation areas that 
can be identified within the radiographic image, like the 
mediastinum width, the aortic knob calcification and aortic 
tortuosity, the cardiac silhouette geometrical ratios, the 
bone and muscle density, and so on that modify with age. 
All these parameters could actually be used as surrogates for 
biological age and act together, to support a single estimator 
of the biological age and overall health status, for the AI-
based prediction of chronic conditions, outcomes after 
interventions, and long-term events (25-30). Our logistic 
regression and ROC statistics findings confirm that the 
AI/DL-based CXR-score can predict long-term mortality 
significantly better than chronological age.

Apart from the prediction of long-term outcomes, DL 
evaluation of emergency department CXRs has been used 
to identify patients referred for acute chest pain syndrome 
who are at risk for a 30-day composite adverse outcome, 
including acute coronary syndrome, pulmonary embolism, 
aortic dissection, and overall mortality (31). The DL tool 
improved the prediction of these acute adverse outcomes 

Table 2 Confusion matrix of the internal validation cohort

CAD status Predicted positive Predicted negative

Severe CAD 834 (TP) 123 (FN)

Absence of severe 
CAD

84 (FP) 129 (TN)

The model includes DL-CXR score, CAD status, and age. 
Metrics: areas under the curve: 0.81; sensitivity: 87%; 
specificity: 61%; precision: 91%; negative predictive value: 
49%. CAD, coronary artery disease; TP, true positive; FP, false 
positive; FN, false negative; TN, true negative; DL-CXR, deep 
learning chest X-ray.
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beyond age, sex, and conventional troponin/D-dimer 
positivity (31). In a first referral setting, the CXR-score 
could help clinicians to defer unnecessary additional, more 
invasive investigations in 14% of the referred patients (31). 

It should be emphasized that the DL-based CXR 
score should not be extrapolated from the overall clinical 
setting, and additional clinical information concerning the 
patient’s demography and health status may help optimize 
the image-based AI/DL prediction of events in the acute 
setting and during long-term follow-up. Kolossváry et al. 
have reported a significant improvement in the prediction 
of 30-day cardiovascular adverse events in a model that 
included, simultaneously, age, sex, biomarkers (troponin), 
and AI-based CXR score (from an AUC of 0.80 in the 
sole CXR-score model to an AUC of 0.85 in the CXR-
score, sex, age, troponin model) (31). Raghu et al. have 
shown only a slight improvement in the prediction of 
12-year follow-up mortality, from an AUC of 0.75 to an 
AUC of 0.78, when adding to the CXR-score based model 
information concerning documented risk factors (age, 
sex, smoking category, diabetes, hypertension, obesity, 
underweight, past myocardial infarction, past stroke, and 
past cancer) and reported CXR pathologic findings (such 
as e lung nodule, significant atelectasis, pleural plaque 
or effusion, lymphadenopathy, chest wall or bony lesion, 
COPD/emphysema, cardiomegaly or other cardiovascular 
abnormality, and lung fibrosis) (23). The impact of known 
pathologic conditions, such as CAD, on follow-up mortality 
has been documented and should be considered when 
designing DL-based prediction models (24). In our cohort, 
all patients underwent coronary angiography, allowing 
for stratification based on CAD presence and severity. 
As expected, in our Cox regression model, presence of 
severe CAD had a more significant prediction of follow-up 
mortality when compared to angina status. This is possibly 
since severe CAD is a factor influencing death (quoad vitam), 
while angina pectoris is a negative factor affecting quality of 
life (quoad valitudinem). 

Intriguingly, the outcome prediction based on CXR was 
more pronounced than that based on CAD classification 
alone.  It is worth noting that our model did not account 
for patients who received intensified medical management 
following coronary angiography. This oversight might have 
contributed to the relatively low predictive power of CAD 
severity on long-term outcomes that could be attributed to 
the mitigating effect of timely and appropriate treatment 
post-coronary angiography, including necessary invasive 
interventions (32). Moreover, cardiovascular disease 

accounts for only a third of overall mortality in Italy and the 
Netherlands. Consequently, as we were addressing overall 
mortality, adding age and CAD status only marginally 
improved the CXR score’s performance. 

Finally, previously proposed mortality risk scores, built 
on linear models (such as logistic and linear regression), 
explainable tree-based models, and more complex DL 
models, have shown good accuracy, with AUCs reaching 
0.90 in the prediction of long-term mortality, by including 
many demographics, laboratory, questionnaires, and at times 
epigenetic and gene expression data for the identification 
of so-called biological clocks (33-37). Although we believe 
that DL models that incorporate additional demographic 
and clinical data, including multiple additional imaging and 
laboratory tests, may have a more accurate prognostic value 
and may be able to detect changes in risk that can occur 
at different time points and result from external human-
driven interventions, we should be aware of the budgetary 
and organizational costs vs. accuracy trade-offs. In this 
light, the main aim of our research was to support the fact 
that the DCNN can extract from a simple, affordable, 
and ubiquitous investigation, such as the CXR performed 
at the time of referral in different settings, the “hidden 
fingerprints” of long-term outcomes that are embedded in 
the image, and that the DCNN performance is independent 
of additional demographic or clinical information.

Limitations

The DCNN has been trained, tested, and validated on 
patients referred for invasive coronary angiography, 
considering a clinical suspect of angina. Critical patients’ 
selection biases limit our findings. The population carries 
a specific burden of comorbidities that is not necessarily 
present in other patients’ groups and may have impacted 
events occurrence. For this reason, the DCNN should 
also be validated in a broader population of healthy people 
that are asymptomatic for chest pain. Moreover, because 
of the study’s retrospective nature and many additional 
budgetary/logistical limitations, a limited amount of 
clinical information, derived from the study cohort, has 
been adopted. Although it is indeed true that, apart from 
very basic demographic and clinical information we do 
miss important additional data such as renal function, 
echocardiographic parameters, comorbidities and several 
more, we do have included in our analysis very specific and 
unique information concerning the presence and extension 
of CAD, confirmed by invasive studies. That said, we are 
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aware that in the future, to achieve a more accurate and 
personalized non-static event prediction and clinical utility 
of the model, the CXR-score will need to be integrated 
with additional demographic, clinical, and possibly medical 
imaging, laboratory test findings, time-dependent events, 
and human interventions. Those implementations may 
impact the model’s explainability, sustainability, and fairness 
(applicability in different and less structured healthcare 
environments). Indeed, it is not clear yet if even very simple 
information, such as smoking history, COPD, previous 
myocardial infarction, that have all a proven impact upon 
survival, are actually represented in the CXR and adequately 
detected by the algorithm and kept into account for the risk 
scoring. Finally, making clarity within the “black box” of 
the DL algorithm’s decision-making process is not an easy 
task, and the suboptimal explainability of the model may 
hinder its application in the healthcare sector. Although 
the produced attention maps may partly enhance the CXR 
areas most often involved in the mortality prediction, we 
still do not know why the model assigns a specific score 
and makes a particular prediction. We will need to address 
this issue in the future by investigating the cause of death 
and resorting to techniques around explainable AI/DL that 
help clarify complex DL models. Finally, although we could 
confirm the performance of our outcome prediction model 
at external validation, the AUC did drop from 0.79 to 0.71, 
which is not insignificant. This could be due to the small 
external testing dataset, or also to overfitting to the training 
dataset. This finding should encourage additional external 
validation, including larger cohort of patients with different 
and less marked comorbidity profiles.

Conclusions

CXRs are routinely performed in patients referred for 
different conditions and healthy subjects for screening. 
This simple and affordable imaging modality should be 
considered for risk stratification, including the prediction 
of long-term mortality. The DL-CXR risk score predicted 
long-term overall mortality of patients with suspected 
angina pectoris referred for invasive investigation. Internal 
and external validation on patients in two different 
European regions (north and south of Europe) are 
satisfactory. The DL-CXR risk score provided a long-
term mortality risk stratification superior to that achieved 
when using CAD status information, sex, and chronological 
age. The DL-CXR risk score could be used to support 
screening and prevention. It should be remarked that our 

findings and our model, in its present form, cannot be 
extended to patients’ cohorts with different risk profiles, 
including healthy individuals. In the future, the DL-CXR 
risk score could be used as an adjunctive armamentarium 
to estimate, together with a plethora of additional tests, 
the risk of follow-up adverse events and to guide, in this 
way, anticipated actions to change unhealthy lifestyles and 
trigger a prompt referral to additional and more specific 
investigations, whenever clinically sound. A DL-CXR 
model that effectively predicts cardiovascular mortality in 
ostensibly healthy individuals could be invaluable in guiding 
clinical strategies to alter cardiovascular outcomes.
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