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Il colangiocarcinoma (CC) è una malattia rara e aggressiva con opzioni terapeutiche limitate e 

prognosi infausta nella maggior parte dei casi. Inoltre, il CC è difficile da rimuovere completamente 

tramite chirurgia a causa della sua posizione anatomica e della sua diffusione lungo il sangue o i dotti 

biliari, portando al problema di ottenere campioni seriali di tumore per monitorare la risposta al 

trattamento e quindi stabilire possibili terapie alternative. In questo contesto, una pipeline per 

monitorare l'evoluzione del cancro attraverso l'inferenza di firme molecolari specifiche relative al 

tumore primario sulle cellule tumorali circolanti (CTC) rappresenta un approccio non invasivo in 

grado di studiare la progressione e l'eterogeneità del cancro attraverso campioni di sangue 

longitudinali. 

Noi ipotizziamo che la caratterizzazione molecolare delle CTC sia la chiave per monitorare 

l'evoluzione del cancro all'interno dei pazienti. Riconoscendo l'importanza delle CTC come surrogato 

tissutale adatto alla gestione clinica, l'inferenza della specifica firma molecolare associata al tumore 

primario sulle CTCs offre una reale opportunità per monitorare l'evoluzione del tumore sotto 

pressione terapeutica dando vita ad uno strumento predittivo che manca ancora non solo nel contesto 

di colangiocarcinoma ma anche in altri tipi di cancro. 

Sono stati raccolti dataset genomici e trascrittomici (disponibili pubblicamente) di campioni normali 

e tumorali da serie ben annotate di pazienti CC: sono state estratte, integrate e convalidate firme 

molecolari specifiche del tumore significativamente diverse dalla controparte normale utilizzando 

approcci di machine learning per definire sottogruppi biologici distinti e creare uno strumento 

predittivo sulla base dei dati CNA. Allo stesso tempo, le CTC da prelievi di sangue di pazienti CC 

sono state recuperate e analizzate attraverso saggi genomici. Infine, lo strumento predittivo costruito 

dalla raccolta dei tessuti è stato utilizzato per predire l'associazione delle CTC a specifici sottogruppi 

biologici di CC consentendo il monitoraggio dell'evoluzione del cancro sotto pressione terapeutica. 
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Cholangiocarcinoma (CC) is a rare and aggressive disease with limited therapeutic options and dismal 

prognosis in most of the cases. Moreover, CC is difficult to completely resect by surgery because of 

its anatomical location and spread along the blood or bile ducts, leading to the problem of getting 

serial tumor samples for monitoring treatment response and then establishing possible alternative 

therapies. In this context, a pipeline to monitor cancer evolution through the inference of specific 

molecular signatures related to primary tumor on circulating tumor cells (CTCs) represents a 

noninvasive approach able to reflect cancer progression and heterogeneity through longitudinal blood 

samples.   

We hypothesize that CTCs molecular characterization is key for monitoring cancer evolution within 

patients. Acknowledging the importance of CTCs as tissue surrogate suitable for clinical 

management, the inference of specific molecular signature associated to primary tumor on CTCs 

offers a real opportunity for monitoring tumor evolution under therapy pressure giving rise to a 

predictive tool that is still lacking not only in the context of CC but also in other cancer types. 

Publicly available genomic and transcriptomic datasets of normal and tumor samples from well 

annotated series of CC patients were collected: tumor specific molecular signatures significantly 

different from normal counterpart were extracted, integrated and validated using machine learning 

approaches to define biological distinct subgroups and create a predictive tool based on copy number 

alteration (CNA) data. At the same time, CTCs from blood draws of CC patients were recovered and 

analyzed through genomic assays. Finally, the predictive tool built from the tissue collection were 

used to infer the CTCs association to a specific CC biological subgroups allowing the monitoring of 

cancer evolution under treatment pressure. 
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BL  Baseline 
CCA  Cholangiocarcinoma 
CI  Confidence interval 
cis/gem Cisplatin plus gemcitabine 
CNA  Copy number alteration 
CTC   Circulating tumor cell 
DT  During treatment 
ECC  Extrahepatic cholangiocarcinoma 
EOT  End of treatment 
FF  Fresh frozen 
FFPE  Formalin-fixed Paraffine-embedded 
FOLFOX Oxaliplatin, L-folinic acid and 5-fluorouracil 
FU  Follow-up 
GBC  Gallbladder cancer 
GII  Genome integrity index 
HR  Hazard ratio 
ICC  Intrahepatic Cholangiocarcinoma 
INDELs Small insertions and deletions 
KNN  K-nearest neighbour 
LM-PCR  Ligation-mediated PCR 
LM  Linear model 
lpWGS Low-pass whole-genome sequencing 
LST  Large-scale state transition 
NGS  Next generation sequencing 
NN  Neural network 
OS  Overall survival 
PCA  Principal component analysis 
PD  Progression disease 
PR  Partial response 
QC  Quality control 
RNAseq RNA sequencing 
RF  fast unified random forest 
RFS  Relapse-free survival 
SD  Stable disease 
SNV  Single nucleotide variation 
SVM  Support vector machine 
Target-seq Target sequencing 
WBC  White blood cell 
WGA  Whole-genome amplification 
WGS  Whole genome sequencing 
WES  Whole exome sequencing 
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1.1. Cholangiocarcinoma 

Cholangiocarcinoma (CC) consists of different epithelial malignancies arising in any part of the 

biliary tree and includes gallbladder cancer (GBC) and ampulla of Vater cancer. According to the 

location, cholangiocarcinomas are subdivided into intrahepatic (ICC) and extrahepatic (ECC) CC 

(located in the intrahepatic and extrahepatic bile ducts, respectively) and the latter can be further 

divided into distal and hilar CC (Figure 1) [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC accounts for approximately 3% of all gastrointestinal malignancies [2] and is the second most 

common hepatobiliary cancer, after hepatocellular carcinoma [3]. Although in most countries it is a 

rare disease (< 6 cases per 100,000 people) [4], its incidence is exceptionally high in some Asian 

countries (up to 85 cases per 100,000 people for northeast Thailand) due to different geographical 

Figure 1. Anatomical sub-variants of CC. According to the location of the tumor, CCs are subdivided into 
gallbladder cancer (GBC), ampulla of Vater cancer (AVC), intrahepatic cholangiocarcinoma (IHC) and extrahepatic 
cholangiocarcinoma (EHC), further subdivided into perihilar and distal extrahepatic cholangiocarcinoma. (Adapted 
from Tariq N. et al.,2019) 
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risk factors and genetic determinants [5]. In 2017, the global CC incidence was 211,000 cases, with 

174,000 deaths [Global Burden of Disease Collaboration, 2019] and, over the past decades, both its 

incidence and its mortality have increased worldwide, in particular with regards to intrahepatic CC 

[6]–[8].  

CC are aggressive diseases characterized by a poor prognosis (5-years survival rate = 5-15%, 

considering all stages) [9]. Moreover, since they are generally asymptomatic in early stages, most 

CCs are diagnosed at metastatic stage, when the 5-year survival rate is only 2% [1]. 

  

1.1.1. Clinical management of CC 

Currently, the treatment of CC is not based on the anatomical subtypes, but solely on the stage of the 

disease and it essentially consists of surgery and systemic chemotherapy [10]. The only potentially 

curative therapy for CC is radical surgical resection, with a 5-year survival rate of 18% [11]. 

Unfortunately, only approximately 20% of patients present an early stage disease at diagnosis and are 

therefore eligible for surgery [12]. Moreover, the majority of patients undergoing surgical resection 

will relapse, predominantly developing liver metastasis [13]. In the advanced setting, the combination 

of cisplatin and gemcitabine has long represented the standard of care with a median progression-free 

survival (PFS) of 8 months [14]. A new option is adding immunotherapy, i.e., durvalumab, which 

further reduces the risk of progression by 25%, and increases survival by 20%. Yet more than half of 

patients with inoperable CC continue to die within a year from diagnosis. [15]. 

 

1.1.2. Molecular characterization as a future challenge for clinical management 
of CC 

Considering the modest therapeutic efficacy of chemotherapy in CC, new therapies are urgently 

needed. For such purpose, a molecular characterization of CC is now helping revealing the complex 

mechanism the disease, opening to the possibility of a new clinical management.  

In the last years, the widespread use of next generation sequencing (NGS) technologies revealed a 

complex genomic, epigenomic and transcriptomic landscape of CC, leading to the identification of 
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distinct molecular subtypes and new targets for molecularly informed treatments. Among these, 

clinical trials demonstrated significant activity for drugs targeting IDH1 [16], FGFR2 [17]–[19], 

BRAF [20] and HER2 [21], which are now entering clinical practice. Nonetheless, the majority of CC 

does not harbor alterations in these genes [22], [23], therefore, the identification of new molecular 

biomarkers is an urgent unmet need. Considering the different anatomical subtype, alterations in 

IDH1/2, EPHA1, BAP1 and FGFR2 were more frequently found in intrahepatic CC, whereas gene 

fusions involving PRKACA or PRKACB and genetic aberration in ARID1A, PI3KCA and the ERBB 

family were detected in extrahepatic CCA (Figure 2); GBC was instead characterized by ERBB3 and 

EGFR mutations [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Molecular spectrum of intrahepatic and extrahepatic CC. The most unique and prevalent genetic 
alterations found in different anatomical locations are reported. ICC, intrahepatic cholangiocarcinoma; pCC, 
perihilar cholangiocarcinoma; dCCA, distal cholangiocarcinoma; ECC, extrahepatic cholangiocarcinoma. (Adapted 
from Braconi C. et al., 2019) 



Introduction 

pag. 17 
 

These results highlighted the high heterogeneity of CC and the need of including molecular profiling 

for clinical decisions. In this light, a series of transcriptomics and genomics studies based on NGS 

technologies on primary CC tumors attempted to elucidate the mechanistic insights of CC and to 

identify transcriptomic subtypes with a predictive and prognostic relevance. Considering 149 ICC 

cases, Sia et. al. demonstrated the presence of two classes, named as proliferation- and inflammation-

related, associated with up-regulation of EGF, RAS, AKT, MET signaling and immune response-

related pathways, respectively [25]. In another study, Andersen et. al. identified two prognostic 

subtypes and demonstrated the therapeutic potential of tyrosine kinase inhibition in CC cell lines with 

activated EGFR and HER2 signaling pathways [26]. Regarding ECC tumors, Montal et. al. identified 

in 189 patients the presence of 4 classes characterized by different transcriptomic and genomic 

patterns related to metabolic, proliferation, mesenchymal and immunological processes with 

comparable prognosis in terms of overall survival [27]. Finally, Nakamura et. al., with a 

comprehensive analysis of ICC, ECC and including also gallbladder tumors, demonstrated the 

presence of 4 subgroups defined by specific gene expression and correlated genomic profile, 

associated with clinical outcome [28].  

Despite these results represented a significant improvement in the biological understanding of CC, 

their clinical implications are still limited. The first reason is that all these classifications were 

generated from different and small cohorts and have not been compared and unified, thus limiting 

their applicability. Secondly, albeit these results represent a significant improvement for CC 

treatment, the clinical application is widely limited by the difficulty to obtain longitudinal tumor 

samples for monitoring treatment response and then establishing possible alternative therapies. 

In this context, liquid biopsy represents a noninvasive approach able to detect function-related 

biomarkers reflecting tumor progression and treatment resistance and amenable for longitudinal 

analysis of cancer molecular features. In particular, circulating tumor cells (CTCs) released in blood 

by primary and metastatic lesions could replace invasive surgical biopsies, by informing on 
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biomolecular tumor features and anticipating the detection of progression and therapy–induced 

molecular changes [29]. 

 

1.2. Machine Learning techniques in Precision Medicine 

 
Precision Medicine is an emerging approach to clinical research and patient care that focuses on 

understanding and treating disease by integrating multi-omics data from an individual to make 

patient-tailored decisions. With the large and complex datasets generated using diagnostic approaches 

like as NGS, novel techniques to process and understand these complex data were needed. At the 

same time, computer science has progressed rapidly to develop techniques that enable the storage, 

processing, and analysis of these complex datasets. Machine Learning is a collection of computer 

science methodologies that aims to identify complex patterns in data that can be used to train an 

automatic system in order to make predictions on new unseen data analysis with minimal or no further 

human intervention. The application of Machine Learning algorithms in the context of Precision 

Medicine data allows for broad analysis of large datasets and ultimately a greater understanding of 

human health and disease. 

Overall, Machine Learning algorithms can be divided into row approaches: supervised and 

unsupervised learning. Unsupervised learning aims to uncover patterns in unlabeled data, identifying 

clusters of similar cases within a dataset. Popular unsupervised learning models include principal 

component analysis (PCA), hierarchical clustering, or variational autoencoders (an unsupervised 

deep learning architecture). On the contrary, supervised learning techniques aim to identify patterns 

in multi-dimensional dataset based on labelled data (e.g., healthy vs. disease or outcome scores). In 

particular, a training dataset with ground truth labels is typically used to build a model and to optimize 

the performance for the desired outcome [30][31]. The uncovered (learnt) patterns can then be used 

to classify new datasets or make data-driven, patient-individual predictions. Popular supervised 

statistical and machine learning techniques include, for example, Support Vector Machine (SVM), 

Random Forests (RF), Generalized Linear Models (GLM), and deep Neural Networks (NN).  
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1.3. Circulating tumor cells 

In patients with solid tumors, CTCs are released from both the primary tumor and the metastatic 

lesions into the bloodstream during the course of the disease. Different technologies allow the 

detection and the characterization of CTCs, which are therefore considered a real-time liquid biopsy 

of tumors [32]. The term liquid biopsy also includes the analysis of other tumor-derived elements 

circulating in the blood, such as circulating tumor DNA (ctDNA), tumor-derived exosomes and 

microvesicles, tumor-educated platelets, circulating tumor microRNA, mRNA and non-coding RNA 

[33], each of which can provide different and complementary information. CTCs, in particular, being 

intact and viable cells, offer the possibility of performing a multilevel analysis of genotype (DNA) 

and phenotype (RNA and proteins). Moreover, they are a highly selected subpopulation of tumor 

cells, able to leave the primary tumor and survive in the bloodstream (the majority of CTCs die soon 

after entering the blood vessels, due to anoikis, attack by cells of the immune system and fluid shear 

stress, suggesting that CTCs could be representative of the most aggressive clones of the tumor [34]. 

Overall, CTC analysis can potentially be used for i) early detection of cancer, ii) prognostic 

stratification of patients, iii) identification of therapeutic targets, iv) prediction of response to targeted 

treatments, v) treatment monitoring and vi) identification of resistance mechanisms [35]. 
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Figure 3. CTCs as a real-time liquid biopsy. CTCs can be derived from primary tumor or organs of metastasis. 
CTCs serve as a liquid biopsy of cancer and reveal important information on therapeutic targets and/or resistance 
mechanisms, which might be used in the future to stratify patients for such targeted therapies as inhibition of 
EGFR/HER2 or endocrine therapy and to monitor the efficacy of treatment and the development of resistance in 
real-time. ER+, estrogen receptor positive. (Adapted from Alix-Panabieres C. and Pantel K., 2013) 
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1.3.1. CTCs detection and molecular characterization 

With regards to characterization approaches, recent technological advances (such as instruments for 

single-cell isolation and NGS) have allowed the development of methods for the genomic analysis of 

CTCs at the single-cell level [36]. These methods include, after the enrichment, a step for the isolation 

of single cells. Cells can be individually isolated by laser capture microdissection and fluorescence-

activated cell sorting (FACS), or by using specific instruments such as the DEPArray™ which 

isolates single cells by exploiting dielectrophoresis [37], microscopic manipulators as the 

CellCelector™ [38] and microfluidic devices. 

Independently from the type of isolation method used, all isolated cells will undergo the whole-

genome amplification (WGA) in order to be analyzed, that is based on two steps: PCR and multiple 

displacement amplification (MDA). Therefore, after WGA, quality control (QC) assays are 

performed to assess the DNA yield and the length of amplified fragments. Good quality samples can 

undergo any type of sequencing analysis (including Sanger sequencing, array comparative genomic 

hybridization (aCGH) platforms or genome-wide NGS) for the detection of a variety of genomic 

alterations including small-scale alterations (single nucleotide variants (SNVs), INDELs and 

microsatellite instability), and large-scale alterations (copy number variations (CNVs), chromosomal 

breakpoints or large-scale state transitions (LSTs), and chromosomal rearrangements) (Figure 4). 

The methods for CTC characterization at the single-cell level opened a new chapter of liquid biopsy 

research, aimed at characterizing and monitoring changes in tumor heterogeneity in individual 

patients to further understand the biology of tumor evolution. 
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Figure 4. Genomic alterations in single CTCs. List and characteristics of the type of genomic alterations that can 
be detected in CTCs by single-cell sequencing. (Adapted from Lim S.B. et al., 2019) 
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2.SCOPE OF THE THESIS 
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We hypothesize that CTCs molecular characterization could represent a fundamental for monitoring 

cancer evolution within patients. Acknowledging the importance of CTCs as tissue surrogate suitable 

for clinical management, the inference of specific molecular signature associated to primary tumor 

on CTCs offers a real opportunity for monitoring tumor evolution under therapy pressure giving rise 

to a predictive tool that is still lacking not only in the context of CC but also in other cancer types. 

The aims of the current project were: (1) to collect publicly available CC datasets of normal and 

primary tumor tissues for the extraction of tumor specific molecular signatures; (2) to integrate and 

validate different molecular signatures to define biological distinct subgroups and create a predictive 

tool for their identification; (3) to collect and analyze by genomic approaches CTCs from CC patients; 

(4) to apply the predictive tool on CTCs data for monitoring cancer evolution under treatment 

pressure. 

With this project, we expected to: (1) infer specific molecular signature related to CC biological 

distinct subgroups on CTCs collected along treatment to monitor cancer evolution within single 

patient; (2) improve the understanding of tumor heterogeneity based on CTCs biological subgroups 

and progression within individual patients; (3) establish a frame for predictive tools informative in 

CC and in other tumor types. 
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3.MATERIAL AND METHODS 
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3.1. Retrieval of public ICC and ECC datasets and definition of discovery and 
validation sets 

Gene expression and genomic profiles were collected from eight public datasets, including 1000 

patients, i.e., 715 (71.5 %) ICC and 285 (28,5%) ECC with no previous history of hepatitis or fluke 

infection, and generated by microarray (6) or RNA sequencing (RNAseq, 2) or Whole genome 

sequencing (WGS, 1) or Whole exome sequencing (WES, 2) or Target sequencing (Target-seq, 3). 

Overall, 126 of 664 (19%) were from fresh frozen (FF) tumor tissues, while 538 (81%) were from 

formalin-fixed paraffin embedded (FFPE) specimens. For all the downstream analyses, seven datasets 

were used for discovery; whereas the EGAD00001001693 dataset was used for validation given that 

it was the only one with exhaustive information on patient survival (Table 1).  

 

Figure 5. PIERCE pipeline. The workflow summarizes all the steps of the current project. 
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Table 1. Collection of gene expression and genomic dataset considered for ICC and ECC discovery and validation sets.  

Histotype Dataset ID Specimen Reference 
No. of 

samples Platform 
Discovery (D) 
Validation (V) 

ECC GSE132305 FFPE Montal R., et. al., Journal of 
Hepatology 2020 182 Microarray  D 

ICC GSE32225 FFPE Sia D. et. al., Gastroenterology 2013 141 Microarray  D 

ICC, ECC GSE89749, 
EGAD00001001988  FFPE Jusakul A. et. al., Cancer Discovery 

2017 139 Microarray, WGS, 
Target-seq D 

ICC, ECC MSK2018 FFPE Lowery M. A. et. al., Clinical Cancer 
Research 2018  122 Target-seq D 

ICC MSK2021 FFPE Boerner T. et. al., Hepatology 2021 123 Target-seq D 

ICC GSE26566 FF Andersen J.B. et. al., Gastroenterology 
2012 103 Microarray  D 

ICC, ECC TCGA-CHOL FFPE Farshidfar F. et. al., Cell Reports 2017 36 RNAseq, SNP6, 
WES D 

ICC GSE32879 FF Oishi N. et. al., Hepatology 2021 16 Microarray D 

ICC GSE57555 FF Murakami Y. et. al., Scientific Reports 
2015 7 Microarray D 

ICC, ECC EGAD00001001693 FFPE Nakamura H. et. al., Nature Genetics 
2015 131 RNAseq V 

 
 

3.2. Data processing 

3.2.1. Gene expression data 

For the training set, we used the transcript quantification data of the TCGA-CHOL cohort (level 3) 

obtained using RSEM (level 3) downloaded from Firebrowse database (accession date: January 

2022). TPM values followed by quantile normalization and log2 transformation were considered. All 

the microarray data were retrieved from GEO using a bespoke R pipeline. Considering Illumina 

microarray dataset, robust-spline normalization followed by log2 scaling were used to normalize gene 

expression values. Affymetrix and Agilent datasets did not require any additional normalization after 

download from GEO database.  

Regarding the validation set, RNAseq data were downloaded from the EGA repository after the 

accession permission released by ICGC consortium (application number: DACO-6992). Raw 

sequencing data (fastq format) were trimmed to remove low-quality bases and adapters using 

trimmomatic (version 0.39) [39], quality checked using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and aligned to human reference genome 
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(hg19) using STAR (version 2.7.9a) [40]. After alignment quality control by bedtools (version 2.25.0) 

[41] and qualimap (version 2.2.2-dev) [42], counting of reads aligned over exonic features for gene 

expression quantification was performed by RSEM (1.3.1) [43]. TPM values related to each gene 

were considered and submitted to quantile normalization and log2 scaling. All the processing 

(discovery set) and post-processing analysis (validation set) were performed with R software 

(https://www.R-project.org/, version 4.1.1, see section “list of R packages”). 

3.2.2. Genomic data 

For the training set, mutational and copy number alteration data of the TCGA-CHOL cohort obtained 

using SNP6 array and WES platforms were downloaded from Firebrowse database (accession date: 

January 2022). Target-seq data related to MSK-2018 and MSK-2021 were obtained from cBioportal 

(accession date: January 2022) and all samples with tumor purity score < 20 were excluded from the 

analysis. Mutation and copy number alteration data of EGAD00001001988 dataset were downloaded 

from cBioportal (accession date: Januray 2022) and from EGA repository after the accession 

permission released by ICGC consortium (application number: DACO-6992). 

Regarding the validation set, WES data were downloaded from the EGA repository after the 

accession permission released by ICGC consortium (application number: DACO-6992). Raw 

sequencing data (fastq format) were trimmed to remove low-quality bases and adapters using 

BBDuck tool included in BBTools package (https://sourceforge.net/projects/bbmap, version 38.98), 

quality checked using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and 

aligned to human reference genome (hg19) using mrsfast (version 3.3.9) [44]. After alignment quality 

control by bedtools (version 2.25.0) [41] and qualimap (version 2.2.2-dev) [42], CNA analysis were 

performed using ichorCNA R package [45]. For mutation, the data were retrieved from cBioportal 

(accession date: January 2022) and all the variants showing at least one of the following parameters 

were escluded: depth of coverage < 20; non coding region; FFPE artifact (vaf £ 10% & C>T or vaf £ 

10% & G>A); vaf £ 5%; vaf > 75%; gnomAD_EAS_AF ³ 1%; gnomAD_AF ³ 1%. All the 
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processing (discovery set) and post-processing analysis (validation set) were performed with R 

software (https://www.R-project.org/, version 4.1.1, see section “list of R packages”).  

Figure 5 reports in detail all the steps of the pipeline adopted in the present work. 

 

3.3. Data integration and unsupervised clustering analysis of ICC and ECC 
discovery sets 

3.3.1. Gene expression data 

Normalized gene expression data of each dataset included in the ICC and ECC discovery sets were 

merged and only common transcripts (n=13,228) were considered. Then, quantile normalization 

followed by batch adjustment based on empirical Bayes method [46] were performed to make data 

comparable and remove batch effect associated with the different samples source (FF, FFPE) and 

platforms to obtain gene expression profiles. GTEx database (accession date: February 2022) was 

interrogated to remove 386 liver-specific transcripts associated to normal tissues. A filtering step was 

performed using a custom made pipeline to reduce the number of features in the ICC (n=1358) and 

ECC (n=676) cohorts, respectively. In particular, the method allows to identify genes that drive 

biological heterogeneity in a dataset decomposing the total variance of each gene into its biological 

and technical components by fitting a trend to the endogenous variances [47]. For each gene, the 

fitted value of the trend is an estimate of the technical component while the biological component is 

retrieved by subtracting the technical component from the total variance. For the ICC training set, 

genes with significant biological component were selected using a criteria based on a FDR < 0.05. 

Due to the small number of datasets in the ECC training set, the filtering step was performed 

separately for each dataset (block) and only genes with FDR ≤ 0.1 in each block were selected.  

Detection of distinct subgroups within the ICC and ECC training set was performed by hierarchical 

clustering analysis with number of clusters selection based on NbClust tool [48]. In particular, 19 out 

30 indices were considered to validate the number of the clusters (n min=2, n max=6) along with 

Euclidean distance and Ward’s linkage method [49]. 
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3.3.2. Genomic data 

For mutational data, cleaned gene variants of each dataset included in the ICC and ECC discovery 

sets were merged and only common genes (n=305) among the platforms (WES, Target-seq) were 

considered. Only fequently altered genes (frequency of mutation > mean of the number of genes 

variants) were considered for unsupervised clustering analysis in ICC (n=298) and ECC (n=77) 

cohorts, respectively. 

For CNA data, alterations at gene level of each dataset included in the ICC and ECC discovery sets 

were merged and only common genes (n=474) among the platforms (WES, Target-seq) were 

considered. Only fequently altered genes (gene copy number gain and loss altered in at least two 

different datasets) were considered for unsupervised clustering analysis in ICC (n=69) and ECC (n=8) 

cohorts, respectively. 

Detection of distinct subgroups within the ICC and ECC training set was performed by hierarchical 

clustering analysis with cluster number selection performed using NbClust tool for both mutational 

and CNA data[48]. In particular, 19 out 30 indices were considered to validate the number of the 

clusters (n min=2, n max=6) along with Ward’s linkage method [49] and with Jaccard distance 

computed over variant classification type (SNV, INDEL, mixed) associated to genes in each samples. 

 

3.4. Biological and immunological characterization of ICC and ECC subgroups 

Considering gene expression data ICC and ECC discovery sets, differential expression analysis 

between subgroups were performed using gene level linear models with moderated t-test (LIMMA) 

[50]. T-statistic values were used to rank gene list for the gene set enrichment analysis by GSEA [51] 

considering HALLMARK and C2 canonical pathway database [52]. For each cluster comparison, 

significant up-regulated/down-regulated pathways were selected according to thresholds of p-value 

< 0.05 and p-value < 0.01 for HALLMARK and C2 canonical pathway gene sets, respectively. 

Singscore tool [53], a single sample scoring method, was used to evaluate the enrichment of specific 

cholangiocarcinoma pathways described by Banales et. al. [54] within each ICC and ECC subgroups. 
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T-test statistic was applied to detect significant differences in terms of enrichment score. ImmuCellAI 

[55] was used to evaluate immune cell component within each ICC and ECC subgroups based on the 

deconvolution of gene expression profiles of 24 immune cell. A t-test statistics was applied to detect 

significant difference between subgroups in terms of immunological infiltration score. 

Considering genomic data, biological characterization was performed considering canonical 

oncogenic signaling pathways defined by Vega and colleagues [56] through ad hoc function 

implemented in maftools R package [57]. Moreover, information about the presence/absence of 

druggable alterations (mutation and CNA) at gene level were retrieved from “The drug gene 

interaction database” considering clinically actionable level [58]. Based on previously reported by 

Nhgia Vu et. al. [59], a two-test statistic approach (odds ratio plus + chi-squared tests) was applied 

to evaluate the subgroups specificity of each druggable gene. The level of significance for each test 

was consider at p-value < 0.05. 

 

3.5. Building of ICC and ECC predictors 

For gene expression data, leveraging on differential expression analysis by LIMMA, two different 

approaches were adopted to define the genes to be considered for the predictor establishment in ICC 

and ECC discovery set. For ICC cohort, genes with a log2 fold change (log2FC) < -1 and > 1 and 

FDR < 0.1 values within each comparison were selected (n=19). Considering the ECC cohort, among 

the top 60 differentially expressed genes for each group based on t-statistic values, only the transcripts 

with FDR < 0.25 in all subgroups were selected (n=21).  

For ICC mutational data, only druggable genes significantly associated to each subgroup base on the 

application of two-test statistic approach (see section 3.4 of materials and methods) were considered 

(n=17). Moreover, to reduce the misclassification rate inside predictors, all the combinations among 

the 17 genes were tested, resulting in the selection of 13 genes. Within ECC cohort, shared mutated 

genes between discovery and validation set were considered for building the predictors. 
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Considering CNA data, only shared alteration between discovery and validation set were considered 

for the predictor establishment. 

The SMOTE (Synthetic minority over-sampling technique) algorithm [60], was applied to account 

for sample imbalance between the subgroups within ICC and ECC cohort. Three different Machine 

Learning algorithms were considered in order to build the predictors: k-Nearest Neighbors (KNN) 

[61], Support Vector Machine (SVM) [62] and Random Forest (RF) [63]. In order to evaluate the 

KNN and SVM methods, training and testing-sets were created sampling the 60% and 40% of ICC 

and ECC discovery sets, respectively. Moreover, a 10-fold cross validation to test the performance 

of the models was applied. For RF algorithm, bootstrap without replacement was considered as 

resampling method to derive the estimates of standard errors and confidence intervals. ROC curves 

and AUC were used to visualize and evaluate the performance of the classifiers for each ICC and 

ECC subgroup. 

 

3.6. Prediction and evaluation of biological subgroups in ICC and ECC 
validation sets 

Starting from the same genes considered for the unsupervised clustering analysis in discovery set, 

NbClust was applied to validation sets. In particular, 19 out 30 indices were considered to validate 

the number of the clusters along with Ward’s linkage method and euclidean and jaccard distance for 

gene expression and genomic data, respectively [49]. For ICC validation set the minimum and 

maximum number of groups admitted were 2 and 6 while for ECC, due to the low number of samples 

(n=29), the range was set to 2 and 5. At the same time, predictors based on RF algorithm were applied 

to predict the presence of the 4 biological subgroups in ICC and ECC validation sets. Diagonal 

dominant matrix [64] approach along was used to understand the concordance between NbClust-

based and predictors-based classification. For gene expression data only, unsupervised clustering 

analysis based on the median expression of the 19 and 21 genes of each biological sublclass identified 

by the two classification methods were applied in ICC and ECC validation sets. Euclidean distance 

and Ward.D linkage were considered for the analysis. 
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3.7. Survival analysis 

Survival analysis methods were used to analyze overall survival (OS) and relapse free survival (RFS). 

OS was calculated from the date of disease diagnosis to death or last follow-up, while RFS was 

calculated from the date of disease diagnosis to the first event (i.e. disease relapse or death). Patients 

were divided into biological subgroups returned by RF predictor and unadjusted p-values were 

calculated using log-rank test considering p-value < 0.05 as threshold for statistical significance. For 

the ICC cohort, 3 patients were excluded from the survival analysis due to missing OS and RFS 

information. 

 

3.8. Patient information and clinical sample collection 

This was a prospective, monocentric, observational study conducted at Fondazione IRCCS Istituto 

Nazionale dei Tumori (Milan, Italy). For this study, 24 patients with a confirmed diagnosis of 

metastatic/unresectable CC were consecutively recruited between January 2015 and March 2017. The 

number of enrolled patients was consistent, with the entropy-based approach to sample size in 

translational clinical trials as proposed by Piantadosi and colleagues [65]. 

Patients have been treated and followed up as per clinical practice, with frequent clinical evaluations 

and tumor assessment with chest/abdomen CT scans and/or MRIs performed every 2-3 months. The 

treatment efficacy was assessed according to RECIST v1.1. Clinical information was collected from 

medical records and included demographic data, tumor anatomical location, tumor extension, and 

treatment history. The patients’ vital status was updated at the end of June 2018. 

All CTC evaluations were carried out without the knowledge of the patient’s clinical status. 

Samples of peripheral venous whole blood (10 mL) were drawn in EDTA tubes (K2EDTA BD 

Vacutainer®, Becton Dickinson, Franklin Lakes, NJ, USA), stored at 4 °C protected from light and 

processed within 1 hour for CTC enrichment (the first mL of blood was discarded to avoid skin 

epithelial cell contamination). Blood samples were longitudinally collected at times corresponding to 
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baseline (BL), i.e. before initiation of a new treatment line, during treatment (DT) close to clinical 

and imaging evaluations, at the end of treatment (EOT) and at subsequent follow-up (FU) or new 

treatment lines.  

All subjects have signed a written informed consent form accepting participation in this study, which 

was approved by the local ethical board in November 2014 (INT 177/14) and subsequently 

reconfirmed in January 2018. 

 

3.9. CTCs processing 

3.9.1. Collection and processing 

Blood samples (10 mL) collected in K2EDTA tubes were subjected to CTC enrichment with 

ParsortixTM (Angle plc, Guildford, UK) within 1 h from blood draw. Enriched cells were harvested 

according to manufacturer’s instructions and fixed for 20 min at room temperature (RT) with 2% 

paraformaldehyde. Fixed samples were stained immediately or within 24 h from enrichments.  

Fixed samples were fluorescently stained with phycoerythrin (PE)-labeled antibodies against 

epithelial markers EpCAM (clone HEA-125, Miltenyi Biotec, Bergisch Gladbach, Germany, working 

dilution 1:11 for 10 min at 4o C), cytokeratins (pan cytokeratin clone C11, Abcam, San Francisco, 

CA, USA, and pan cytokeratin clone AE1/AE3, NSJ Bioreagents, San Diego, CA, USA, working 

dilution 1:10 for 10 min at RT) and EGFR (clone 423103, Santa Cruz Biotechnology, Dallas, TX, 

USA, working dilution 1:11 for 10 min at 4o C), and with allophycocyanin (APC)-labeled antibodies 

recognizing leukocytes and monocytes: CD45 (clone 5B1, Miltenyi Biotec, working dilution 1:11 for 

10 min at 4o C), CD14 (clone M5E2, BD Biosciences Pharmigen, San Diego, CA, USA, working 

dilution 1:20 for 10 min at 4o C), and CD16 (clone 3G8, BD Biosciences Pharmigen, San Diego, CA, 

USA,  working dilution 1:20 for 10 min at 4o C). Nuclei were stained with 1 g/mL Hoechst 33342 

(Sigma-Aldrich, Saint Louis, MI, USA) for 5 min at RT. Labeled cells were analyzed using the 

DEPArrayTM - (Menarini Silicon Biosystems, Bologna, Italy) within 2 days from staining to visualize 

and recover single cells manually selected based on fluorescence labeling and morphology. 
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Selected single epithelial or double-negative (PE-ve/APC-ve) cells were recovered for downstream 

molecular analyses.  

3.9.2. Molecular characterization  

Recovered single cells were subjected to whole genome amplification employing the Ampli1™Low 

Pass kit for Ion Torrent (Silicon Biosystems), pooling 16 or 24 samples depending on the amplified 

DNA quality or the Ampli1™Low Pass kit for Illumina (Silicon Biosystems, pools of 96 samples). 

Libraries were subjected to sequencing with the IonTorrent Ion S5™ system (Thermo Fisher) using 

the Ion530 chip as for manufacturer’s instructions, or with HiSeq system (Illumina).  

Considering Ion Torrent sequencing, samples with failed QC returned by Ion Reporter software were 

excluded from the analysis. For Illumina sequencing, “Per base sequence content”, “Per sequence GC 

content”, “Sequence length distribution” and “Overrepresented sequences” were considered as 

parameters during the QC analysis in fastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc, accessed on 15 January 2021). Samples 

with > 1 “Fail” returned by software and with aligned read counts lower than 400,000 were excluded 

from the analysis.  

3.9.3. Sequencing data analysis and evaluation of CTCs phylogenie 

WGS sequences were aligned to the Human Reference Genome (hg19) using tmap (Torrent_Suite 

5.10.0) and bwa aligner tool for Ion Torrent and Illumina samples respectively. CNAs were predicted 

by using QDNAseq R package [66].  

Considering the evaluation of CNA profile, chr19 was not considered due to its biased deletion 

associated with the high CG base percentage. The discrimination between aberrant (CTCs) or normal 

cells (WBC) was based on previously published criteria related to the amount and distribution of 

genomic aberration [67]. Segmented copy number data of each sample were extracted starting from 

logRatio value. 

TraslationalOncology (TRONCO) pipeline, an assortment of algorithms to infer progression models 

via the approach of Suppes-Bayes Causal Network were used to perform phylogentic analysis on 
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CTCs patients collected in our Institute [68]. In particular, the CNAs prioritization returned by 

CAPRESE, an algorithm that use a shrinkage-alike estimator combining correlation and probability 

raising among pair of events, was used to identify and to map clonal relationship along time. All the 

steps related to the optimization of phylogenetic analysis are currently ongoing. 

 

3.10. List of R packages 

WGCNA, UBL, tidyr, sva singscore, RColorBrewer, randomForestSRC, plyr, org.Hs.eg.db, NMF, 

NbClust, multiROC, lumi, limma, lattice, irr, GSA, gplots, ggthemes, ggpubr, ggplot2, ggfortify, 

GEOquery, FunCluster, fgsea, factoextra, edgeR, dplyr, DBI, data.table, ComplexHeatmap, circlize, 

caret, Biobase, ichorCNA, QDNAseq and maftools. 
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4.1. Aim1: Collection of publicly available CC datasets of primary tumor 
tissues and molecular signatures extraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.1. Gene expression data 

4.1.1.1. Integration of data from different platforms for the establishment of discovery 
set 

A total of 340 ICC and 203 ECC patients profiled for gene expression data with no previous history 

of hepatitis or fluke infection were collected from seven different datasets and considered as 

discovery dataset. Overall, the intersection of the different platforms used to characterize each sample 

allowed to obtain the expression profile of 13,228 genes. The application of preliminary steps for 

sample normalization and batch effect adjustment lead to a higher correlation between each sample 

in the cohorts (range: 0.5-1 for ICC; range: 0.6-1 for ECC) and to efficient batch correction. 

Liver-specific genes (N=386) obtained from GTEx database were removed to avoid contamination 

given by transcripts non biologically associated to CC [69]. Moreover, the additional filtering step 

Figure 6. Workflow of aim1. The pipeline reports all the steps used in the aim 1 of the present works, from data 
collection to the clinical evaluation of the defined ICC and ECC subgroups in validation set. 
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performed based on the mean expression and variance of each genes allowed to select 1,358 and 676 

genes in ICC and ECC cohort, respectively. 

 

4.1.1.2. Unsupervised clustering analysis identifies distinct biological subgroups in 
ICC and ECC cohorts 

Unsupervised clustering analysis using NbClust led to the identification of 4 subgroups within both 

the ICC (N = 340) and ECC (N = 203) cohort (Figure 7A-B), with no evidence of batch effect related 

to the different datasets forming each cohort.  

To investigate the presence of distinct biological and immunological features of the newly defined 

subgroups, we collected the differentially expressed genes subgroups of each group. Results 

highlighted significant differences between each subgroup, with the distribution of up- and down-

regulated genes that varied among the ICC and ECC cohort. To further understand the unique 

biological traits of the subgroups, enrichment analysis along with the evaluation of immunological 

components were performed.  

Regarding the ICC cohort, up-regulated pathways/signatures characterized distinct biological 

features of each subgroup, mainly related to apoptosis and progression (subgroup A), metabolism and 

TGF-ß (subgroup B), cell cycle and DNA replication (subgroup C), DNA repair and KRAS down-

regulation (subgroup D). Interestingly, the evaluation of the immunological components revealed the 

presence of immune cell infiltration in all samples, with subgroup A being enriched only with 

exhausted T cells (Figure 7A). The enrichment analysis on samples of the ECC cohort also showed 

distinct biological traits associated to each subgroup, related to EGFR and MYC target (subgroup A), 

ECM and cell adhesion/interaction/motility (subgroup B), immune pathways and cell-cycle 

(subgroup C), and metabolic pathways (subgroup D). Moreover, all the subgroups presented different 

immunological components, with subgroup C being characterized by the highest rate of immune cells 

infiltration (see Figure 7B). 
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4.1.1.3. Supervised classifier to identify the proposed subgroups using gene expression 
The presence of distinct ICC and ECC biological subgroups within the discovery set opened the 

possibility to build and compare specific predictors to validate our findings in an independent dataset 

(validation set). For such a purpose, feature selections were performed specifically for ICC and ECC 

cohorts starting from the differential expression analysis between each subclass. A total of 19 and 21 

genes were selected for ICC and ECC samples, respectively and used to build the predictor from 

training set. Due to imbalance between subgroups, we adopted the SMOTE algorithm in order to 

oversample the minority class prior to classifier definition on the discovery set. Among the 3 machine 

learning algorithms tested, RF showed the best performance with an overall misclassification rate of 

0.08 and 0.07 for ICC and ECC, respectively. Moreover, RF predictor showed an AUC value of 0.98 

(KNN=0.84; SVM=0.9) and of 0.99 (KNN=0.95; SVM=0.93) for ICC and ECC cohort, respectively. 

Figure 7. Identification of ICC and ECC distinct biological subgroups. Unsupervised clustering analysis using NbClust identified 
four subgroups in both ICC (A) and ECC (B) discovery set. The heatmaps reports samples on the column and genes on the rows. 
For each sample, dataset of origin and the cluster group membership are reported as color bars on the top of the heatmap. In order 
to evaluate the biological characteristics associated to each subgroup, GSEA, Singscore and ImmuCellAI were applied on ICC 
and ECC cohort. Upregulated/downregulated pathways and Over-Under represented immune cell populations (rows) associated 
to each ICC and ECC subclass (columns) were reported as annotation below the heatmaps.  
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In particular, the classification error associated to each subclass were similar except for group A in 

the ECC cohort, where a value of 0.17 was obtained (Figure 8). 

 

 

4.1.1.4. Identification of ICC and ECC biological subgroups in validation set 
To validate and establish the clinical significance of our predictors, an independent dataset composed 

of 131 patients (102 ICC, 29 ECC) profiled by RNAseq was considered as ICC and ECC validation 

sets (Table 2). Similarly to the discovery set, all of the patients did not present a previous history of 

hepatitis or fluke infection. After transcripts quantification, normalization and gene filtering steps, 

we used a RF-based classifier to predict the presence of the 4 specific biological subgroups in both 

ICC and ECC of the validation set. In the ICC cohort, the subgroups A (n=43) and D (n=1) were 

characterized by the highest and lowest number of patients, respectively, consistently with the 

discovery set composition. For the ECC cohort, most of the patients were identified in subgroups A 

(n=24) and only a few samples were assigned to the B (n=2), C (n=2) and D (n=1) subgroups.  

Figure 8. Building of predictors related to the distinct biological subgroups in ICC and ECC cohort. For ICC, class comparison 
results obtained from LIMMA allowed to select 19 genes specifically associated to each subgroup (FDR < 0.1 & -1 £ log2FC £ 
1) (A). Within ECC, class comparison results obtained from LIMMA allowed to select the top 60 differentially expressed genes 
based on t value. Then, the filtering based on FDR value (FDR < 0.25 in all groups) allowed to identify 21 genes specifically 
associated to each subgroup (B). For both ICC and ECC cohort, SMOTE algorithm was applied to balance the distribution of the 
samples within subgroups and three different machine learning methods were evaluated for the establishment of the predictor. 
The ROC curves report specificity and sensitivity values obtained from RF, KNN and SVM algorithms. 
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To validate the subgroups predicted by the supervised classifier, we compared them to the subgroups 

discovered by unsupervised clustering analysis on the validation sets, which were independent from 

the discovery sets. The method was applied on the same genes (N=1,358 for ICC; N= 676 for ECC) 

used to detect the subgroups in the discovery dataset. In order to match the group labels provided by 

the unsupervised hierarchical clustering to the predicted subgroup classes, we tabulated the 

unsupervised labels versus the predictor-based groups is a 4x4 matrix and searched for the optimal 

matching based on dominant diagonal matrix (the matrix that maximize the numbers along the main 

diagonal) using column permutation and we evaluated the median expression of genes within each 

specific subgroup. Considering the ICC cohort, the column permutation showed specific concordance 

between the subgroups identified by the two methods, as strongly demonstrated by the association 

between VS_1 - C and VS_2 – B classes. Interestingly, the 19 genes considered for the classification 

presented peculiar patterns of up-regulation (e.g., VTN, ADH1C, ALDOB, FABP1 in VS_2 - B) and 

down-regulation (e.g., TCN1, OLFM4, VTN, ADH1C in VS_3 - D) demonstrating the presence of 

biological differences between the subgroups (Figure 9A). Within ECC cohort, the column 

permutation highlighted specific association between the subgroups from predictor-based and 

hierarchical clustering-based approaches except for groups B and VS_3, where the low number of 

patients in validation set affects the degree of concordance. Similar to ICC, the comparison of median 

expression showed patterns of up-regulation and down-regulation for the 21 genes, also for the B-

VS_3 groups (e.g., GREM1, PPARGC1A, GHR and CHGB) (Figure 9B). 
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Table 2. Clinical characteristics of patients in validation set. 
Characteristic ICC N (%) ECC N (%) 

Age   
< 67 years 47 (46.1%) 9 (69%) 
≥ 67 years 52 (51%) 20 (31%) 
Missing 3 (2.9%) / 

Clinical Tumor Size   
cT1 4 (39.2%) 7 (24.1%) 
cT2 47 (46.1%) 10 (34.5%) 
cT3 17 (16.6%) 10 (34.5%) 
cT4 31 (30.4%) 2 (6.9%) 
Missing 3 (2.9%) / 

Clinical Nodal Status   
cN0 67 (65.7%) 22 (75.9%) 
cN1 32 (31.4%) 7 0 (24.1%) 
Missing 3 (2.9%) / 

Stage   
1 4 (39.2%) 10 (34.5%) 
2 34 (33.3%) 15 (51.7%) 
3 12 (11.8%) 2 (6.9%) 
4 49 (48%) 2 (6.9%) 
Missing 3 (2.9%) / 

Relapse   
Yes 61 (59.8%) 10 (34.5%) 
No 38 (37.3%) 19 (65.5%) 
Missing 3 (2.9%) / 

 

4.1.1.5. Identified ICC biological subgroups are associated with clinical outcome 
In order to understand the clinical relevance of the expression subgroups, OS and RFS were evaluated 

in the ICC validation cohort. Considering OS, subgroup A showed a significantly worse prognosis 

compared to subgroups B and C (p-value < 0.0001, Figure 9C). Similarly, the analysis of RFS 

demonstrated that subgroup A was characterized by patients with the shorter RFS (Figure 9D). These 

results support a link between biological characteristics of the primary tumors and the prognosis. 

Indeed, patients within subgroup A had the worst prognosis and RFS with tumors characterized by 

KRAS up-regulation, epithelial-to mesenchymal-transition and apoptosis and by the absence of 

immune cell infiltration. On the contrary, despite the presence of several cancer associated up-

regulated pathways such as RTK-RAS-PIK3K and TGF-ß, tumors belonging to subgroups B and C 

were characterized by a strong immunological component, improving   patients’ prognosis both in 
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terms of OS and RFS (Figure 9C-D). Unfortunately, the low number of patients prevented a similar 

survival analysis for ECC subgroups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of predictor-based and NbClust-based classification in ICC and ECC validation set and evaluation of the 
clinical outcome. To evaluate the validity of classification returned by the ICC and ECC predictors, a comparison with subgroups 
returned by NbClust was performed using diagonal dominant matrix approach and comparing the median expression values 
associated to each group. For both ICC (A) and ECC (B) cohort, heatmap shows subgroups on the columns and genes on the 
rows. The subgroup membership and the associated gene expression levels are reported at the top of the heatmap as color bar and 
box plot, respectively. Diagonal dominant matrix results are shown at the bottom of the heatmap. Overall survival and relapse free 
survival analysis in ICC cohort are represented using Kaplan-Meyer method. Due to the low number of patients, ECC cohort was 
not considered for survival analysis. 
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4.1.2. Mutational data 

4.1.2.1. Integration of data from different platforms for the establishment of discovery 
set 

A total of 361 ICC and 49 ECC patients with available mutational data with no previous history of 

hepatitis or fluke infection were collected from four different datasets and considered as discovery 

dataset. Overall, the intersection of the different platforms used to characterize each sample along 

with the application of all the filtering steps to remove artifacts and not interested variants (see section 

3.2.2 of materials and methods) allowed to select 298 and 77 mutated genes in ICC and ECC cohort, 

respectively. In particular, the most frequent variant types identified in both of the cohorts were 

Missense mutations (61% in ICC; 55% in ECC) followed by INDEL (26% in ICC; 30% in ECC), 

with a prevalence of C > T base change and a median number of muatated genes per samples of 3 

and 2 for ICC and ECC, respectively. 

 

4.1.2.1. Unsupervised clustering analysis identifies distinct biological subgroups in 
ICC and ECC cohorts 

Unsupervised clustering analysis using NbClust led to the identification of 3 and 2 subgroups within 

ICC (N = 361) and ECC (N = 49) cohort, respectively, with no biased distribution of samples derived 

from the different collected datasets (Figure 10A-B).  

To investigate the presence of distinct biological traits of the newly defined subgroups, we performed 

enrichment analysis interrogating canonical oncogenic signaling pathways defined by Vega and 

colleagues [56] and The drug gene interaction database [58].  
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Regarding the ICC cohort, oncogenic pathways characterized distinct biological features of each 

subgroup. The subgroup A showed a low fraction of affected pathways compared to B and C that 

they were mainly characterized by and overrepresentation of TP53, RTK-RAS, TGF-Beta, PI3K and 

NRF2 signaling. Interestingly, the evaluation of the clinically actionable genes through the 

application of two-test statistic (see section 3.4 of materials and methods) revealed the presence of 

druggable targets (n=17) specifically associated to each subgroup, like as SPEN-ARID1A (A), TP53-

SMAD4 (B) and RB1-PIK3CA (C) (Figure 7A). The pathways analysis on samples of the ECC cohort 

also showed distinct biological traits associated to each subgroup, related to Cell cycle, NOTCH and 

MYC target (subgroup A), TP53 and TGF-Beta (subgroup B). Moreover, only subgroup B is 

characterized by the presence of clinically actionable genes, corresponding to TP53 and SMAD4 

(Figure 11B) 

 

Figure 10. Identification of ICC and ECC distinct subgroups considering mutational data. Unsupervised clustering analysis using 
NbClust identified 3 subgroups in ICC (A) and 2 in ECC (B) discovery set. The heatmaps reports samples on the column and the 
top 30 mutated genes on the rows. For each sample, dataset of origin and the subgroup membership are reported as color bars on 
the bottom of the heatmap. 
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4.1.2.2. Supervised classifier to identify the proposed subgroups using mutations 
Similarly to gene expression data, the presence of distinct ICC and ECC biological subgroups within 

the discovery set allowed to build and compare specific predictors to validate our findings in 

validation set. For such a purpose, specific clinically actionable genes were extracted for ICC cohort 

while, for ECC, only common mutated genes between discovery and validation set were considered. 

A total of 13 and 33 genes were selected for ICC and ECC samples, respectively and used to build 

the predictor from training set. Due to imbalance between subgroups, we adopted the SMOTE 

algorithm in order to oversample the minority class prior to classifier definition on the discovery set. 

Among the 3 machine learning algorithms tested, RF showed the best performance with an overall 

misclassification rate of 0.05 and 0.08 for ICC and ECC, respectively. Moreover, RF predictor 

Figure 11. Biological characterization of ICC and ECC subgroups considering mutational data. Canonical oncogenic signaling 
pathways and The drug gene interaction database were interrogated to detect the presence of specific mutated genes in ICC (A) 
and ECC (B) discovery set. The barplots on the left report the fraction of affected pathways and samples within each cohort while 
the heatmap/table on the right showed the druggable genes associated to each subgroup resulting from the two-test statistic 
approach (see section 3.4 of materials and methods). Red and white color within the heatmap refers to the presence/absence of 
mutated genes in the subgroups.  



Results 

pag. 48 
 

showed an AUC value of 0.99 (KNN=0.95; SVM=0.94) and of 0.97 (KNN=0.72; SVM=0.35) for 

ICC and ECC cohort, respectively (Figure 12). 

 

 

4.1.2.3. Identification of ICC and ECC biological subgroups in validation set 
To validate and establish the clinical significance of our predictors, the same independent dataset 

composed of 131 patients (102 ICC, 29 ECC) used for gene expression data was considered as ICC 

and ECC validation sets (Table 2). After the application of the gene variants filtering adopted for 

discovery set, we used the Random Forest-based classifier to predict the presence of the specific 

biological subgroups in both ICC (n=3) and ECC (n=2) of the validation set. In the ICC cohort, the 

subgroups A (n=13) and B (n=58) were characterized by the lowest and highest number of patients, 

respectively, consistently with the discovery set composition. For the ECC cohort, the low number 

of patients affected the prediction with most of the patients identified in subgroups A (n=22) and only 

7 assigned to subgroup B.  

Figure 12. Building of predictors related to the distinct biological subgroups in ICC and ECC cohort. For ICC, subgroup-specific 
clinically actionable genes (n=13) were considered (A). Within ECC, only shared mutated genes between discovery and validation 
set were selected (B). For both ICC and ECC cohort, SMOTE algorithm was applied to balance the distribution of the samples 
within subgroups and three different machine learning methods were evaluated for the establishment of the predictor. The ROC 
curves report specificity and sensitivity values obtained from RF, KNN and SVM algorithms. 
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To validate the subgroups predicted by the supervised classifier, we compared them to the subgroups 

discovered by unsupervised clustering analysis on the validation sets, which were independent from 

the discovery sets. The method was applied on shared mutated genes between the discovery and 

validation set. In order to match the group labels provided by the unsupervised clustering to the 

predicted subgroup classes, we tabulated the unsupervised labels versus the predictor-based groups 

is a 3x3 (ICC) or 2x2 (ECC) matrix and searched for the optimal matching based on the dominant 

diagonal matrix (the matrix that maximize the numbers along the main diagonal) using column 

permutation. Considering the ICC cohort, the column permutation showed specific concordance 

between the subgroups identified by the two methods except for the match VS2-A. For these 

subgroups, the absence of the concordance between the two classification methods could be related 

to the different rate of mutations between discovery and testing set, reflecting the discrepancy 

between the two cohort (Table 3).  

Within ECC patients, the column permutation highlighted specific association between the subgroups 

from predictor-based and NbClust-based approaches (Table 3). 

 

Table 3. Diagonal dominant matrix (column permutation) results in ICC and ECC cohort. 

ICC cohort A B C 

VS_1 0 13 0 

VS_2 12 46 0 

VS_3 0 9 19 

ECC cohort A B  

VS_1 9 0 / 

VS_2 13 7 / 
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4.1.2.4. Identified ICC biological subgroups are associated with clinical outcome 

In order to understand the clinical relevance of the expression subgroups, OS and RFS were evaluated 

in the ICC validation cohort. Considering OS, subgroup C showed a significantly worse prognosis 

compared to subgroups A and B (p-value < 0.0001, Figure 13A). Similarly, the analysis of RFS 

demonstrated that subgroup C was characterized by patients with the shorter RFS (Figure 9B). These 

results support a link between biological characteristics of the primary tumors and the prognosis. 

Indeed, patients within subgroup C had the worst prognosis and RFS with tumors characterized by 

mutations affected TP53 and KRAS signaling pathways and by an higher number of mutated 

druggable targets (n=8) compared to the other subgroups. On the contrary, patients belonging to 

subgroups A were characterized by the lowest number of mutations affected canonical oncogenic 

pathways and by a small number of altered clinically actionable genes (n=3), improving   patients’ 

prognosis both in terms of OS and RFS (Figure 13A-B). Unfortunately, the low number of patients 

prevented a similar survival analysis for ECC subgroups. 

 

 

 

Figure 13. Evaluation of clinical outcome in ICC validation set. Overall survival (A) and relapse free survival (B) analysis in ICC 
cohort are represented using Kaplan-Meyer method. Due to the low number of patients, ECC cohort was not considered for 
survival analysis. 
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4.1.3. Copy number data 

4.1.3.1. Integration of data from different platforms for the establishment of discovery 
set 

A total of 298 ICC and 30 ECC patients with available copy number alteration with no previous 

history of hepatitis or fluke infection were collected from four different datasets and considered as 

discovery dataset. Overall, the intersection of the different platforms used to characterize each sample 

(see section 3.2.2 of materials and methods) allowed to select 319 and 81 altered genes in ICC and 

ECC cohort, respectively. In contrast to gene expression and mutational data, no filtering step on 

detected CNA were not necessary. The most frequent CNA types identified in both of the cohorts 

were Gain (63% in ICC; 77% in ECC) with only a low number of loss detected (37% in ICC; 23% in 

ECC). Moreover, the top altered genes were represented by CDKN2A and CDKN2B  in both of the 

cohort (loss), while the most altered chromosomal arms represented by 1q, 11q, 9p and 1q, 1p, 9p for 

ICC and ECC, respectively. 

 

4.1.3.2. Unsupervised clustering analysis identifies distinct biological subgroups in 
ICC and ECC cohorts 

Unsupervised clustering analysis using NbClust led to the identification of 2 subgroups in both ICC 

(N = 361) and ECC (N = 49) cohort. Due to the low number of patients, a biased distribution of 

tumors derived from the different collected datasets were detected in ECC cohort (Figure 14A-B).  

Similarly to mutational data, we investigated the presence of distinct biological traits of the newly 

defined subgroups through enrichment analysis interrogating canonical oncogenic signaling 

pathways defined by Vega and colleagues [56] and The drug gene interaction database [58].  
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Regarding the ICC cohort, oncogenic pathways characterized distinct biological features of each 

subgroup. The subgroup A is mainly characterized by CNA TGF-Beta (Gain), cell cycle (Gain), TP53 

(Loss) and NRF2 (Loss) signaling while subgroup B showed alterations involved in NRF2 (Gain), 

MYC (Gain) and TGF-Beta (Loss). Notably, the evaluation of the clinically actionable genes through 

the application of two-test statistic (see section 3.4 of materials and methods) revealed the presence 

of druggable targets (n=42) associated to subgroup A only (Figure 11A). The pathways analysis on 

samples of the ECC cohort also showed distinct biological traits associated to subgroup B mostly, as 

expected by the distribution of the samples among the subgroups. Moreover, no subgroup-specific 

druggable targets were detected (Figure 15B). 

 

 

Figure 14. Identification of ICC and ECC distinct subgroups considering CNA data. Unsupervised clustering analysis using 
NbClust identified 2 subgroups in ICC (A) and ECC (B) discovery set. The heatmaps reports samples on the column and the top 
20 altered genes on the rows. For each sample, dataset of origin and the subgroup membership are reported as color bars at the top 
of the heatmap. 
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4.1.3.1. Supervised classifier and identification of ICC and ECC biological subgroups 
in validation set 

Based on the same methods used for gene expression and mutational data, the steps related to the 

building of supervised classifier and to the identification of ICC and ECC biological subgroup in 

validation set is currently ongoing, as a conclusion of step1. Finally, evaluation of clinical outcome 

associated to each identified CC subgroups will be performed. 

 

 

 

 

 

 

 

Figure 15. Biological characterization of ICC and ECC subgroups considering CNA data. Canonical oncogenic signaling 
pathways and The drug gene interaction database were interrogated to detect the presence of specific altered genes in ICC (A) and 
ECC (B) discovery set. The barplots are divided by alterations type and report the fraction of affected pathways and samples within 
each cohort. Druggable targets were evaluated using the same approach adopted for mutational data (see section 3.4 of materials 
and methods). 
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4.2. AIM2: Integration and validation of different molecular signatures to 
define biological distinct subgroups and create predictive tool 

The extraction of different molecular signatures along with biological characterization performed in 

aim1 will imply the prediction of multiple data type (e.g., CNA, somatic mutations and gene 

expression) on validation set, in order to obtain a complete characterization of ICC and ECC cohort. 

Indeed, due to the presence of matched transcriptomics and genomics data for each patient, an 

approach based on consensus clustering will redefine the biological subgroups identified in discovery 

set allowing a comprehensive characterization of CC tumors. Then, a predictive tool based on CNA 

data will be created to allow inference on CTCs derived from CC patients profiled by lpWGS (see 

section 3.9.2 of Materials and Methods). The present aim2 is currently ongoing (Figure 16).   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Framework of aim2. The pipeline reports all the steps that will be performed in aim2 starting from different molecular 
signatures extracted from aim1. [Adapted from Zhang and colleagues in 2022] 
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4.3. AIM3: Collection and molecular characterization of CTCs from CC 
patients 

4.3.1. Genomic characterization of CTCs depicted high level of heterogeneity 
intra and extra patient 

 
A total of 88 CTCs were collected from 28 CC patients enrolled at Fondazione IRCCS Istituto 

Nazionale dei Tumori di Milano and profiled using lpWGS. Through this technique, it is possible to 

obtain CNA profiling of single cells at a lower cost than microarrays and high-throughput WGS, thus 

allowing the analysis of a higher number of samples. Compared with deep sequencing strategies, 

lpWGS produces only a fraction of the data per sample and relies on computational methods to fill in 

the missing information. So, while it does not provide information on small-scale alterations 

(INDELs), it instead gives an overview of the macro-aberrations present in the entire genome of a 

cell, thus indicating whether a cell is normal (flat, diploid profile) or cancerous (aberrant profile). 

Globally, 63 (72%) and 25 (28%) CTCs were obtained from ICC and ECC patients, respectively, at 

Baseline (BL; n. ICC=30, n. ECC=10), during treatment (DT; n. ICC=12, n. ECC=2), end of 

treatment (EOT; n. ICC=11, n. ECC=11), post end of treatment (postEOT; n. ICC=0, n. ECC=2) and 

at follow-up (FU; n. ICC=10, n. ECC=0). 

Considering the number of CNAs detected, the most altered chromosomal regions were 1p (6.1%), 

1q (5.8%) and 2q (4.7%) in ICC while, within ECC cohort, 11q (5.7%), 12q (5%) and 15q (4.8%) 

were the most affected arms. The difference between the two cohorts was confirmed also at gene 

levels, ARID1B and BMP6 in ICC and MGMT and EBF3 in ECC patients harbored the higher 

number of alterations. 

Overall, the CNA profiles associated to each CTC showed a high level of heterogeneity intra and 

extra patient in both ICC and ECC. Notably, this characteristic was evident not only considering all 

the collected CTCs within each patient along follow-up, but also focusing on single timing, 

suggesting the presence of different selected tumor clones over the course of the disease (Figure 17). 
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Figure 17. CNAs profiles of CTCs collected in ICC and ECC patients. The heatmaps show the genomic profiles in terms of 
CNAs of CTCs collected from patients enrolled in Fondazione IRCCS Istituto Nazionale dei Tumori di Milano. Columns report 
genomic regions (chr1 to chr22) from left to right while collected CTCs, divided for each patient, were reported on the rows. 
Annotations on the right report the timing of withdrawal of each CTC and the type of CC cohort (ICC, ECC). Red and blue colors 
refer to amplification and deletion. 
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4.4. AIM4: Monitoring of cancer evolution under treatment pressure through 
phylogenetic analysis of CTCs. 

4.4.1. Phylogenetic analysis of CTCs allows to evaluate tumor evolution within 
single patient.  

The amount of information retrieved analyzing transcriptomic and genomic data in aim1, allowed to 

obtain a comprehensive characterization of CC tumor and specifically associated to ICC and ECC 

subtype. Since aim2, that will be based on the integration and validation of different molecular 

signatures to define biological distinct subgroups and create predictive tool to apply on CTCs 

collected in aim3, is still ongoing, we used already published gene signatures to perform phylogenetic 

analysis within single patients [29]. In particular, Reduzzi and colleagues identified genes (n=10) 

associated to genomic region 3p11.1 as markers able to distinguish CTCs of responding from non-

responding patients to the treatment line. Leveraging on this gene signature, we mapped the CTCs 

evolutionary relationship using the phylogenetic analysis performed by the TRONCO pipeline [68] 

Patient BT24, the one considered as first test in our cohort, had 9 CTCs collected at baseline (n=1), 

during (n=1) and after treatment (n=1) of cis/gem therapy and, after a change of treatment due to 

progression, at the end of immunotherapy (n=6). Based on the processes regulated the carcinogenesis, 

WBC was considered as hypothetical root of the phylogeny. During the first line of therapy (cis/gem), 

clones A (n=1), B (n=1) and C (n=1) characterized by different CNAs features were identified at 

baseline, during and after treatment highlighting the modulation performed by therapy. Despite the 

response to cis/gem at the end of treatment, patient went into progression and, after immunotherapy, 

6 CTCs were collected. Interestingly, they belong to the same three clones A (n=2), B (n=1) and C 

(n=3) detected before the progression, suggesting their role as tumor-driver event in the evolution of 

the disease (Figure 18). 

Overall, these results revealed that CTCs are able to describe the complex biology of the tumor within 

single patients, showing how the level of heterogeneity along time is shaped by resistant and non-

resistant clones arising under therapy pressure. 
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Figure 18. Phylogenetic analysis of Patient BT24. Phylogenetic analysis was performed on CTCs collected at baseline, during 
and after treatment in patient BT24. Heatmap on the top shows CNAs profile of CTCs: genomic region, from left to right, are 
reported on the column (chr1 to chr22) while single CTCs are reported on the rows. Red and blue colors refer to amplification and 
deletion, respectively. On the bottom, Timescape plot reports on Y axis the prevalence of each clone (defined by different colors) 
detected along the time in patient BT24. Therapy line (bottom) and disease status (RP = Partial response; SD = Stable disease; PD 
= Progression disease; top) are reported on X axis, respectively. 
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CC is a deadly disease with limited therapeutic options. Although it is possible to perform surgery 

with curative intent in the early-stage disease, most patients are diagnosed with advanced CC, when 

the only option is systemic chemotherapy. The standard first-line treatment for advanced CC is 

cis/gem, which has limited efficacy, and there is no standard second-line treatment. 

Molecular profiling has not only revealed that CC carry multiple potentially actionable mutations, 

but has also shown a great heterogeneity between different anatomical subtypes (ICC, ECC). These 

results support the possibility of personalized therapeutic approaches in CC patients, but also 

highlight the need of performing the molecular analysis of the tumors, which is not feasible for many 

patients due to tumor tissue inaccessibility. Moreover, the observed intra-tumor heterogeneity can 

represent another obstacle in the implementation of personalized medicine in CC, since a single tissue 

biopsy may not recapitulate the overall tumor heterogeneity.  

In the present study, we report a pipeline to infer cancer evolution within single patients through the 

use of circulating tumor cells evaluated on transcriptomics and genomics signatures extracted from 

the collection of publicly available CC datasets. Beside to the definition of distinct biological 

subgroups, when possible, these signatures were associated to a prognostic value. 

Considering gene expression data, the identified subgroups are characterized by the enrichment of 

specific molecular pathways such as EMT, IL6, RTK-RAS-PIK3K and DNA repair in ICC tumors 

and EGFR, VEGF signaling immune and integrine-pathways in ECC. Immune cell infiltrates are 

peculiar and distinct among subgroups supporting their unique biological profiles and possible 

treatment implications. The analysis of genomic data, mutations and CNAs, revealed a distinct 

samples distribution within discovery set compared to transcriptomic landscape, showing the 

presence of peculiar oncogenic pathways like as TP53, TGF-Beta, NFR2 and NOTCH. Moreover, 

druggable targets associated to specific subgroups mutations were identified, demonstrating the 

potential role of these classification in clinical management. 

Finally, for both mutational and gene expression data the analysis of the overall and relapse-free 

survival highlights a significant association between biological subgroups and clinical outcome in the 
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ICC cohort, identifying one specific subclass characterized by poor prognosis. The clinical evaluation 

of CNAs subgroups is currently ongoing. 

Several studies aimed at characterizing cholangiocarcinoma using integrative molecular analyses 

[25], [27], [28], [70]. However, a comprehensive analysis of ICC and ECC derived from different 

patient cohorts for obtaining biological insights and prognostic information was still lacking. Herein, 

at variance with previous studies, we have collected and combined for the first time all public 

transcriptomic and genomic datasets available at date in a unique cohort split into discovery and 

validation sets. 

When collecting large numbers of samples derived from different studies the careful integration of 

the gene expression, mutation and CNAs datasets derived from multiple high throughput platforms 

is mandatory. The choice of the optimal method for integration of these data represents a critical step 

impacting on the final relevance of findings. Herein, we did not only face the need of integrating 

heterogeneous sample sources (FF, FFPE), but also data derived from different platforms ranging 

from microarrays to RNAseq (gene expression), and from Target/Whole/Exome-seq to SNP6 array 

(genomic). The use of cross-platform analysis was a crucial step that allowed improving the 

classification and identification of tumor phenotypes when considering not only different type of 

microarrays [71] and RNAseq technology [72]–[74] but also several genomic platforms [75], [76]. 

The main issue for the building of ICC and ECC discovery sets was related to gene expression data 

derived by distinct datasets, that was made possible by resorting to empirical Bayesan methodology 

(ComBat) to remove batch effects associated with each dataset, a mandatory step as already reported 

[77]. 

In a data-driven approach, such as ours, the choice and careful evaluation of clustering methods is 

critical. In the current study, the application of NbClust was instrumental for the robust definition of 

the optimal number of clusters within ICC and ECC of the discovery sets.  

In fact, the robustness of the identified subgroups was confirmed by statistical considerations, but 

was also fully supported by the biologically distinct traits of each identified cluster. For digging 
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deeply into the biology of subgroups, the gene set enrichment, single sample scoring and oncogenic 

pathways analyses were complemented by the evaluation of immune cell infiltration and druggable 

target in gene expression and genomic data, respectively. The biological singularity of each cluster 

identified by unsupervised classification was indeed further supported by the different profiles of 

immune infiltrate or the presence of different clinically actionable genes associated with each 

subgroup. 

Beside to the identification of druggable targets through the analysis of genomic data, interesting 

results in terms of clinically application was obtained to the evaluation of gene expression profiles. 

In particular, our results showed not only the presence of distinct canonical CC gene signaling such 

as TGF-b, RTK-RAS-PIK3K [54], cell cycle and the up-regulation/down-regulation of biological 

pathways related to metabolic processes but also different immune cell populations within subgroups 

identifying in both ICC and ECC a subgroup (subgroup A) of tumors characterized by an immune 

exhausted tumor microenvironment. In ICC, subgroup A displayed a gene expression profile 

suggesting epithelial-mesenchymal transition with modifications of cell-cell interaction, adhesion 

and motility accompanied by KRAS up-regulation, whereas in ECC immune exhaustion was 

associated with proliferation and EGFR signaling. For ECC tumors it is interesting to note the strong 

immune infiltration detected in subgroup C, which was characterized by the presence of 9 different 

immune cell populations. Indeed, in this latter group GO identified up-regulation of immune 

pathways, but also pathways linked to chemoresistance.  

Having identified interesting subgroups of ICC and ECC tumors endeavored with possible treatment 

implications we set to find a way to apply those results to the real- world daily practice. 

The first step was the building and the validation of a classifier with a reduced number of genes. To 

such a purpose, short transcriptomic and genomic gene signatures were extracted from differential 

expression analysis between subgroups taking advantage from the SMOTE algorithm for adjusting 

sample number unbalances. These steps were necessary to obtain a more accurate establishment of 

the ICC and ECC predictors after the test of three different machine learning algorithms. RF method 
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showed the best performance in both of the cohort considering all the data types, given the low error 

rate in classification.  

As first step in the validation process, we compared the predictor-based and the NbClust-based 

classifications by using diagonal dominant matrix and, only for gene expression data, evaluating the 

median gene expression levels. Considering the transcriptomic profiles, the two classification 

methods correlate well despite the hugely different number of genes considered, demonstrating the 

presence of the four biological subgroups in both cohorts. For mutational data, the diagonal dominant 

matrix approach showed concordance between NbClust-based and predictor-based methods except 

for 1 association (VS2-A). For these subgroups, the absence of correlation could be related to the 

different rate of mutations between discovery and testing set, reflecting the biological discrepancy 

between the two cohort. 

The use of gene expression and mutation classifications questions the use of the same type of 

therapeutic approach for all CC since both among ECC and ICC clear differences on activation of 

pathways have been observed. Indeed, survival analyses performed in the ICC validation set disclosed 

an association between predicted subclass and the patient’s clinical outcome, with patients whose 

tumors fell in subgroup A (gene expression-based classification) and C (mutation-based 

classification) showing the worst prognosis in terms of overall and relapse free survival. Due to the 

low number of samples, it was not possible to perform the analysis with a statistical significance in 

ECC cohort. 

ICC patients with tumors classified as subgroup A based on gene expression predictor represent 43% 

and their poor prognosis is supported by up-regulation of pathways linked to intracellular signaling 

and epithelial mesenchymal transition and by an enrichment of exhausted T-cells in their infiltrate.  

These patients might therefore respond to checkpoint inhibitors provided that appropriate biomarkers 

are used since their poor prognosis is strongly determined by such peculiar type of immune infiltrate. 

ICC patients classified as subgroup C by mutation-based predictor represent 28% of the cohort and 

they were characterized by a median overall survival time < 30 months. These patients were defined 
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by the highest number of mutations on clinically actionable genes like as TP53, KRAS, PTEN, 

ARID2 and SMAD4 and, consequently, to oncogenic signaling pathways defined by these targets. 

The integration of different datasets and the building of robust classifiers represent main strengths of 

our study broadening both biological and clinical implications. Indeed, given the rarity of this tumor 

entity, here we managed to assemble the largest cohort of CC cases profiled with transcriptomic and 

genomic platform, providing a comprehensive and reproducible tool to define CC subgroups. This 

effort will lay, once the aim2 will be completed, the groundwork for the evaluation of tumor evolution 

within single patients through the analysis of circulating tumor cells. 

The molecular analysis of CTCs represents a valuable option in the study of CC, offering an 

alternative and easy-to-get source of tumor material, and allowing for a better understanding of intra-

tumor subclonal composition. Moreover, since CTCs can be repeatedly assessed over time through 

simple blood draws, they can be used to monitor disease evolution in response to treatment. 

Leveraging on their potential role in treatment monitoring in CC [29], [78], we collected and profiled 

with lpWGS 88 CTCs from 28 patients enrolled in our institute to map evolutionary trajectory using 

signatures extracted from the previous aims of the study. Overall, CTCs showed a high level of 

heterogeneity intra- and extra-patients in both ICC and ECC cohort in terms of CNAs profile, 

similarly to what reported in a study on 14 patients with metastatic castration-resistant prostate cancer 

where CNA profiles of 185 single CTCs were analyzed [79].  

The presence of CTCs collected along follow-up within single patients, opened the possibility to 

apply phylogenetic algorithm to map clonal architecture of the tumor and clarify its evolution during 

time. For such a purpose, since the definition of predictive tool based on transcriptomic and genomic 

signatures to apply on CTCs is currently ongoing (aim2), we considered genes in chromosomal region 

distinguishing responder to non-responder patients in CC as marker for the phylogenetic analysis 

[29]. The test performed on patient BT24 showed how CTCs were able to track tumor heterogeneity 

revealing the existence of clones harboring different CNAs that specifically characterize each time 

point of the disease. Taking together, this first attempt of phylogenetic analysis demonstrated the 
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utility to characterize CTCs to understand the tumor evolution and to predict, ideally, the course of 

the disease under a specific therapy pressure within single patient. 

The current work is still ongoing and has limitations. A major limitation deals with the low number 

of patients with ECC tumors. This did not hinder identification and validation of ECC subgroups, but 

definitely interfered with evaluation of their prognostic relevance. Nonetheless, the interesting results 

obtained in ICC, imply that our approach levering public datasets is valuable and can be further 

implemented in the future when more ECC dataset will be available. Finally, the phylogenetic 

analysis was based on the application of standard algorithm already reported in literature: with the 

collection of a higher number of CTCs the future step will be represented by the implementation of 

new method specifically related to our context. 

 

This study will offer a concrete opportunity to generate a pipeline for monitoring cancer evolution 

under treatment pressure providing new insights for the comprehension of tumor heterogeneity and 

progression within individual patients. Leveraging on this effort, the expectation is to generate a 

useful framework not only for CC but also for other tumor types. 
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