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A B S T R A C T   

Externalizing disorders, such as attention-deficit/hyperactivity disorder (ADHD), account for the majority of the 
child/adolescent referrals to mental health services and increase risk for later-life psychopathology. Although the 
expression of externalizing disorders is more common among males, few studies have addressed how sex 
modifies associations between metal exposure and adolescent externalizing symptoms. This study aimed to 
examine sex-specific associations between co-exposure to multiple metals and externalizing symptoms in 
adolescence and young adulthood. Among 150 adolescents and young adults (55% female, ages: 15–25 years) 
enrolled in the Public Health Impact of Metals Exposure (PHIME) study in Brescia, Italy, we measured five metals 
(manganese (Mn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni)) in four biological matrices (blood, urine, 
hair, and saliva). Externalizing symptoms were assessed using the Achenbach System of Empirically Based 
Assessment (ASEBA) Youth Self-Report (YSR) or Adult Self Report (ASR). Using generalized weighted quantile 
sum (WQS) regression, we investigated the moderating effect of sex (i.e., assigned at birth) on associations 
between the joint effect of exposure to the metal mixture and externalizing symptoms, adjusting for age and 
socioeconomic status. We observed that metal mixture exposure was differentially associated with aggressive 
behavior in males compared to females (β = − 0.058, 95% CI [-0.126, − 0.009]). In males, exposure was 
significantly associated with more externalizing problems, and aggressive and intrusive behaviors, driven by Pb, 
Cu and Cr. In females, exposure was not significantly associated with any externalizing symptoms. These findings 
suggest that the effect of metal exposure on externalizing symptoms differs in magnitude between the sexes, with 
males being more vulnerable to increased externalizing symptoms following metal exposure. Furthermore, our 
findings support the hypothesis that sex-specific vulnerabilities to mixed metal exposure during adolescence/ 
young adulthood may play a role in sex disparities observed in mental health disorders, particularly those 
characterized by externalizing symptoms.   
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1. Introduction 

Externalizing disorders such as attention-deficit/hyperactivity dis-
order (ADHD), are estimated to affect 7–10% of children and adoles-
cents, making them among the most common youth mental health 
disorders (Merikangas et al., 2009; Samek and Hicks, 2014). Expression 
of externalizing disorders and related symptoms (e.g., aggression, 
impulsivity) during adolescence has been associated with mental health 
problems later in life, including substance abuse and antisocial person-
ality disorder (Babinski et al., 1999; Biederman et al., 2008; Elkins et al., 
2007; Fergusson et al., 2008; Samek and Hicks, 2014). Numerous studies 
have explored potential risk factors contributing to adolescent exter-
nalizing symptoms; several of these studies have implicated environ-
mental metal exposure (Bao et al., 2009; Burns et al., 1999; Khan et al., 
2011; Menezes-Filho et al., 2014; Rodrigues et al., 2018; Rodrí-
guez-Carrillo et al., 2022; Yousef et al., 2011). Associations between 
adolescent externalizing symptoms and single metal exposures such as 
lead and manganese are particularly well-established (Bao et al., 2009; 
Burns et al., 1999; Khan et al., 2011; Renzetti et al., 2021; Yousef et al., 
2011). Despite recent evidence suggesting synergistic effects of metals 
on child neurobehavior (Renzetti et al., 2021), few studies have assessed 
the impact of mixed metal exposure on externalizing symptoms during 
adolescence/young adulthood. Given most individuals are faced with a 
mixture of exposures in daily life (Levin-Schwartz et al., 2021), exam-
ining associations between metal mixture exposure and adolescent 
neurobehavior is crucial to better understand the real-world impact of 
metal exposure during key periods of brain development. 

Externalizing disorders and related symptoms are more commonly 
expressed in males compared to females (Samek and Hicks, 2014). Sex 
differences in externalizing disorders and/or symptoms may emerge 
from a variety of biological and environmental factors, including envi-
ronmental toxicant exposures (Cahill, 2006; Rechtman et al., 2020; 
Torres-Rojas and Jones, 2018). Differential susceptibility to metal 
exposure has been previously related to sex differences in child and 
adolescent neurobehavior (Burns et al., 1999; Gade et al., 2021; Joo 
et al., 2018; Llop et al., 2013; Menezes-Filho et al., 2014; Rechtman 
et al., 2020; Vahter et al., 2007). However, with the exception of lead, 
whose neurotoxicity has been largely suggested to impact males more 
than females (Gade et al., 2021; Llop et al., 2013; Polanska et al., 2018; 
Ris et al., 2004; Singh et al., 2018; Vahter et al., 2007), the sex-specific 
neurotoxicity of many metals is still unclear. Studies on other metals 
such as manganese have found evidence of sex-specific neurotoxicity in 
both sexes, with varying results based on the neurobehavioral outcome 
(e.g., IQ, attention) and/or time of exposure (e.g., prenatal, childhood) 
(Menezes-Filho et al., 2014; Mora et al., 2015). Lead has also shown 
varying sex-specific effects based on these factors (Joo et al., 2018; 
Merced-Nieves et al., 2022). Importantly, such studies have mainly 
focused on metal exposure during the prenatal and/or early childhood 
periods, leaving adolescence and young adulthood as relatively under-
studied exposure windows (Rechtman et al., 2020). Given, adolescence 
and young adulthood are timepoints of emergent sex differences in brain 
and behavior (Raznahan et al., 2010; Sisk and Zehr, 2005), examining 
interactions between sex and metal exposure during adolescence/young 
adulthood may bring novel insight into sex-specific vulnerabilities 
unique to this critical developmental window. 

In this study, we take a data driven approach to investigate how 
combined exposure to five neuroactive metals lead (Pb), manganese 
(Mn), chromium (Cr), copper (Cu) and nickel (Ni) measured in four 
biological matrices (blood, urine, hair, and saliva) during adolescence 

and young adulthood associate with externalizing symptoms in adoles-
cents and young adults enrolled in Public Health Impact of Metals 
Exposure (PHIME) study. We hypothesized that these neuroactive 
metals are jointly acting, yielding a so-called “mixture effect” that is 
associated with increased externalizing symptoms. In particular, we 
hypothesized that sex (i.e., assigned at birth) modifies the association 
between metal mixture exposure and externalizing behaviors during 
adolescence/young adulthood, with males being more vulnerable to 
increased externalizing behaviors following metal mixture exposure. 

2. Materials and methods 

2.1. Participants 

The PHIME study investigates associations between metal exposure 
from anthropogenic emissions and developmental health outcomes in 
adolescents and young adults (n = 717) living in Lombardy, Italy. De-
tails of the study have been described elsewhere (Lucas et al., 2015; 
Lucchini et al., 2012a). Inclusion criteria included: birth in the areas of 
interest; family residence in Brescia for at least two generations; resi-
dence in the study areas since birth. The exclusion criteria included: 
having a neurological, hepatic, metabolic, endocrine, or severe psychi-
atric disorder; using neuroactive medications; having clinically diag-
nosed motor deficits or cognitive impairment, and having visual deficits 
that are not adequately corrected. Between 2016 and 2021, a subset of 
PHIME participants (n = 207) participated in a voluntary follow-up 
study, involving biological sample collection, additional self and 
interviewer-assisted questionnaires, and neuropsychological tests. 
Metals (Mn, Pb, Cr, Cu, and Ni) were measured in saliva, hair, blood, and 
urine collected in the same follow-up visit. Out of the 207 PHIME par-
ticipants, 45 subjects were excluded due to incompletion of the 
Achenbach System of Empirically Based Assessment (ASEBA) Youth Self 
Report (YSR) (Achenbach and Rescorla, 2001, 2007) or ASEBA Adult 
Self Report (ASR) (Achenbach and Rescorla, 2003, 2015). Additionally, 
12 subjects were excluded for missing covariate data (n = 3), or missing 
exposure data in at least one biomarker (n = 9). The present study 
therefore included 150 adolescents and young adults (55% female, ages 
15–25 years). Written informed consent was obtained from participants 
and the parents of participants below the age of consent (<16 years of 
age). Study procedures were approved by the Institutional Review Board 
(IRB) of the University of California, Santa Cruz and the ethical com-
mittees of the University of Brescia, and the Icahn School of Medicine at 
Mount Sinai. 

2.2. Biomarkers of exposure 

Biological samples including venous whole blood, spot urine, saliva 
and hair were collected using procedures previously described at the 
adolescent/young adult study visit (Eastman et al., 2013; Lucas et al., 
2015; Smith et al., 2007). Complete overview of biomarkers can be 
found in Table 2. Biological samples were processed and analyzed for 
metal concentrations at the Physical Science Building laboratory facility 
of University of California Santa Cruz, using magnetic sector inductively 
coupled plasma mass spectroscopy (Thermo Element XR ICP-MS) and 
standardized testing materials as described elsewhere (Eastman et al., 
2013; Lucas et al., 2015; Smith et al., 2007). The majority of measure-
ments were above the sample limits of detection (LODs). Sample LODs 
were calculated by converting the analytical LOD (analytical LOD in 
ng/mL of analyzed sample digestate) to an LOD in the original sample 
based on the average sample amount (e.g., mg or mL, depending on 
sample type) processed for analyses; measurements below the LOD were 
assigned a value of one half the sample LOD. Percentage of metals in 
biological samples above the LODs are reported in Table 2. 
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2.3. ASEBA YSR and ASR questionnaires 

To assess behavioral outcomes, participants self-administered the 
Achenbach System of Empirically Based Assessment Youth Self Report 
(YSR) (Achenbach and Rescorla, 2001, 2007) or Adult Self Report (ASR) 
(Achenbach and Rescorla, 2003, 2015) in the presence of a trained 
psychologist. The YSR and ASR are self-report questionnaires that assess 
behavioral, emotional, and social problems (Ediati et al., 2015; Ivanova 
et al., 2015). The YSR is designed for ages 11–18, whereas the ASR is 
designed for ages 18–59. Among the PHIME participants included in this 
study (n = 150), 43 participants (ages 15–17) completed the Youth Self 
Report (YSR), and 107 participants (ages 18–25) completed the Adult 
Self-Report (ASR). 

The ASR and YSR consist of 3 summary scales derived from corre-
sponding syndrome scales: internalizing problems, externalizing 

problems, and total problems. Items on ASR/YSR are rated on a 3-point 
Likert scale: 0 being “not true”, 1 “partly or sometimes true”, and 2 
“very/often true”. Items that correspond to each syndrome scale are 
combined to compute a raw score for each scale. For summary scales (e. 
g., externalizing problems), raw scores are computed by combining 
scores of their corresponding syndrome scales. The ASR externalizing 
problems score is computed by combining scores on the aggressive 
behavior, rule-breaking behavior, and intrusive syndrome scales. Simi-
larly, the YSR externalizing problems score is computed by combining 
scores from the aggressive behavior and rule-breaking behavior syn-
drome scales. Raw scores on both syndrome and summary scales are 
used to compute T-scores (mean = 50, standard deviation = 10) with 
predefined clinical cut-offs based on population norms. T-scores for the 
YSR/ASR range from 25 to 100 for summary scales and 50–100 for 
syndrome scales. Additionally, according to the ASEBA multicultural 
manual, T-scores greater than 63 for summary scales and greater than 69 
for syndrome scales are considered clinically significant (>98th 
percentile) (Tesei et al., 2020). T-scores between 60 and 63 (summary 
scales), or 65–69 (syndrome scales) are considered borderline clinically 
significant (93rd to 98th percentile). 

The ASR and YSR have corresponding counterparts for several syn-
drome scales; scores on these counterparts can be directly compared 
(Achenbach, 2019). Several studies have aggregated ASR and YSR scores 
to assess behavioral and emotional problems in early to late adolescence 
(Coelho et al., 2013; Le Fur et al., 2020; Ly et al., 2011; Morosan et al., 
2017; Zondervan-Zwijnenburg et al., 2020). Furthermore, both the YSR 
and ASR have been validated and used across several cultures (Achen-
bach, 2010, 2019; Bianchi et al., 2022; Ivanova et al., 2007, 2015; 
Morosan et al., 2017; Rescorla et al., 2007), including Italian pop-
ulations (Gatta et al. n.d.; Graziano et al., 2016; Tesei et al., 2020). For 
this study, we used versions that have been validated in the Italian 
population and used T-scores from the following YSR/ASR scales to 
assess externalizing symptoms: externalizing problems, aggressive 
behavior, and rule-breaking behavior. T-scores from the ASR intrusive 
scale, and the YSR/ASR internalizing problems and total problems 
summary scales were also assessed. These scores were then used in 
subsequent statistical analyses. 

2.4. Statistical analysis 

2.4.1. Covariates 
Sociodemographic data (i.e., sex assigned at birth, age, and parental 

occupation and education) were collected through questionnaires 
(Butler et al., 2019). An index of family socioeconomic status (SES; low, 
medium or high) was calculated from parental age, occupation and 
education (Butler et al., 2019; Cesana et al., 1995; Lucchini et al., 
2012b). 

2.4.2. Descriptive statistics 
Visual inspection and descriptive statistics (geometric mean (GM) 

and geometric standard deviation (GSD)) were used to characterize the 
metal concentrations in different biological matrices. Spearman’s rank 
correlations were used to assess differences in metal concentrations 
between each metal biomarker in males and females, respectively 
(Fig. S4). Wilcoxon rank-sum tests and Chi-Square tests were used to 
assess differences in the distribution of covariates (age, SES) between 
males and females (Table 1). Logistic regression (adjusted for age and 
SES), was used to assess differences in the distribution of behavioral 
outcomes between males and females (Table 1). Wilcoxon rank-sum 
tests were used to compare the distribution of behavioral outcomes 
within the clinical and/or borderline clinical ranges between males and 
females (Table 1). Descriptive statistics were performed using R 4.2.2. 

2.4.3. Generalized weighted quantile sum regression: sex-stratified 
interaction model 

To examine the moderating effect of sex on associations between the 

Table 1 
Sex-Stratified sociodemographic and behavioral characteristics of adolescents 
and young adults enrolled in the PHIME cohort who were included in the current 
study (n = 150).  

Characteristic All Participants (n =
150) 
Mean ± SD or % 

Males (n 
= 67) 
Mean ±
SD or % 

Females (n 
= 83) 
Mean ± SD 
or % 

pᵃ 

Age (years) 19.2 ± 2.50 18.6 ±
2.62 

19.6 ± 2.35 0.04 

SES     
Low 26.0% 22.4% 28.9% 0.26 
Medium 49.3% 56.7% 43.4% 
High 24.7% 20.9% 27.7% 
Externalizing 

Problems 
49.6 ± 8.80 49.8 ±

8.96 
49.4 ± 8.71 0.92 

Clinical (n = 8) 
(5 females, 3 
males) 

68.12 ±
2.70 

67.7 ±
2.08 

68.4 ±
3.21 

0.65  

Borderline Clinical 
(n = 9) 
(5 females, 4 
males) 

61.1 ±
1.27 

60.8 ±
1.5 

61.4 ±
1.14 

0.36  

Aggressive 
Behavior 

54.5 ± 5.65 54.4 ±
5.17 

54.5 ± 5.86 0.85 

Clinical (n = 3) 
(3 females, 
0 males) 

74.7 ± 4.16 NA 74.7 ± 4.16 NA 

Borderline Clinical 
(n = 9) 
(5 females, 4 
males) 

61.1 ± 1.27 60.8 ± 1.5 61.4 ± 1.14 0.36 

Rule-breaking 
Behavior 

52.6 ± 3.66 52.7 ±
3.60 

52.4 ± 3.73 0.85 

Clinical (n = 0) NA NA NA NA 
Borderline Clinical 

(n = 3) 
(2 females, 1 
male) 

67.0 ± 1.00 68.0 ± NA 66.5 ±
0.707 

0.66 

Intrusiveb 52.9 ± 4.89 53.8 ±
5.69 

52.4 ± 4.31 0.12 

Clinical (n = 1) 
(0 females, 1 
male) 

73.0 ±
NA 

73.0 ±
NA 

NA NA  

Borderline Clinical 
(n = 5) 
(3 females, 2 
males) 

67 ±
1.22 

67.0 ±
0 

67.0 ±
1.73 

0.76  

SES socioeconomic status. 
a Differences in the distribution of age and SES between males and females 

were tested using Wilcoxon rank-sum or Chi-square tests. Differences in the 
distribution of T-scores for YSR/ASR scales were tested using logistic regression, 
adjusted for age and SES. Differences in the distribution for YSR/ASR T-scores 
within the borderline and/or clinical ranges were tested using Wilcoxon rank- 
sum tests.. 

b Analysis included participants who completed the ASR intrusive scale (N =
107). 
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metal mixture (5 metals, 4 biological matrices) and externalizing 
symptoms measured by the YSR or ASR, we used sex-stratified interac-
tion weighted quantile sum (WQS) regression models (Gennings et al., 
2022). Briefly, weighted quantile sum (WQS) regression is a data driven, 
mixtures-based ensemble modeling strategy that tests for associations 
between exposure to a mixture containing multiple, potentially corre-
lated variables and an outcome of interest (Carrico et al., 2015). WQS is 
implemented over two steps: 1) estimation of a weighted index repre-
senting the association between the mixture components and the 
outcome using bootstrap sampling of observations; 2) a significance test 
for the regression coefficient associated with the WQS index (Carrico 
et al., 2015; Gennings et al., 2022). The WQS index is calculated as 
WQSj =

∑c
i=1wiqi,j, where WQS is the mixture index, qi,j is the ranked 

(quantiled) concentration for an ith predictor and jth subject, and wi is 
the empirically estimated weight corresponding to qi (Eggers et al., 
2022). Weights associated with each predictor provide an indication of 
each predictor’s contribution to the overall association between the 
mixture and the outcome. All weights are constrained to sum to one, 
enabling sorting by relative importance. 

The WQS stratified interaction model (Busgang et al., 2022; Genn-
ings et al., 2022), builds upon the WQS by allowing for estimation of the 
WQS index in the presence of interaction with a continuous or cate-
gorical variable. 

The parametrization for the WQS stratified-interaction model is 
given by: β0 + β1WQS + β2x + β12xWQS, where x is an indicator for a 
binary variable (e.g., sex). When x = 0, these terms would be: β0 +

β1WQS, and when x = 1, they would be (β0 + β2) + (β1 + β12)WQS. Thus, 
β2 indicates the change in the intercept due to the binary variable, β12 is 
the change in the slope of WQS due to the variable, and β1 + β12 is the 
slope for the category when x = 1. In such a parameterization, the WQS 
stratified interaction model allows for strata-specific weights and 
regression coefficients (Gennings et al., 2022). We used a sex-stratified 
interaction WQS model, which allowed for sex-specific weights and 
regression coefficients. In our model parameterization, the beta estimate 
associated with WQS index is the slope for the reference group (males), 
the sum of the betas associated with the WQS index and the interaction 
term is the slope for the comparison group (females), and the beta for the 
interaction between WQS index and sex is the difference in slopes 

between males and females (Gennings et al., 2022). Our models esti-
mated across 50 bootstrap samples, and 100 repeated holdouts (Tanner 
et al., 2019). Metal concentrations were ranked in deciles to estimate the 
weights for each holdout. By using WQS with repeated holdouts, the 
data are randomly partitioned 100 times to produce a distribution of 
effect estimates and mixture weights, where the mean or the median can 
be taken as the final estimate. Given the differences in outcomes, the 
WQS analysis for the externalizing problems summary scale used linear 
regression, while the WQS analyses for the aggressive behavior, 
rule-breaking behavior and intrusive syndrome scales used 
quasi-Poisson regression. For all analyses, the directionality of the as-
sociation of the WQS index was constrained in the positive direction to 
assess the hypothesized harmful effects of the metal mixture on exter-
nalizing symptoms. 

3. Results 

3.1. Demographic characteristics 

Table 1 reports the demographic and behavioral characteristics of 
the 150 adolescents and young adults included in this study, stratified by 
sex. A comparison of demographic characteristics between adolescents 
included the current study, the follow-up study (n = 207) and the full 
PHIME cohort (n = 717) can be found in the Supplementary Material 
(Table S1). Participants mean age was 19.1 (SD = 2.5) when the YSR or 
ASR was administered. There was a significant age difference between 
sexes, with females being significantly older than males (p = 0.04). 
Socioeconomic status did not significantly differ by sex. Mean T-scores 
on the externalizing problems, aggressive behavior, and rule-breaking 
behavior YSR/ASR scales were not clinically significant for either sex, 
and did not significantly differ by sex. Mean T-scores on the ASR 
intrusive scale (n = 107) were not clinically significant for either sex, 
and did not significantly differ by sex. Across the externalizing prob-
lems, aggressive behavior and rule-breaking behavior scales, ~7% of T- 
scores from either sex fell within the clinical range (n = 11: 8 females, 3 
males), and ~11% fell within the borderline clinical range (n = 16: 9 
females, 7 males). For the ASR intrusive scale, less than 1% of T-scores 
from either sex fell within the clinical range (n = 1: 0 females, 1 male), 

Table 2 
Metal concentrations (Mn, Pb, Cr, Cu and Ni) measured in blood, urine, hair and saliva collected from the 150 PHIME adolescents included in the current study.  

Metal Concentration LOD Range % > LOD All Participants GM ± GSD Males (N = 67) Females (N = 83) pᵃ 

Saliva (ug/L)       
SPb 0.002–0.180 91 0.202 ± 3.05 0.199 ± 2.74 0.205 ± 3.33 0.71 
SCr 0.046–0.219 91 0.519 ± 3.71 0.596 ± 3.75 0.465 ± 3.66 0.52 
SMn 0.044–0.108 96 3.23 ± 2.97 3.41 ± 2.59 3.10 ± 3.30 0.82 
SNi 0.021–0.341 97 11.33 ± 3.14 1.42 ± 3.22 1.26 ± 3.08 0.91 
SCu 0.025–1.075 97 9.15 ± 2.40 8.46 ± 2.30 9.74 ± 2.48 0.30 
Hair (ug/g)       
HPb 0.00007–0.006 100 0.096 ± 3.14 0.064 ± 3.06 0.132 ± 2.90 < 0.001 
HCr 0.0005–0.006 100 0.039 ± 2.74 0.029 ± 2.65 0.049 ± 2.67 < 0.01 
HMn 0.0005–0.017 100 0.061 ± 2.62 0.044 ± 2.22 0.078 ± 2.76 < 0.001 
HNi 0.0006–0.036 87 0.035 ± 4.88 0.023 ± 4.38 0.050 ± 4.93 < 0.001 
HCu 0.0008–0.089 100 10.3 ± 1.65 9.01 ± 1.48 11.4 ± 1.74 < 0.01 
Urine (ug/L)       
UPb 0.012–0.147 98 0.343 ± 2.57 0.391 ± 2.42 0.309 ± 2.66 0.16 
UCr 0.018–0.160 96 0.287 ± 3.15 0.360 ± 3.02 0.240 ± 3.18 0.07 
UMn 0.068–0.175 80 0.268 ± 3.64 0.286 ± 3.81 0.254 ± 3.52 0.74 
UNi 0.095–0.341 97 1.18 ± 2.53 1.15 ± 2.34 1.20 ± 2.70 0.45 
UCu 0.141–0.504 100 5.95 ± 1.91 5.91 ± 1.80 5.98 ± 2.00 0.99 
Blood (ug/L)       
BPb 0.071–0.230 100 8.49 ± 1.56 9.69 ± 1.55 7.62 ± 1.52 < 0.001 
BCr 0.040–0.378 63 0.335 ± 4.68 0.355 ± 4.10 0.320 ± 5.21 0.60 
BMn 0.175–0.815 100 8.57 ± 1.50 8.01 ± 1.38 9.05 ± 1.57 0.12 
BNi 0.095–1.160 73 1.93 ± 7.30 1.61 ± 6.15 2.23 ± 8.30 0.75 
BCu 0.352–2.200 100 593 ± 1.30 522 ± 1.19 658 ± 1.32 < 0.001 

LOD limit of detection (analytical LOD adjusted for sample amount), GM geometric mean, GSD geometric standard deviation. 
a Differences in the distribution of variables between males and females were tested using linear regression on log-transformed concentrations, adjusted for age, sex, 

and SES. 
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and ~5% fell within the borderline clinical range (n = 5: 3 females, 2 
males). Histograms displaying T-Score distributions of YSR/ASR scales 
for males and females are shown in Supplementary Material (Fig. S1). 

3.2. Exposure characteristics 

Metal concentrations in the different matrices are reported in 
Table 2. Blood Cu and Pb concentrations significantly differed by sex, 
with Cu concentrations higher in females compared to males (males: 522 
± 1.19 μg/L, females: 658 ± 1.32 μg/L; p < 0.001) and blood Pb con-
centrations significantly higher in males compared to females (Males: 
9.69 ± 1.55 μg/L, Females: 7.62 ± 1.52 μg/L; p < 0.001). Hair metal 
concentrations were significantly higher in females compared to males 
for all metals (Table 2). Metal concentrations in saliva and urine did not 
significantly differ by sex. 

3.3. Sex-specific effects of exposure to metal mixtures and externalizing 
symptoms 

Table 3 provides a summary of the distribution of effect estimates 
from the WQS sex-stratified interaction models for the externalizing 
problems, aggressive behavior, rule-breaking behavior, and intrusive 
scales. Results from the WQS sex-stratified interaction models suggest 
sex-specific vulnerabilities to the combined effect of metal mixture 
exposure on externalizing symptoms in adolescents/young adults. The 
interaction between the WQS index and sex was significant for the 
aggressive behavior syndrome scale (Table 3; (β = − 0.058, 95% CI 
[− 0.126, − 0.009]) and borderline significant for the externalizing 
problems summary scale (β = − 0.594, 95% CI [− 1.090, 0.141], and the 
intrusive syndrome scale (β = − 0.040, 95% CI [− 0.115, 0.008)). In 
males, metal mixture exposure was significantly associated with higher 
scores on the externalizing problems. aggressive behavior, and intrusive 
scales (Table 3; β = 0.487, 95% CI [0.065, 0.947]; β = 0.043, 95% CI 
[0.011, 0.109]; β = 0.041, 95% CI [0.002, 0.100], respectively). In fe-
males, metal mixture exposure was not significantly associated with 

scores on either the externalizing problems (β = − 0.044; 95% CI 
[− 0.551, 0.300]), aggressive behavior (β = − 0.013; 95% CI [− 0.059, 
0.026]) or intrusive (β = − 0.005; 95% CI [− 0.047, 0.028]) scales. Metal 
mixture exposure was not significantly associated with scores on the 
rule-breaking behavior syndrome scale for either sex (Table 3; Females: 
β: = 0.010; 95% CI [− 0.011, 0.053]). Fig. 1 displays the distributions of 
the 100 repeated holdouts for the externalizing problems, aggressive 
behavior scales. The distribution of the 100 repeated holdouts for the 
rule-breaking behavior scale can be found in Supplementary Material 
(Fig. S2). Results from non-interaction models showed a significant as-
sociation between the metal mixture and the externalizing problems 
summary scale only (Supplementary Material - Table S2). Results from 
models for the internalizing and total problem summary scales were not 
significant (Supplementary Material - Table S3, Table S4). 

Given the significant associations found between the metal mixture 
and externalizing symptoms in males, we assessed the distribution of 
estimated weights for males across the repeated holdouts (Fig. S3) to 
identify potential metals of concern among each of the four biological 
matrices (blood, hair, saliva, urine). In males, Pb, Cu and Cr were the 
highest contributing metals across all 3 scales. For the externalizing 
problems and aggressive behavior scales, Pb and Cr (in all matrices 
combined) contributed to ~21–22% of the relative weights for males 
and Cu (in all matrices combined) contributed to ~23–24% (Fig. 2). For 
the intrusive scale, Pb and Cu (in all matrices combined) contributed to 
~18% of the relative weights for males, and Cu (in all matrices com-
bined) contributed to ~25%. Similarly, for each scale in males, all blood 
metals had mean weights above the threshold of 1/40 = 0.025 (where 
40 is the total number of weights, 20 for boys and 20 for girls) (Fig. 1; 
Fig. S3). For both externalizing problems and aggressive behavior, most 
saliva metals (except saliva Ni) had mean weights above this threshold. 
Most saliva metals (except saliva Ni and saliva Mn) were also above this 
threshold for the intrusive scale. In hair, only Cr and Cu had mean 
weights above the cut off across all 3 scales. None of the urine metals had 
mean weights above the threshold for any of the 3 scales. Overall, these 
results suggest that Pb, Cu, and Cr may be driving the association be-
tween metal mixture exposure and increased externalizing symptoms in 
males. Furthermore, these results suggest that blood and saliva may be 
important biomarkers for assessing associations between metal mixture 
exposure associations and externalizing symptoms in adolescence/ 
young adulthood. 

4. Discussion 

To our knowledge, this is the first study to examine sex-specific as-
sociations between metal mixture exposure and adolescent/young adult 
neurobehavior using multiple biological matrices (blood, saliva, hair, 
urine). We observed that associations between exposure to a mixture of 
neuroactive metals and externalizing symptoms differed by sex, sug-
gesting sex-specific vulnerability to metal neurotoxicity during adoles-
cence and young adulthood. In males, exposure to the metal mixture was 
associated with more externalizing symptoms (i.e., externalizing prob-
lems, aggressive behavior, intrusive behavior). These associations were 
predominantly driven by Pb, Cu and Cr. In females, metal exposure was 
not associated with externalizing symptoms. Our results suggest that a) 
the effect of co-exposure to neurotoxic metals differs by sex and b) 
adolescence and young adulthood are sensitive developmental periods 
for metal exposure. Additionally, our findings suggest these sex-specific 
associations are due to combined exposure to multiple metals, empha-
sizing the importance of examining metal mixtures to better understand 
the impact of metal exposure on adolescent and young adult 
neurobehavior. 

Previous epidemiological studies have similarly observed sex- 
specific associations between metal exposure and adolescent external-
izing symptoms (Burns et al., 1999; Joo et al., 2018; Menezes-Filho 
et al., 2014; Mora et al., 2015; Naicker et al., 2012), suggesting that male 
and female neurobehavior are not equally vulnerable to metal exposure 

Table 3 
Associations between metal mixture exposure and externalizing symptoms 
among adolescent and young adult PHIME participants.  

Outcome Parameter Median 2.5th 
percentile 

97.5th 
percentile 

Externalizing 
Problems 

WQS index 0.487c 0.065 0.947 
Female − 0.044 − 0.551 0.300 
WQS index X 
Female 

− 0.594 − 1.090 0.141 

Aggressive 
Behaviora 

WQS index 0.043c 0.011 0.109 
Female − 0.013 − 0.059 0.026 
WQS index X 
Female 

¡0.058c ¡0.126 ¡0.009 

Rule-breaking 
Behaviora 

WQS index 0.005 − 0.021 0.030 
Female 0.010 − 0.011 0.053 
WQS index X 
Female 

0.006 − 0.032 0.047 

Intrusivea,b WQS index 0.041c 0.002 0.100 
Female − 0.005 − 0.047 0.028 
WQS index X 
Female 

− 0.040 − 0.115 0.008 

Note: Effect estimates (median, 2.5 percentile, 97.5 percentile) from WQS sex- 
stratified interaction regressions for externalizing symptoms, across 100 
holdout datasets. The slope associated with WQS is for males; the interaction 
between WQS and sex is the difference in slopes between males and females. 
N = 150; training n ~45, validation n ~105; βs were constrained in the positive 
direction. 

a Association with WQS index assessed using quasi-Poisson regression. 
b Association with WQS index assessed among participants who completed the 

ASR intrusive scale (N = 107; training n ~32, validation n ~75; βs were con-
strained in the positive direction). 

c Association is statistically significant. 
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in adolescence. Sex differences in brain development may confer 
sex-specific vulnerabilities to metal neurotoxicity during adolescence 
and young adulthood. Multiple studies have found that males display a 
relatively protracted maturation in brain regions associated with 
externalizing symptoms (e.g., amygdala, prefrontal cortex) compared to 
females, particularly in early and late adolescence (Fish et al., 2020; 
Gennatas et al., 2017; Lenroot et al., 2007; Lenroot and Giedd, 2010; 
Mills et al., 2014; Uematsu et al., 2012). Such findings suggest males 
may be more vulnerable to metal neurotoxicity in adolescence, and in 

turn, are at greater risk for metal-associated psychopathology. For 
example, Pb exposure in males has been consistently linked with 
externalizing symptoms in adolescence and young adulthood, particu-
larly delinquency (Dietrich et al., 2001; Emer et al., 2020; Needleman 
et al., 1996, 2002; Wright et al., 2008) and aggression (Burns et al., 
1999; Naicker et al., 2012). Results from these studies also support our 
finding that Pb (in all matrices combined) was a top contributor to the 
association between the metal mixture and externalizing symptoms in 
males (Fig. 1; Fig. 2). While comparatively less studies have linked Cu 

Fig. 1. The moderating effect of sex on associations between the WQS metal mixture index and externalizing symptoms among the 150 PHIME partici-
pants included in the current study. (A–D) Results from the WQS sex-stratified interaction regression models for the YSR/ASR externalizing problems and 
aggressive behavior scales, using 100 repeated holdouts and controlling for sex, age, and SES (N = 150; training n ~ 45, validation n ~ 105). (E–F) Results from the 
WQS sex-stratified interaction regression models for the ASR intrusive scale (N = 107; training n ~ 32, validation n ~ 75). (A,C,E) Distribution of WQS estimates for 
males and females. Diamonds show the median effect estimate for the 100 holdouts, boxplots show the 25th, 50th and 75th percentiles, and whiskers show the 2.5th 
and 97.5th percentiles. (B,D,F) Mean estimated sex-specific weights from the 100 holdouts. The dotted lines represent the threshold from the equi-weighted index (i. 
e., 1/(2c)), where c is the number of components in the mixture. 
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and/or Cr with externalizing symptoms, altered Cu and Cr concentra-
tions have been observed in children/adolescents with ADHD (Li et al., 
2020; Russo, 2010; Skalny et al., 2020; Viktorinova et al., 2016) and 
youth and adults (majority male) with violent behavioral history 
(Cromwell et al., 1989; Marlowe et al., 1991; TOKDEMIR et al., 2003; 
Walsh et al., 1997). Current epidemiological data also suggests Cu and 
Cr may similarly exhibit sex-specific neurotoxicity. Zhou et al. (2015) 
observed sex-specific associations between Cu exposure and working 
memory deficits in adolescence, with results suggesting greater 

susceptibility among males. This Cu-associated deficit in working 
memory may be attributed to its impact on attention (Alemany et al., 
2017; Amorós et al., 2019; Kicinski et al., 2015; Marlowe and Bliss, 
1993; Salustri et al., 2010; Zhou et al., 2015). Amorós et al. (2019) 
observed similar sex-specific associations between Cr exposure and 
attentional deficits in childhood; results also suggested greater vulner-
ability among males. Impaired attention (e.g., inattention, distracti-
bility) is a common feature of externalizing disorders (Harrison et al., 
2012; Samek and Hicks, 2014) and is predictive of externalizing-related 

Fig. 2. - Metals contributing to increased externalizing symptoms in males, summed across all biological matrices. Relative mean weights for each metal 
across the four biological matrices (blood, hair, saliva, urine), using WQS sex-stratified regression with 100 repeated holdouts. 
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psychopathology (e.g., substance use disorder) in adolescence (Elkins 
et al., 2007). Therefore, our finding that Cu and Cr (in all matrices 
combined) were also top contributors to the observed associations in 
males is similarly supported, albeit less directly, by previous literature. 

Sex differences in metal exposure may also contribute to the asso-
ciations observed in this study (Vahter et al., 2007). We observed sig-
nificant sex differences in blood Pb and blood Cu, with males displaying 
higher blood Pb and lower blood Cu concentrations (Table 2). Previous 
studies have also observed higher blood Pb concentrations in adolescent 
and young adult males (Burm et al., 2016), suggesting that males may 
experience greater Pb exposure during adolescence and young adult-
hood. Greater exposure in males may potentially contribute to their 
heightened vulnerability to metal neurotoxicity during ado-
lescence/young adulthood. However, in most biological matrices 
(excluding hair), males and females exhibited comparable concentra-
tions of metals, indicating that our findings cannot be solely attributed 
to sex differences in exposure. Moreover, the absence of significant as-
sociations in females, despite having higher concentrations of both 
blood Cu and hair metals, as well as a greater proportion falling within 
the clinical and borderline clinical ranges (Table 1), reinforces this 
notion. Future studies should longitudinally assess metal exposure and 
externalizing symptoms to elucidate whether sex-specific associations 
are consistently observed throughout adolescence and young adulthood. 

Our results build upon previous literature by assessing the combined 
effect of multiple metals on adolescent/young adult externalizing 
symptoms. Traditionally, epidemiological studies examining metal 
exposure have used individual exposure biomarkers (e.g., blood, urine), 
as proxies of total environmental exposure. However, as metals have 
different toxicokinetics across various biological media, each biomarker 
provides unique, yet complementary information on specific biochem-
ical processes. As such, recent epidemiological studies have begun to 
integrate exposure information from multiple biomarkers to more 
accurately estimate total body burden (Bauer et al., 2020; Invernizzi 
et al., 2023; Levin-Schwartz et al., 2020). In line with this, we focused on 
a mixture of 5 metals (Mn, Pb, Cu, Cr, Ni) using 4 biological matrices 
(blood, saliva, hair, urine). Several studies have suggested that 
co-exposure to certain metals leads to enhanced neurotoxicity, attrib-
uted to their unique chemical properties and similar neurobiological 
mechanisms of action (Lopes de Andrade et al., 2021). Metals within our 
mixture that have demonstrated synergistic neurotoxicity include Pb, 
Cu, and Mn (Chen et al., 2016; Lu et al., 2018; Tao et al., 1999). Previous 
observations have shown that metal co-exposure can exacerbate neu-
rodevelopmental deficits in children and adolescents (Claus Henn et al., 
2014; Sanders et al., 2015). Findings from preclinical animal studies 
suggest that when co-exposed, metals may alter accumulation, retention 
and distribution of other metal components (Chen et al., 2016). In 
particular, Mn has been shown to increase accumulation of various 
metals in the brain, notably Pb (Chandra et al., 1983; Chen et al., 2016), 
and Cu (Mercadante et al., 2016). Cu has also been observed to increase 
accumulation of Pb (Tao et al., 1999). Therefore, although Pb, Cu and Cr 
were found to contribute most to the associations between the metal 
mixture and externalizing symptoms in males, their greater influence 
may be driven by synergistic interactions with other metals in the 
mixture (e.g., Mn). To account for these potential synergistic effects, 
future studies should similarly evaluate multiple metals as a mixture, 
rather than solely assessing them individually. 

Our study has several limitations. First, sex differences in unmea-
sured covariates and possible unmeasured exposures may bias our re-
sults. Our use of self-report questionnaires to assess externalizing 
symptoms may also bias our results. Furthermore, our WQS stratified 
interaction modeling approach assumed a linear association between 
the metal mixture and externalizing symptoms, which may not hold true 
for all metals within the mixture. Future studies should conduct similar 
analyses on a larger cohort of participants with longitudinal exposure 
and outcome data to detect more substantial and clinically meaningful 
effect sizes. Additionally, future studies should explore non-linear 

associations to further elucidate the relationship between metal mixture 
exposure and externalizing symptoms in adolescence and young 
adulthood. 

5. Conclusion 

Exposure to metals during adolescence and/or young adulthood may 
exert a sex-specific impact on externalizing symptoms, suggesting metal 
exposure may potentially contribute to the sex differences observed in 
mental health disorders. Our results emphasize the importance of 
considering sex as an effect modifier in addition to a covariate when 
investigating associations between environmental exposures and neu-
robehavior. By utilizing a WQS stratified interaction modeling 
approach, we can identify potential sex-specific vulnerabilities to envi-
ronmental mixtures, and thereby provide valuable insights to guide 
targeted public health interventions. 
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