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Abstract: Studies of the health effects of the microbiome often measure overall associations by using
diversity metrics, and individual taxa associations in separate analyses, but do not consider the
correlated relationships between taxa in the microbiome. In this study, we applied random subset
weighted quantile sum regression with repeated holdouts (WQSRSRH), a mixture method successfully
applied to ‘omic data to account for relationships between many predictors, to processed amplicon
sequencing data from the Human Microbiome Project. We simulated a binary variable associated
with 20 operational taxonomic units (OTUs). WQSRSRH was used to test for the association between
the microbiome and the simulated variable, adjusted for sex, and sensitivity and specificity were
calculated. The WQSRSRH method was also compared to other standard methods for microbiome
analysis. The method was further illustrated using real data from the Growth and Obesity Cohort in
Chile to assess the association between the gut microbiome and body mass index. In the analysis with
simulated data, WQSRSRH predicted the correct directionality of association between the microbiome
and the simulated variable, with an average sensitivity and specificity of 75% and 70%, respectively, in
identifying the 20 associated OTUs. WQSRSRH performed better than all other comparison methods.
In the illustration analysis of the gut microbiome and obesity, the WQSRSRH analysis identified an
inverse association between body mass index and the gut microbe mixture, identifying Bacteroides,
Clostridium, Prevotella, and Ruminococcus as important genera in the negative association. The
application of WQSRSRH to the microbiome allows for analysis of the mixture effect of all the taxa in
the microbiome, while simultaneously identifying the most important to the mixture, and allowing
for covariate adjustment. It outperformed other methods when using simulated data, and in analysis
with real data found results consistent with other study findings.

Keywords: human microbiome; microbiome analysis; mixture analysis; weighted quantile sum regression

1. Introduction

The human microbiome is increasingly recognized as an important component of
human health. Studies show links between the composition and function of the human
gut microbiome and many health outcomes, including inflammatory and autoimmune
conditions, obesity, infection, and neurological outcomes [1–4]. Animal studies have shown
prospective changes in the microbiome from different exposures, and changes in physiology
and health status after changes to the microbiome. While some clinical trials have been
done, many human microbiome studies have been observational.

In observational studies, the microbiome is typically characterized in a few key ways.
The first is by measuring and comparing within individual diversity, or α-diversity. These
measures, adopted from the field of ecology, measure the number of different taxa present,
and the evenness of abundance among those taxa within a single sample [5–7]. That
diversity level can then be compared across individuals. However, α-diversity cannot be
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directly translated to health status, thus its meaningful utility is limited. A second way to
characterize the microbiome is by assessing community composition, or β-diversity. This
is typically done by measuring the similarity or dissimilarity of the composition of one
sample compared to another, using the number of different taxa [8], the abundance of each
taxa [9], and sometimes the phylogenetic relationships between taxa [10]. Researchers can
compare groups, for instance exposed and unexposed groups, to see if the samples within
one group are more similar than samples across groups (i.e., controls are more similar to
other controls than to the exposed group). We use these measures of diversity to try to gain
an understanding of the effect of or on the microbiome as a whole, but changes in diversity
can only indicate a general difference without indicating how specifically the microbiome
is different, or what the important players within the microbiome are.

To determine which specific taxa contribute to differences in diversity, researchers
can also assess each taxa individually by measuring the amount of variability each one
contributes, or by assessing trends in the presence/absence or abundance of individual
taxa. While combinations of these strategies are often used, these scenarios must be
adjusted for multiple comparisons across hundreds or thousands of taxa, which limit the
ability to identify statistically significant associations. Furthermore, the microbiome is
an ecosystem of bacterial communities with complex interactions and associations, and
using these modeling strategies to assess them individually does not account for their
intricate correlations.

Interest in microbiome research has grown rapidly over the last fifteen years, yet the
complexity of the data, e.g., zero inflation, variation across individuals, correlated taxa,
etc., continues to be a challenge for researchers. There has been a push for new statistical
methodologies, including machine learning methods, and new microbial data applica-
tions of existing statistical methods, in an effort to improve the accuracy of findings from
microbiome analyses [11]. Some of these methods include random forest [12], negative
binomials [13], and clustering [14], to name a few. Similarly, there has been a push in the
field of environmental epidemiology to develop new strategies to model the health effects
of multiple co-exposures to improve the accuracy of chemical exposure studies. Some of
the newly developed methods allow for analysis of overall mixture effects, and indicate the
importance of each chemical within that mixture. One such method is weighted quantile
sum (WQS) regression [15]. WQS regression uses an empirically weighted index of many
correlated chemical exposure measurements, and models the mixture effect of the whole
index, while also providing weights for each component within the mixture to indicate the
relative importance. WQS regression also allows for the inclusion of covariates, to reduce
the effects of confounding. Applying this method to analysis of microbiome data allows for
the evaluation of the overall mixture effect of the microbiome, and simultaneously identi-
fies the most important individual taxa in the mixture while accounting for a correlated
data structure.

The goal of this study is to demonstrate the novel application of WQS regression to
assess covariate-adjusted associations between health exposures and microbiome sequenc-
ing abundance data as a mixture of potentially correlated bacterial taxa. Our analysis
adjusted and combined WQS regression with random subset selection [16] and repeated
holdout [17] (WQSRSRH) frameworks, and applied them to publicly available Human Mi-
crobiome Project (HMP) 16S amplicon sequencing data. We further demonstrate the utility
of the method using data from the Growth and Obesity Cohort Study (GOCS) in Chile.

The random subset extension of WQS is used in cases where the number of components
in the WQS index is greater than the number of observations, and uses random subsets of
components to calculate the WQS index. The repeated holdout extension of WQS allows for
more robust estimates by using different observations in the training and validation sets of
the data over multiple iterations of WQS analysis. We illustrate the utility of WQSRSRH and
estimate specificity (correctly determining OTUs were not associated with the outcome)
and sensitivity (correctly identifying associated OTUs) of the method. This methodological
application allows for more comprehensive investigation of the association between the
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gut microbiome and many health exposures and outcomes by assessing the microbiome as
a mixture.

2. Methods

Figure 1 illustrates a simplified flow chart of the methods used for this study. All
methods were performed in accordance with the relevant guidelines and regulations. This
study is not considered human subjects research and is exempt from review by the Mount
Sinai Institutional Review Board, as the data are de-identified and publicly available.

2.1. Data Source and Processing for Simulation

Data for the simulation analysis came from the HMP, version 1, which has been well
described in previous literature [18–20]. We used 16S amplicon sequencing data, processed
using QIIME [19,21]. HMP guidelines were followed in this analysis and publication.

We used data from each participant’s first stool sample (n = 210). As a data reduction
step, we filtered out any operational taxonomic unit (OTU) that had 0 abundance in
more than 90% of samples, resulting in a total of 868 OTUs. This data reduction step
also ensures that there are enough participants with non-zero values to calculate tertiles
above zero for the WQSRSRH indices. Relative abundances were calculated to account for
variations between individuals within the sample population. These data processing steps
were performed in SAS v 9.4, R v 3.6.1, and RStudio v 1.2.5001, using the HMP16SDATA
package [22].

2.2. Data Simulation Method

Twenty OTUs were chosen based on a literature review of bacterial species that have
been linked to health-related variables such as body mass index (BMI) and smoking status
(see Table 1). The number of OTUs were chosen for ease of the simulation step, and are not a
reflection of the WQSRSRH model’s power to detect associated components. These 20 OTUs
were then randomly categorized to represent levels of association (strong, medium, and
weak) with a simulated binary variable. To simulate the “test” variable, the intercept (β0)
was set to −5, and the potency adjusted relative abundance (calculated as log2(log10(x +
1)/log10(max + 1)) for each of the 20 OTUs) was multiplied by a β coefficient of 8 for the
strong group, 4 for the medium group, and 2 for the weak group. Potency adjustment was
needed to standardize the simulated association across samples because the abundance of
each OTU varied greatly, i.e., multiplying by 8 leads to a different scale of association for
an abundance of 5 vs. an abundance of 30. Beta coefficient values were chosen for each
level of association that would result in logit values across the range of OTUs between
roughly −3.5 and 3.5. In prior attempts at simulation, larger coefficient values resulted in
unlikely and extreme logit values (i.e., greater than 3.5). All other OTUs were not assigned
an association with the test variable (i.e., assumed to be a value of 0). The resulting test
variable was positive for 13% of the participants. We adjusted the simulation model for
sex using a beta coefficient of −1 for females; i.e., males were the reference group. We also
simulated a random “control” variable that was not assigned an association to any OTU,
and used it as a negative control to compare the ability of each model to detect the intended
simulated association.
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Figure 1. Study Schematic. A simplified flow-chart of the study procedures. Abbreviations: Ampli-
con Sequence Variant (ASV); Body Mass Index (BMI); Human Health Exposure Analysis Resource
(HHEAR); Human Microbiome Project (HMP); Operational Taxonomic Unit (OTU); Permutational
Analysis of Variance (PERMANOVA); Quantitative Insights Into Microbial Ecology (QIIME); Sim-
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Weighted Quantile Sum Regression with Random Subsets and Repeated Holdouts (WQSRSRH).
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Table 1. Description of the 20 operational taxonomic units (OTUs) that were assigned an association with the simulated binary (test) variable. In the weighted
quantile sum regression, relative abundance of each OTU within the gut microbiome from each participant was ranked as 0 if relative abundance was 0, and then by
tertiles above 0 for ranks 1–3. Table columns represent the taxonomy, sample size, row percent of observations at each rank level, median and maximum of non-zero
relative abundance, and level of assigned association with the test variable (β = 8, 4, 2 for strong, medium, and weak, respectively) for the 20 OTUs assigned
an association.

Phylum Family Genus N Rank 0
%

Rank 1
%

Rank 2
%

Rank 3
%

Median of
Non-Zero Values 1 Maximum 1 Assigned

Association

Actinobacteria Micrococcaceae Rothia [23] 210 81.4 6.2 6.2 6.2 0.12 8.33 Medium

Coriobacteriaceae Atopobium [23] 210 82.9 5.7 5.7 5.7 0.03 0.94 Weak
unclassified [23] 210 83.3 5.7 5.2 5.7 0.05 1.65 Medium

Bacteroidetes Bacteroidaceae Bacteroides [24] 210 82.4 5.7 6.2 5.7 0.03 0.75 Strong

Rikenellaceae Allistipes [1] 210 87.1 4.3 4.3 4.3 0.37 16.06 Medium

Firmicutes Staphylococcaceae Staphylococcus [25] 210 35.2 21.4 21.9 21.4 0.51 4.71 Weak

Lactobacillaceae Lactobacillus [26,27] 210 85.7 4.8 4.8 4.8 0.03 0.88 Weak

Eubacteriaceae Eubacterium [24,28] 210 63.8 11.9 12.4 11.9 0.24 3.79 Medium

Lachnospiraceae Coprococcus [29,30] 210 86.7 4.3 4.8 4.3 0.05 2.03 Weak
Dorea [29,30] 210 58.1 13.8 14.3 13.8 0.81 19.75 Medium

Roseburia [1,28] 210 57.6 14.3 13.8 14.3 0.19 3.25 Weak
unclassified [29,30] 210 58.6 13.8 13.8 13.8 0.28 14.60 Strong

Ruminococcaceae Faecalibacterium [1,31] 210 61.9 12.9 12.4 12.9 0.22 4.90 Medium
unclassified [25] 210 85.2 4.8 5.2 4.8 0.07 2.80 Weak

Erysipelotrichaceae Coprobacillus [23] 210 81.0 6.2 6.7 6.2 0.05 1.24 Medium
Holdemania [23] 210 87.6 4.3 3.8 4.3 0.05 1.97 Weak

Solobacterium [23] 210 86.2 4.8 4.3 4.8 0.02 0.83 Weak
Turicibacter [23] 210 84.8 5.2 4.8 5.2 0.04 1.24 Medium

Proteobacteria Enterobacteriaceae Serratia [32] 210 80.0 6.7 6.7 6.7 0.03 0.84 Weak

Verrucomicrobia Verrucomicrobiaceae Akkermansia [25] 210 88.1 3.8 4.3 3.8 0.03 1.65 Weak

1 Shown in percent relative abundance.
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2.3. Weighted Quantile Sum Regression Analysis with Random Subsets and Repeated Holdouts

WQS is a method applied to mixtures of variables (e.g., chemicals, or in this case
OTUs) by which the total effect of a group of potentially correlated predictors is estimated
through the derivation of an index, a weighted sum of the quantiled exposure variables [15].
The WQS index is calculated as WQS = ∑ wiqi,j, where WQS is the mixture index, qi,j is
the quantiled variable for the ith exposure variable and jth subject and wi is the weight
corresponding to qi. In WQS with Random Subsets (WQSRS), subsets of the variables in
the mixture are randomly chosen and used to predict weights in order to maximize the
association between the index and the outcome. Such subsets are computed numerous
times (e.g., 1000 times) with adjustments for covariates. The average weights across the
subsets sum to 1 and are used to compute the final WQS index for a given health outcome.
For the calculation of the weighted index, effects can be constrained in the positive or
negative direction, or weights can be calculated without constraining direction. The WQS
index is then used in a generalized linear model (GLM), so that g(µ) ≈ α + β1WQS + δZ,
where g() indicates a link function, µ is the sample mean, α is the intercept, β1 is the
effect parameter corresponding to the WQS index, and Z represents a set of covariates
with corresponding effect estimates δ [16]. To increase generalizability, the weights are
estimated and tested in randomly selected training (40% subjects) and validation (60%
subjects) datasets. Although analysis can be constrained in the positive or negative direction
for the weighted index calculation, estimates from the GLM in the validation dataset
are not constrained. Therefore, GLM estimates can be in either direction regardless of
constraint direction in the index calculation. WQSRS with Repeated Holdouts (WQSRSRH)
then repeats the WQSRS process a specified number of times, with different observations in
the training and validation datasets, and provides effect estimates and mixture weights for
each repetition of the analysis. In each repetition of the analysis, the predictors with the
largest weights within the WQS index contribute most to the estimated effect parameter.
An equi-weight (1/the number of components in the index) cut-point is often used to
determine which components within the mixture are most important, as it indicates if an
individual weight is higher than if all components of the mixture were given equal weight.
Across repeated holdouts, average effect estimates and average component weights are
calculated for more robust estimates.

For this analysis, we looked at the association between the test variable and the gut
microbiome, in order to demonstrate the application of WQS to microbiome data. Because
of the large amount of zeros across the dataset, using quantiles in the WQS index was not
ideal due to having so many ties with a 0 score. Instead, we ranked the relative abundance
of each OTU to four levels, 0, 1, 2, or 3, where the observed 0s were scored as 0, and values
above 0 were tertile scored. Due to the large number of variables (OTUs) in the index, the
random subset variation of WQS was used in this analysis. To address generalizability
we conducted 30 repeated holdout analyses where the distribution of weights were based
on the 30 training sets (40%) and the distribution of the 30 estimates of β1 was based on
the 30 holdout validation sets (60%). The weights within each training set were based on
1000 random subsets of size 30 OTUs. To calculate the WQS index weights from the 1000
random subsets, three weighted averages were evaluated using different signal functions.
The signal function gives additional emphasis to subsets with a larger association to the
outcome, compared to those sets with negligible association. The three signal functions
tested were: (i) the default in the gWQS R package, which weights each random subset
based on the squared t statistic for the corresponding beta parameter; (ii) a more severe
weighted average, which weights using exp(t); i.e., the absolute value of the t statistic
exponentiated; and (iii) a less severe weighted average, using the absolute value of the
t statistic.

Sensitivity and specificity of this application were then calculated based on the
WQSRSRH index weights of the OTUs across the 30 repeated holdout sets. Both sensi-
tivity and specificity were calculated over a range of cut points to guide cut point selection.
Sensitivity was calculated as the proportion of the 20 selected OTUs that had weights
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exceeding the given cut point; specificity was calculated as the proportion of the remaining
848 OTUs that had weights below the cut point. We evaluated the impact of the signal
function in the weighted averages of the WQSRSRH indexes using analysis of variance for
sensitivity and specificity for the 30 holdout datasets across the 3 signal functions and
selected cut points. Cut points ranged between 0.0005 and 0.002, where 1/868 = 0.00115
(the equi-weighted cut point). The test for interaction was used as a goodness-of-fit test for
the main effect ANOVA model.

2.4. Comparison to Other Microbiome Analysis Methods

We also compared the WQSRSRH method to more standard methods of microbiome
analysis, using the same data set with the same test and control variables. We used the
Vegan package [33] in R to calculate α-diversity using the Shannon index [6], and β-diversity
distance using the Bray–Curtis dissimilarity index [9]. We performed two linear regressions
with Shannon diversity as the outcome and the test variable, and the control variable as the
primary exposure in each model, both adjusted for sex. The adonis2 function in Vegan was
then used to perform two permutational analysis of variance (PERMANOVA) analyses,
based on the Bray–Curtis index, with the same variables as the linear regression, using
9999 permutations. As a sensitivity analysis, we also conducted the same PERMANOVA
analysis using the Aitchison distance [34]. Similarity percentage (SIMPER) analysis was
then used, with 999 permutations, to determine which OTUs contributed 70% of the
variance to the β-diversity differences between the levels of the simulated variable, and
the random variable in a separate analysis. As an additional comparison, Random Forest
analysis was conducted using the randomForest package [35], with 100 trees, to identify
the OTUs most associated with the test and control variables. Separate models were run
with the test and control variables as the response in each model, and the 868 OTUs and
sex as predictors.

2.5. Data Source and Processing for Demonstration with Real Data

We further demonstrated the utility of the WQSRSRH method by using it to examine
the relationship between BMI and the gut microbiome using real (not simulated) data
from a cohort of adolescent girls from Chile. The study design of GOCS in Chile has
been previously described [36,37], The current study assesses a subset of 161 girls that
contributed stool samples, BMI z-score for age and sex, calculated using the World Health
Organization Anthro Survey Analysers, and complete covariate data. Covariate and
outcome data collected at the stool sample collection clinic visit include BMI, age, and
antibiotic use in the past six months (yes/no). Covariate data collected from survey at
study baseline (around 10 years of age) included birth mode (vaginal/C-section), maternal
education (high school or less versus more than high school), and number of days the girl
was breastfed as an infant.

Data for this project was obtained from the publicly available data in the Human
Health Exposure Analysis Resource (HHEAR) Data Repository, which has been approved
under Icahn School of Medicine at Mount Sinai IRB Protocol # 16-00947. HHEAR data use
guidelines were followed in this analysis and publication.

The microbiome taxonomy was assigned as amplicon sequence variant (ASV)s, as
previously described [36]. ASV data was then further processed by removing any ASVs
with ambiguous taxonomy, and limiting to ASVs detected in at least 10% of subjects (ASV
n = 500). The relative abundance of ASVs were calculated for each subject.

2.6. WQSRSRH Demonstration with Real Data

The WQSRSRH method was applied to these data, with BMI category (normal vs.
overweight/obese) as the outcome. The WHO BMI for sex- and age- z-score categories were
categorized as between −2 to +1 as normal weight, and 2+ as overweight/obese [38]. The
ASV relative abundances were scored into 3 groups such that 0 abundance was maintained
at 0, and the remaining abundances were split as less than the median (1) or greater than
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or equal to the median (2). The WQS microbiome mixture was analyzed at the ASV level
of taxonomy, thus the weights estimated in relation to the BMI category were per ASV.
Before implementing the WQSRSRH, WQSRS analysis, adjusted for covariates, without
directional constraints was run to determine the directionality of the association between
the microbiome mixture and BMI, and then run again with directional constraints to confirm
the direction of the association. There were 2000 random subsets with 22 ASVs randomly
selected to contribute to each of the random subsets. The WQSRSRH analysis was run with
30 repeated holdouts with the same parameters (2000 random subsets with 22 ASVs per
subset) and adjusted for covariates. All WQS analyses were trained on 40% of the subjects
and validated on the remaining 60%. ASV weights were then summed by taxonomy into
genus-level weights, calculated as the sum of all ASVs within the genus. A genus-level
threshold was calculated as 1/c, c being the number of genera found in the microbiome
mixture. Weights above the 1/c threshold indicate that the genus was more impactful on
the outcome (BMI) than under the assumption that all genera were equally weighted, such
that all genera had the same impact on BMI.

Because the WQSRSRH selects to train and validate on 40% and 60% of the subjects,
respectively, the random selection of categorical variables (outcome and covariates) in
this split can select a subset that contains all of the same category (say 0 or 1) of one or
more variables. In this case, the analysis will not run. To avoid this issue, we partitioned
the data such that the training and validation splits across the repeated holdouts ensured
the outcome in each analysis maintained variability by containing subjects with each
categorical level.

2.7. Comparison Method Analysis with Real Data

We compared the WQSRSRH method to more standard methods of microbiome analysis
using the real data from GOCS as well. We used the phyloseq package in R to calculate
α-diversity using the Shannon index [6,39], and β-diversity distance using the Bray–Curtis
dissimilarity index [9]. We used linear regressions with Shannon diversity as the outcome
and BMI category as the primary exposure variable, adjusted for maternal education, birth
mode, age, duration of breastfeeding, and antibiotic use. The adonis2 function in Vegan
was used to perform PERMANOVA analysis, based on the Bray–Curtis index, with the
same variables as the linear regression. SIMPER analysis was used to determine which
OTUs contributed 70% of the variance to the β-diversity differences between the levels
of BMI. Random Forest analysis was conducted using the randomForest package [35] to
identify the OTUs most predictive of BMI category.

3. Results
3.1. OTU Distribution

Table 1 shows a description of the 20 OTUs that were assigned an association with
the test variable. The percentage of the 210 participants that had 0 abundance for each of
the 20 OTUs ranged between 35.2% and 88.1%, with the Staphylococcus OTU having the
most non-zero abundance. The OTU with the highest maximum relative abundance was
the Dorea genus, with a relative abundance of 19.75% for one participant.

3.2. WQSRSRH Results

WQSRSRH regression was conducted with an average of 13% positive in the test
variable, and was adjusted for sex. Each model in the 30 repeated holdout sets used
1000 randomly selected sets of size 30 OTUs. The beta coefficient estimates in the 30 repeated
holdout datasets were all positively associated with the test variable (Figure 2). In compari-
son, the WQSRSRH index was not significantly associated with a random control variable in
the same dataset (Figure 2). This test of association indicates that there is an association
between the microbiome as a whole and the simulated test variable.
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The WQS weights indicate the importance of each individual OTU on the association
between the simulated variable and the microbiome. Here, the maximum average weight
across the repeated holdouts is 0.0107, roughly 10 times the size of the average weight,
while the lowest quartile weight was 0.00036, roughly 1/3 of the average weight.

3.3. WQSRSRH Sensitivity and Specificity

A range of cutoff threshold values were evaluated for identifying OTUs associated
with the probability of observing the binary outcome variable. Sensitivity (the propor-
tion correctly identified with weights above the cutoff) and specificity (the proportion
correctly not identified with weights less than the cutoff) were evaluated for each cutoff
(Supplemental Figure S1). The equi-weighted cutoff is 1/868 = 0.00115. The specificity is
improved from the equi-weighted cutoff with a value of 0.00131 where both sensitivity and
specificity are roughly 73%. Using the equi-weighted cutoff, average sensitivity is 75%,
average specificity is 70%. The two OTUs modeled with a ‘strong’ association had average
sensitivity of 87%; the 8 OTUs with a ‘medium’ association had an average sensitivity of
90%; and on average 61% of the 10 weak components were identified correctly (Table 2).

Table 2. Sensitivity and specificity in identifying the 20 associated operational taxonomic units (OTUs)
for weighted quantile sum regression with random subsets and repeated holdouts (WQSRSRH),
similarity percentage (SIMPER), and Random Forest models. For WQSRSRH the sensitivity and
specificity were averaged across 30 repeated holdout datasets with a cutoff of 0.00115 (=1/868). For
SIMPER, one model was conducted with 999 permutations, and the cutoff of importance was 70%
cumulative variance. For Random Forest, one model was conducted with 100 trees, and importance
scores were converted to a proportion, with a cutoff of 0.00115.

Denominator WQSRSRH Proportion 1 SIMPER Proportion 1 Random Forest Proportion 1

Overall Sensitivity 20 0.75 (0.60–0.90) 0.40 (0.19–0.61) 0.65 (0.44–0.86)
Overall Specificity 848 0.70 (0.54–0.86) 0.75 (0.72–0.78) 0.70 (0.67–0.73)
Sensitivity: Strong 2 0.87 0.50 1.00

Sensitivity: Medium 8 0.90 0.63 1.00
Sensitivity: Weak 10 0.61 0.20 0.30

1 Confidence intervals (CIs) were calculated as p ± 1.96*
√

pq/n, where p is the proportion estimate, q is 1-p, and n
is the number of observations. For the WQSRSRH CI, n = 30 for the number of repeated holdouts averaged in the
estimate, and for SIMPER and Random Forest CIs, n = the value from the denominator column. CIs are included
for the overall estimates of specificity and sensitivity, but not for the subset sensitivity analyses due to small
denominators. CIs are provided to demonstrate the reasonable range of the estimate, not to indicate statistical
significance between the methods.
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3.4. WQSRSRH Signal Functions

We next evaluated potential differences in sensitivity and specificity using different
signal functions; i.e., (i) the absolute value of the t statistic corresponding to the beta
coefficient for WQS; (ii) the square of the t statistic; and (iii) exp(t). In the analysis of
both the sensitivity and specificity estimates across the signal functions and cut points
in ANOVA, the cross-product term was not significant, indicating an adequate fit for the
main-effects ANOVA model. In reduced main-effect models, as anticipated, there was a
significant improvement in specificity with more severe weighting: i.e., in increasing order
of abs(t), t2, exp(t) (p < 0.001; Figure S2A). However, there was no difference in sensitivity
with changes in the signal function (p = 0.597; Figure S2B).

3.5. Diversity Comparison

The average Shannon diversity (α-diversity) score was 4.14, ranging from 1.58–5.02. In
a linear regression with Shannon diversity as the outcome, the test variable was associated
with 0.14 increased score (p = 0.20), adjusted for sex (Male β = −0.06, p = 0.41). The same
regression was performed with the random variable as the primary predictor, and found
no association between the random variable and Shannon diversity (β = −0.03, p = 0.67).

β-Diversity was calculated with the Bray–Curtis dissimilarity index (Figure 3). Using
PERMANOVA, we assessed the association between the test variable, adjusted for sex,
and β-diversity. We found no association with the test variable (R2 = 0.005, p = 0.35) or
sex (R2 = 0.005, p = 0.35). We also found no association in the model with the control
variable (R2 = 0.004, p = 0.71) and sex (R2 = 0.005, p = 0.47). In sensitivity analysis using the
Aitchison distance instead of Bray–Curtis, results were similar with no association found
with the test variable (R2 = 0.005, p = 0.38) or the control variable (R2 = 0.005, p = 0.54).
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Figure 3. Human Gut Microbiome Beta Diversity by Level of the Simulated Variables. Bray–Curtis
dissimilarity distance (beta diversity) shown using multidimensional scaling (MDS) ordination plots
of (A) the test variable, and (B) the control variable. Data points represent individual observations.
Data points closer together represent gut microbiome composition that is more similar, while data
points farther apart represent gut microbiome composition that is more different. Data come from the
Human Microbiome Project I with simulated test and control variables.

3.6. Comparison of OTU Identification

We used SIMPER analysis to identify the OTUs contributing 70% of the variance to the
differences in composition (β-diversity) by level of the exposure variable. We ran separate
analyses using the test and control variables as the exposure variable, obtaining very similar
results. Both analyses identified 1 of 2 OTUs assigned a strong association, 5 of 8 OTUs
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assigned a medium association, and 2 of 10 OTUs assigned a weak association. Sensitivity
and specificity with the test variable as the exposure were 0.4 and 0.75, respectively (Table 2).
The model with the control variable as the exposure had an overall sensitivity of 0.4, and
specificity of 0.76.

As an alternative method of identifying OTUs associated with the response variable,
we conducted Random Forest analysis. Each model, one with the test variable as the
response, and one with the control variable, provides a score of importance of each predictor
variable (OTUs + sex). We converted each score to a proportion out of 1 and set a cutoff of
importance at 1/869 (the total number of predictors) to calculate sensitivity and specificity.
The random forest model of the test variable was able to identify all of the strong (2) and
medium (8) associated OTUs, and 3 of 10 weak OTUs, for an overall sensitivity of 0.65 and
specificity of 0.7 (Table 2). The model with the control variable as the response identified 7
of the 20 OTUs associated with the simulated variable, and had a specificity of 0.35 and
sensitivity of 0.63.

3.7. Results of Real Data Demonstration

The study population was composed of 159 adolescent Chilean girls around age
15 with complete covariate data. There were 119 girls of normal weight and 40 girls
who were overweight/obese. See Table 3 for further demographics and characteristics of
the population.

Table 3. Description of the study population from the Growth and Obesity Cohort Study data used
in the illustration analysis.

Characteristic N Normal Weight, N = 119 1 Overweight/Obese, N = 40 1 p-Value 2

Age (years) 159 15.4 (0.6) 15.3 (0.6) 0.2
Number of days breastfed as infant 159 89.8 (76.4) 104.4 (87.8) 0.4

Birth mode (vaginal versus C-section) 159 0.2
C-section 31 (26%) 15 (38%)
Vaginal 88 (74%) 25 (62%)

Were antibiotics used in the past
6 months (yes vs. no) 159 19 (16%) 5 (12%) 0.6

Maternal education 159 0.12
High school or less 94 (79%) 36 (90%)

More than high school 25 (21%) 4 (10%)

1 Mean (SD); n (%) 2 Welch Two Sample t-test or Pearson’s Chi-squared test.

Covariate adjusted WQSRS without constraints in the positive or negative direction
showed that the microbiome mixture in relation to BMI had a negative association, where
1228 out of 2000 of the estimated coefficients linking the WQSRS mixture to BMI were
negatively associated. We then ran a single adjusted WQSRS with positive constraints
(OR = 0.08, 95%CI = 0.001, 12.3), and a single adjusted WQSRS with negative constraints
(OR = 0.11, 95%CI = 0.002, 6.79) to confirm the negative direction before running the
WQSRSRH. Although insignificant in both the negatively and positively constrained di-
rections, the direction of the estimated odds ratios from both models indicated an overall
negative association between the microbiome mixture and BMI group. The WQSRSRH
analysis was then performed with constraints in the negative direction. The WQSRSRH
analysis (Table 4) showed that the microbiome mixture had a negative association with BMI
such that, for each unit increase in the WQS microbiome mixture, there was a 98% decrease
in the odds of being overweight/obese versus normal weight (OR = 0.03, 95%CI: (0.00,
2.09). Of the 30 repeated holdout iterations, 28 (93%) had WQS estimates in the negative
direction. This indicates that, as the abundance and/or the potency of the bacteria (with
non-negligible weights) increase, the odds of being overweight/obese seems to decrease.
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Table 4. Estimates of association with body mass index (BMI), shown as odds ratios from the
Weighted Quantile Sum regression with Random Subsets and Repeated Holdouts analysis. The
weighted quantile sum (WQS) variable represents the estimate for the association between the gut
microbiome mixture and BMI. Odds ratios with confidence intervals (CIs) that do not cross 1.0 are
considered statistically significant. Data come from the Growth and Obesity Cohort Study.

Variable OR (95% CI)

WQS 0.03 (0.00, 2.09)
Maternal Education (More than High School) 0.22 (0.00, 89.77)

Birth Mode (Vaginal) 0.72 (0.34, 1.52)
Age at Stool Sample 0.68 (0.37, 1.25)

Number of Days Breastfed as an Infant 1.00 (1.00, 1.01)
Antibiotic Use in Past 6 Months 0.50 (0.00, 3.08)

The genus-level threshold that informs which taxa have a greater impact than taxa
assumed to be equally weighted can be found in Figure 4. Of 48 genera within the mixture,
7 were above the weight threshold, indicating that these genera had a greater contribu-
tion than all other genera to the negative association between the microbiome mixture
and the odds of being overweight/obese in this population. These genera included Bac-
teroides, Prevotella, Clostridium, Ruminococcus, and unidentified genera from the Firmicutes,
Actinobacteria, and Bacteroidetes phyla.
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Figure 4. Bacterial Genera Negatively Associated with Obesity. Data points indicate the sum of
weights in association with BMI level for each of the 30 repeated holdout analyses (from weighted
quantile sum regression with random subsets and 30 repeated holdouts) for amplicon sequence
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diamonds show the sum of the mean weights within each genus. Data come from the Growth and
Obesity Cohort Study.
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3.8. Comparison Methods Demonstration with Real Data

Adjusted linear regression analysis identified no association between BMI level and
Shannon diversity (β = 0.0, 95%CI = −0.12–0.12) in the GOCS cohort. Adjusted PER-
MANOVA analysis showed a small but significant association between β-diversity and
BMI level (R2 = 0.01, p = 0.002). Of the 109 ASVs that contributed to the highly weighted
genera in the WQSRSRH analysis, 37 (34%) were also selected by the Random Forest analy-
sis, and 50 (46%) were also selected by SIMPER as associated with BMI level. Bacteroides,
Prevotella, Clostridium, and Ruminococcus were identified in association with BMI across
all three methods. Collinsella, Shigella, Bifidobacterium, Akkermansia, Faecalibacterium, Lacto-
bacillus, Lachnospira, and Robinsella were identified by SIMPER and Random Forest, but not
WQSRSRH.

4. Discussion

This simulation study demonstrated the novel use of the WQS analysis framework in
microbiome data analysis. The WQSRSRH model was able to detect a significant associa-
tion in the correct direction between the test variable and the microbiome, in a dataset of
210 microbiome samples. With a WQS equi-weighted cut-point (1/868), average sensitivity
and specificity across 30 random holdout models were 75% and 70%, respectively. In this
simulation, we also demonstrated that the signal function based on the exp(t) improved
specificity but was not different from less severe signal functions in assessing sensitivity.
This method has potential for broad applications within microbiome research. WQSRSRH
can be used to assess associations between exposures of interest and the microbiome, as
well as associations between the microbiome and health outcomes. Compared to stan-
dard methods of microbiome analysis, WQSRSRH performed similarly or better than all
other tested methods at identifying an overall association in the correct direction, and
in sensitivity and specificity at correctly identifying the 20 OTUs with an association to
the test variable. In further demonstration of the method with real data, the method was
adjustable to accommodate the different composition of the dataset, including the use of
ASV data instead of OTUs. Furthermore, the WQSRSRH model found a negative association
between the gut microbiome and BMI, and identified important bacterial taxa consistent
with previously published studies.

Our simulated variable was associated with the abundance of several OTUs across all
participants. The abundance of those 20 OTUs contribute to the calculation of α-diversity,
however, because α-diversity evaluates the association of single sample composition, and
WQSRSRH evaluates the OTU combination association across the population, it is not
surprising that WQSRSRH was able to detect an association with the test variable while
α-diversity analysis was not.

Alternatively, β-diversity directly compares composition of each sample to all others.
There are many different methods to calculate similarity and dissimilarity distance for
β-diversity analysis. In this analysis, we saw similar null results using both the Bray–Curtis
and Aitchison distances. If the OTUs that we used to simulate an association were not major
contributors to the overall composition of samples, PERMANOVA would not have found
significant variance by the test variable. Moreover, if the 20 OTUs that were selected for
association, were overwhelmed or drowned out by the richness and abundance of the other
OTUs in each sample being compared, PERMANOVA would not have detected a significant
amount of variance associated with the test variable. Likewise, SIMPER identifies which
OTUs contributed the most to the variance detected between levels of exposure, so again
if the OTUs with a simulated association were not major contributors to the composition
of many of the samples, they would likely not have contributed much variance. It is
noteworthy that SIMPER detected the same OTUs of the 20 simulated associations for both
the test and control variables. It indicates that SIMPER is really constructed to identify the
OTUs contributing most to the composition overall, those that are most abundant, and not
necessarily the OTUs most associated with an exposure.
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WQSRSRH in contrast does not compare samples directly to each other, it evaluates
the combination of all the OTUs across all samples, and weights the association of each
OTU within the combination. This allows for identification of important OTUs even when
their relative contribution to the composition of an individual sample may be small. It
also allows for the identification of important OTUs across samples with very different
composition. For instance, in observational studies, microbial composition of samples from
different individuals can be difficult to compare to each other because there may be limited
overlap in OTU composition, thus PERMANOVA and SIMPER analysis of β-diversity can
fail to identify important associations. However, using WQSRSRH, OTUs are evaluated in
combination across all samples, so two samples with completely different composition
can both contribute heavily weighted OTUs to the combination, i.e., associated OTUs can
be identified even when they are only in some of the study samples. WQS evaluates the
association of the combination of OTUs, and indicates which are the most associated with
exposure, without having to do direct sample comparisons, or relying only on the most
abundant OTUs. The signal function in the weighted average across the random subsets
further enhances the impact of random sets with important OTUs.

The Random Forest analysis performed similarly to WQSRSRH in sensitivity and speci-
ficity when using the simulated variable as the response. The test model also performed
much better than the control model, indicating that it is better suited than methods like
SIMPER to pick out the most associated OTUs. It is worth noting that when creating the
simulated variable, all OTUs that were not assigned an association were assumed to have
an association of 0. However, it is likely that some of those OTUs were correlated with
some of the 20 OTUs that were assigned an association. These correlations likely account
for some of the variation we see in sensitivity and specificity calculations across WQSRSRH,
Random Forest, and SIMPER.

While Random Forest performed well in this application, there are some potential
advantages of using WQSRSRH instead. WQSRSRH simultaneously identifies the most im-
portant OTUs and estimates an overall mixture effect (or association in this case), instead
of just identifying the importance of OTUs as the Random Forest does. In a situation like
the one demonstrated in this simulation analysis, where there is an underlying association
that is not detected by α and β-diversity, WQSRSRH provides an additional measurement
of association with the overall microbial composition that Random Forest does not. Ad-
ditionally, incorporation and interpretation of covariates is simpler in WQSRSRH models,
as they are modeled as they would be in traditional regression methods instead of being
included as a potential predictor along with the OTUs in a Random Forest model.

In the demonstration with data from GOCS, the WQSRSRH method is adaptable to
different datasets, and performed well in identifying bacteria related to high BMI. We were
able to adjust the parameters of the model in several ways to accommodate the different
datasets, and provide a demonstration of the WQSRSRH method using ASV data as opposed
to the OTU data that was used in the simulation study. We set the ranking mechanism
to split the ASV abundance into three levels rather than four as shown in the simulation
analysis. This adjustment was made to accommodate the smaller sample size and fewer
microbiome mixture components (ASVs) in the GOCS dataset. The ranking levels can be
adjusted to any number as appropriate for the dataset in use. Moreover, if the ranking is
split once at zero, the microbiome mixture can be analyzed with presence/absence data
rather than abundance. We also adjusted the number and size of the random subsets used
to calculate the weighted index. The size of the random subsets should correspond to the
number of observations in the dataset. The number of random subsets used is relatively
arbitrary, but the larger the number of subsets, the more robust the estimate. We were
also able to specify the data subsets to use in each repeated holdout iteration to ensure
the variability of the categorical outcome in each subset. Although the WQSRSRH estimate
was not statistically significantly associated with BMI in this cohort, evidence of the trend
in the negative direction was strengthened by 93% of the repeated holdout iterations
producing a negative estimate. Analysis of association with α-diversity also found no
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association with BMI in this cohort. The bacterial taxa identified as heavily weighted
within the negative association were consistent with bacterial genera negatively associated
with obesity in other studies, and were also identified by the Random Forest and SIMPER
methods. Although different species within the same genera may associate differently
with obesity [40], several other studies have found a negative association between obesity
and Bacteroides [41], Ruminococcus [42], and Clostridium [28] genera. While the Random
Forest and SIMPER methods identified additional genera in association with BMI, it is
important to note that these methods consider associations between each ASV and BMI
individually, while WQSRSRH is considering which ASVs are the most important in the gut
microbiome mixture.

There are many potential advantages of using WQSRSRH for microbiome analysis,
however, we are not suggesting that WQSRSRH performs statistically differently than other
methods that were compared. WQSRSRH works with both continuous and categorical vari-
ables, and allows for the adjustment of covariates in an interpretable fashion. It accounts for
the correlated nature of the taxa within the microbiome, and gives an overall effect estimate
and the weight of importance when all taxa in the index are considered together. WQSRSRH
allows for analysis of associations in positive and negative directions separately, and allows
flexibility in choosing the signal function in the weighting step. It accommodates samples
from populations with widely varied microbial composition, identifying associations with
OTUs present in a relatively small proportion of the population. WQSRSRH also gives
robust estimates over many repetitions of the analysis. WQSRSRH could be used in a broad
range of health research, as well as in a drug discovery framework. It could identify groups
of bacteria that are associated together with an outcome of interest, which could be targeted
together in developing probiotics. When the analyst is interested in determining a small
subset of OTUs associated with the outcome, as in a drug discovery framework, the bottom
90–95% of the weights can be set to zero to test for significance in the top 5–10%. This may
lead to better identification of bacteria to include in probiotics that will be successful within
the gut microbiome ecosystem.

While this demonstration of the application of WQS to microbiome data establishes a
novel analytical method with potential for broad use, it does have some limitations. The first
is that, while the overall WQSRSRH estimate identifies the direction of association between
the variable of interest and the abundance of taxa within the microbiome, it is not directly
translatable to a value measure (i.e., a measureable unit of some health outcome). However,
the current standard microbiome analyses using α-diversity, β-diversity, and principal
components analysis suffer from a similar limitation. Another limiting consideration is
that the sensitivity and specificity of this WQSRSRH method application depends on the
number of taxa in the data set, and the cutoff point chosen to identify the taxa of most
importance. Of course, in an analysis of microbiome data with a real variable with unknown
association, we would not know the truth to determine a good cutoff for both sensitivity
and specificity. As demonstrated with the GOCS data, the equi-weighted cut point can be
used as a default with unknown sensitivity and specificity. However, relevant cut points
could be determined by investigating the significance of the index across repeated holdout
data sets. The use of 16S rRNA sequencing with taxonomic assignment down to the genus
level is also somewhat controversial among microbiome researchers. However, because the
primary purpose of this analysis was to demonstrate the analytical method, the choice of
grouping results at the genus level rather than the family level is not a major limitation.
Lastly, in calculating the α and β-diversity for comparison to WQSRSRH, we used the same
data set, which was limited to OTUs detected in at least 10% of samples, and converted
to relative abundance. These processing steps affected the diversity calculations that rely
on singletons. While this allows us to do a direct comparison with the WQSRSRH method,
these calculated values are not generalizable outside this study.

This simulation study is the first step in exploring the use of WQS methods on the
analysis of microbiome data. We plan to apply WQS methods to other forms of micro-
biome data beyond 16s rRNA amplicon sequencing, including metagenomic sequence
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data. Further development of the general WQS method is still underway, including the use
of stratification, and Bayesian statistical applications, thus as those methods continue to
develop, we will test their application on microbiome data.

5. Conclusions

This study demonstrated the application of WQSRSRH to microbiome sequencing
abundance data. In our analysis, the WQSRSRH method was able to detect a significant
association between the test variable and the overall abundance of the microbiome in the
correct direction, and identified the assigned associated OTUs with acceptable levels of
sensitivity and specificity. In further demonstration with real data, the model identified a
direction of association with heavily weighted taxa consistent with other studies of BMI and
the gut microbiome. This method has potential for broad application within microbiome
research, and we plan to continue to refine and apply WQS methods to different analyses
of microbiome data.
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